References

Asner GP, Lobell DB. 2000. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment74 (1): 99–112 DOI: 10.1016/S0034-4257(00)00126-7
Baird KJ, Stromberg JC, Maddock T. 2005. Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation. Environmental Management 36 (4): 551–564 DOI: 10.1007/s00267-004-0181-z
Barlage M, Zeng X. 2004. The effects of observed fractional vegetation cover on the land surface climatology of the community land model.Journal of Hydrometeorology DOI: 10.1175/1525-7541(2004)005<0823:TEOOFV>2.0.CO;2
Beucher S, Meyer F. 1993. The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing 34 : 433–481
Boehm HDV, Liesenberg V, Limin SH. 2013. Multi-temporal airborne LiDAR-survey and field measurements of tropical peat swamp forest to monitor changes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (3): 1524–1530 DOI: 10.1109/JSTARS.2013.2258895
Bouckaert F, Wei Y, Hussey K, Pittock J, Ison R. 2018. Improving the role of river basin organisations in sustainable river basin governance by linking social institutional capacity and basin biophysical capacity.Current Opinion in Environmental Sustainability 33 : 70–79 DOI: 10.1016/j.cosust.2018.04.015
Bowyer P, Danson FM. 2004. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level. InRemote Sensing of Environment Elsevier Inc.; 297–308. DOI: 10.1016/j.rse.2004.05.020
Breiman L. 2001. Random forests. Machine learning 45(1): 5–32
Brookhouse MT, Farquhar GD, Roderick ML. 2013. The impact of bushfires on water yield from south-east Australia’s ash forests. Water Resources Research 49 (7): 4493–4505 DOI: 10.1002/wrcr.20351
Brown JAH. 1972. Hydrologic effects of a bushfire in a catchment in south-eastern New South Wales. Journal of Hydrology 15(1): 77–96 DOI: 10.1016/0022-1694(72)90077-7
DEE. 2019. Fractional Cover. Digital Earth Australia Available at: https://www.ga.gov.au/dea/products/fc [Accessed 4 November 2020]
Doody TM, Colloff MJ, Davies M, Koul V, Benyon RG, Nagler PL. 2015. Quantifying water requirements of riparian river red gum ( Eucalyptus camaldulensis ) in the Murray-Darling Basin, Australia - implications for the management of environmental flows. Ecohydrology8 (8): 1471–1487 DOI: 10.1002/eco.1598
Doody TM, Holland KL, Benyon RG, Jolly ID. 2009. Effect of groundwater freshening on riparian vegetation water balance. Hydrological Processes 23 (24): 3485–3499 DOI: 10.1002/hyp.7460
Dubayah RO, Drake JB. 2000. Lidar Remote Sensing for Forestry. Oxford Academic. DOI: 10.1093/JOF/98.6.44
Fang L, Zhan X, Hain CR, Liu J. 2018. Impact of Using Near Real-Time Green Vegetation Fraction in Noah Land Surface Model of NOAA NCEP on Numerical Weather Predictions. Advances in Meteorology2018 DOI: 10.1155/2018/9256396
Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass.Remote Sensing of Environment 154 (1): 102–114 DOI: 10.1016/j.rse.2014.07.028
Filipponi F. 2019. Sentinel-1 GRD Preprocessing Workflow.Proceedings 18 (1): 11 DOI: 10.3390/ecrs-3-06201
Ghulam A, Li ZL, Qin Q, Yimit H, Wang J. 2008. Estimating crop water stress with ETM+ NIR and SWIR data. Agricultural and Forest Meteorology 148 (11): 1679–1695 DOI: 10.1016/j.agrformet.2008.05.020
Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random forests for land cover classification. In Pattern Recognition Letters North-Holland; 294–300. DOI: 10.1016/j.patrec.2005.08.011
Glenn EP, Doody TM, Guerschman JP, Huete AR, King EA, McVicar TR, Van Dijk AIJM, Van Niel TG, Yebra M, Zhang Y. 2011. Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience. Hydrological Processes 25 (26): 4103–4116 DOI: 10.1002/hyp.8391
Guerschman JP, Hill MJ. 2018. Calibration and validation of the Australian fractional cover product for MODIS collection 6. Remote Sensing Letters 9 (7): 696–705 DOI: 10.1080/2150704X.2018.1465611
Guerschman JP, Van Dijk AIJM, Mattersdorf G, Beringer J, Hutley LB, Leuning R, Pipunic RC, Sherman BS. 2009. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. Journal of Hydrology 369 (1–2): 107–119 DOI: 10.1016/j.jhydrol.2009.02.013
Guerschman JP, Scarth PF, McVicar TR, Renzullo LJ, Malthus TJ, Stewart JB, Rickards JE, Trevithick R. 2015. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sensing of Environment161 : 12–26 DOI: 10.1016/j.rse.2015.01.021
Hale J, Butcher R. 2011. Ecological Character Description for the Barmah Forest Ramsar Site
Han D, Liu S, Du Y, Xie X, Fan L, Lei L, Li Z, Yang H, Yang G. 2019. Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery. Sensors 19 (18): 4013 DOI: 10.3390/s19184013
Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD. 2012. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLOS ONE 7 (2): e32688 DOI: 10.1371/JOURNAL.PONE.0032688
Immitzer M, Böck S, Einzmann K, Vuolo F, Pinnel N, Wallner A, Atzberger C. 2018. Fractional cover mapping of spruce and pine at 1 ha resolution combining very high and medium spatial resolution satellite imagery.Remote Sensing of Environment DOI: 10.1016/j.rse.2017.09.031
Jarchow CJ, Nagler PL, Glenn EP. 2017. Greenup and evapotranspiration following the Minute 319 pulse flow to Mexico: An analysis using Landsat 8 Normalized Difference Vegetation Index (NDVI) data. Ecological Engineering 106 : 776–783 DOI: 10.1016/j.ecoleng.2016.08.007
Koukoulas S, Blackburn GA. 2005. Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi‐spectral remotely sensed data. International Journal of Remote Sensing 26 (3): 431–455 DOI: 10.1080/0143116042000298289
Kuczera G. 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. Journal of Hydrology 94 (3–4): 215–236 DOI: 10.1016/0022-1694(87)90054-0
Leblanc M, Tweed S, Van Dijk A, Timbal B. 2012. A review of historic and future hydrological changes in the Murray-Darling Basin. Global and Planetary Change DOI: 10.1016/j.gloplacha.2011.10.012
Lee S. 2020. Impact of Wildfire on Annual Water Yield in Large Watersheds
Main-Knorn M, Pflug B, Debaecker V, Louis J. 2015. Calibration And Validation Plan For The L2a Processor And Products Of The Sentinel-2 Mission. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesXL -7/W3 (7W3): 1249–1255 DOI: 10.5194/isprsarchives-XL-7-W3-1249-2015
Manfreda S, McCabe MF, Miller PE, Lucas R, Madrigal VP, Mallinis G, Dor E Ben, Helman D, Estes L, Ciraolo G, et al. 2018. On the use of unmanned aerial systems for environmental monitoring. Remote Sensing DOI: 10.3390/rs10040641
MDBA. 2009. Water Act 2007 . Available at: https://www.legislation.gov.au/Details/C2016C00469
Melville B, Fisher A, Lucieer A. 2019. Ultra-high spatial resolution fractional vegetation cover from unmanned aerial multispectral imagery.International Journal of Applied Earth Observation and Geoinformation DOI: 10.1016/j.jag.2019.01.013
Moreno HA, Gourley JJ, Pham TG, Spade DM. 2020. Utility of satellite-derived burn severity to study short- and long-term effects of wildfire on streamflow at the basin scale. Journal of HydrologyDOI: 10.1016/j.jhydrol.2019.124244
Mu Q, Zhao M, Running SW. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment 115 (8): 1781–1800 DOI: 10.1016/j.rse.2011.02.019
Mu Q, Zhao M, Running SW. 2013. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) Collection 5.Numerical Terradynamic Simulation Group Available at: https://www.researchgate.net/publication/315700715 [Accessed 4 November 2020]
Nagler PL, Doody TM, Glenn EP, Jarchow CJ, Barreto-Muñoz A, Didan K. 2016. Wide-area estimates of evapotranspiration by red gum (Eucalyptus camaldulensis ) and associated vegetation in the Murray-Darling River Basin, Australia. Hydrological Processes30 (9): 1376–1387 DOI: 10.1002/hyp.10734
Rolls RJ, Bond NR. 2017. Environmental and Ecological Effects of Flow Alteration in Surface Water Ecosystems. In Water for the Environment: From Policy and Science to Implementation and Management Elsevier Inc.; 65–82. DOI: 10.1016/B978-0-12-803907-6.00004-8
Tucker CJ. 1980. Remote sensing of leaf water content in the near infrared. Remote Sensing of Environment 10 (1): 23–32 DOI: 10.1016/0034-4257(80)90096-6
Vaudour E, Gomez C, Fouad Y, Lagacherie P. 2019. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sensing of Environment223 : 21–33 DOI: 10.1016/j.rse.2019.01.006
Verrelst J, Muñoz J, Alonso L, Delegido J, Rivera JP, Camps-Valls G, Moreno J. 2012. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment 118 : 127–139 DOI: 10.1016/j.rse.2011.11.002
Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, et al. 2010. Global threats to human water security and river biodiversity. Nature467 (7315): 555–561 DOI: 10.1038/nature09440
Wallace TA; Gehrig SL; Doody TM; Davies MJ; Walsh R; Fulton C; Cullen R; Nolan M. 2019. A-multiple-lines of evidence approach for prioritising environmental watering of wetland and floodplain trees (in press).