REFERENCES
Agerer, R. 1987-2006. Colour Atlas of Ectomycorrhizae. Schwäbisch
Gmünd: Einhorn–Verlag.
Agerer, R. 1991. Characterization of ectomycorrhiza. Methods in
Mycrobiology, 23: 26–65.https://doi.org/10.1016/S0580-9517(08)70172-7
Agerer, R. 2001. Exploration types of ectomycorrhizae: A proposal to
classify ectomycorrhizal mycelial system according to their patterns of
differentiation and putative ecological importance. Mycorrhiza,11: 107–114.
Ahonen-Jonnarth, U., van Hees, P. A. W., Lundstrm, U. S., Finlay, R. D.
2000. Organic acids produced by mycorrhizal Pinus sylvestris exposed to
elevated aluminium and heavy metal concentrations. New
Phytologist, 146(3): 557–567.https://doi.org/10.1046/j.1469-8137.2000.00653.x
Almeida, J. P, Rosenstock, N. P., Forsmark, B., Bergh, J., Wallander, H.
2019. Ectomycorrhizal community composition and function in a spruce
forest transitioning between nitrogen and phosphorus limitation.Fungal Ecology, 40: 20–31.https://doi.org/10.1016/j.funeco.2018.05.008
Alonso, J., García, M. A., Pérez-López, M., Melgar, M. J. (2003) The
con-centrations and bioconcentration factors of copper and zinc in
edible mushrooms. Archives of Environmental Contamination and
Toxicology, 44: 180–188https://doi.org/10.1007/s00244-002-2051-0
Bardgett, R. D, Mommer, L., De Vries, F. T. (2014) Going underground:
root traits as drivers of ecosystem processes. Trends in Ecology
& Evolution, 29: 692–699.https://doi.org/10.1016/j.tree.2014.10.006
Barrett, G., Campbell, C. D, Fitter, A. H, Hodge, A. (2011) The
arbuscular mycorrhizal fungus Glomus hoi can capture and transfer
niterogen from organic patches to its associated host plant at low
temperature. Applied Soil Ecology, 48(1): 102–105.https://doi.org/10.1016/j.apsoil.2011.02.002
Beltrano, J., Ruscitti, M., Arango, M. C., Ronco, M. (2013) Effects of
arbuscular mycorrhiza inoculation on plant growth, biological and
physiological parameters and mineral nutrition in pepper grown under
different salinity and p levels. Journal of Soil Science and Plant
Nutrition, 13(1): 123–141.https://doi.org/10.4067/S0718-95162013005000012
Boomsma, C. R., Vyn, T. J. (2008) Maize drought tolerance: Potential
improvements through arbuscular mycorrhizal symbiosis? Field Crops
Research, 108: 14–31.https://doi.org/10.1016/j.fcr.2008.03.002
Brandes, B., Godbold, D. L, Kuhn, A. J, Jentschke, G. (1998) Nitrogen
and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus
Paxillus involutus and its effect on host nutrition. New
Phytologist, 140: 735–743.https://doi.org/10.1046/j.1469-8137.1998.00313.x
Cappellazzo, G., Lanfranco, L., Fitz, M., Wipf, D., Bonfante, P. 2008.
Characterization of an amino acid permease from the Endomycorrhizal
fungus Glomus mosseas . Plant Physiology, 147: 429–437.
Chen, W. L., Koide, R. T., Adams, T. S., DeForest, J. L., Cheng, L.
(2016) Root morphology and mycorrhizal symbioses together shape nutrient
foraging strategies of temperate trees. Proceedings of the
National Academy of Sciences of the United States of America, 113(31):
8741–8746.https://doi.org/10.1104/pp.108.117820
Chen, W. L., Koide, R. T., Eissenstat, D. M. 2018. Nutrient foraging by
mycorrhizas: From species functional traits to ecosystem processes.Functional Ecology, 32(4): 858–869.https://doi.org/10.1111/1365-2435.13041
Chen, M. M., Yin, H. B., O’Connor, P., Wang, Y. S.,
Zhu, Y. G. (2010) C: N: P stoichiometry and specific growth rate of
clover colonized by arbuscular mycorrhizal fungi. Plant and Soil326: 21–29.https://doi.org/10.1007/s11104-009-9982-4
Chien, S. H., Gearhart, M. M., Villagarcia. S. 2011. Comparison of
ammonium sulfate with other nitrogen and sulfer fertilizers in
increasing crop production and minimizing environmental impact: a
review. Soil Science, 176(7): 327–335.https://doi.org/10.1097/SS.0b013e31821f0816
Courty, P. E.,Buee, M., Diedhiou, A. G., Fre-Klett, P., Le Tacon, F.,
Rineau, F., Turpault, M. P., Uroz, S., Garbaye, J. (2010) The role of
ectomycorrhizal communities in forest ecosystem processes: new
perspectives and emerging concepts. Soil Biology and
Biochemistry, 42: 679–698.https://doi.org/10.1016/j.soilbio.2009.12.006
Cornelissen, J. H. C, Aerts, R., Cerabolini, B., Werger, M. J. A, van
der Heijden, M. G. A. (2001) Carbon cycling traits of plant species are
linked with mycorrhizal strategy. Oecologia, 129: 611–619.https://doi.org/10.1007/s004420100752
Craine, J. M., Elmore, A. J, Aidar, M. P., Bustamante, M., Dawson, T.
E., Hobbie, E. A., Kahmen, A., Mack, C., McLauchlan, K. K, Michelsen, A.
(2009) Global patterns of foliar nitrogen isotopes and their
relationships with climate, mycorrhizal fungi, foliar nutrient
concentrations, and nitrogen availability. New Phytologist, 183:
980–992.https://doi.org/10.1111/j.1469-8137.2009.02917.x
Craine, J. M, Lee, W. G. (2003) Covariation in leaf and root traits for
native and non-native grasses along an altitudinal gradient in New
Zealand. Oecologia, 134: 471–478.https://doi.org/10.1007/s00442-002-1155-6
Einsmann, J. C, Jones, B., Pu, M., Mitchell, R. J. (1999) Nutrient
foraging traits in 10 co-ocurring plant species of contrasting life
forms. Journal of Ecology, 87: 609–619.https://doi.org/10.1046/j.1365-2745.1999.00376.x
Florin, R. (1963) The distribution of conifer and taxad genera in time
and space. Acta Hortie Berg 20: 121–312.
Franklin, O., Nasholm, T., Hogberg, P., Hogberg, M. N. (2014) Forests
trapped in nitrogen limitation–an ecological market perspective on
ectomycorrhizal symbiosis. New Phytologist, 203: 657–666.https://doi.org/10.1111/nph.12840
Gallaher, R. N, Weldon, C. O, Boswell, F. C. (1976) A semi-automated
procedure for total nitrogen in plant and soil samples. Soil
Science Society of America Journal 40: 887–889.https://doi.org/10.2136/sssaj1976.03615995004000060026x
Graefe, S., Hertel, D., Leuschner, Ch. (2010) N, P and K limitation of
fine root growth along an elevation transect in tropical mountain
forests. Acta Oecologica, 36: 537–542.https://doi.org/10.1016/j.actao.2010.07.007
Güsewell, S. 2004. N:P ratios in terrestrial plants: Variation and
functional significance. New Phytologist, 164: 243–266.https://doi.org/10.1111/j.1469-8137.2004.01192.x
Güsewell, S., Koerselman, W. (2002) Variation in nitrogen and phosphorus
concentrations of wetland plants. Perspectives in Ecology,
Evolution and Systematics, 5: 37–61.https://doi.org/10.1078/1433-8319-0000022
Han, W., Fang, J., Guo, D., Zhang, Y. (2005) Leaf nitrogen and
phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168 (2): 377–385.https://doi.org/10.1111/j.1469-8137.2005.01530.x
Hajong, S., Kumaria, S., Tandon, P. (2013) Comparative study of key
phosphorus and nitrogen metabolizing enzymes in mycorrhizal and
non-mycorrhizal plants of Dendrobium chrysanthum Wall. ex Lindl.Acta Physiol Plant, 35: 2311–2322.https://doi.org/10.1007/s11738-013-1268-z
He, J. S, Wang, L., Flynn, D. F. B, Wang, X. P, Ma, W. H, Fang, J. Y.
(2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland
biomes. Oecologia1, 55: 301–310.https://doi.org/10.1007/s00442-007-0912-y
Hobbie, E. A, Agerer, R. (2010) Nitrogen isotopes in ectomycorrhizal
sporocarps correspond to belowground exploration types. Plant
Soil, 327: 71–83.https://doi.org/10.1007/s11104-009-0032-z
Hobbie, E. A, Högberg, P. (2012) Nitrogen isotopes link mycorrhizal
fungi and plants to nitrogen dynamics. New Phytologist, 196:
367–382.https://doi.org/10.1111/j.1469-8137.2012.04300.x
Hobbie, E. A, Jumpponen, A., Trappe, J. (2005) Foliar and fungal15N:14N ratios reflect development
of mycorrhizae and nitrogen supply during primary succession: testing
analytical models. Oecologia, 146: 258–268.https://doi.org/10.1007/s00442-005-0208-z
Hodge, EA. (2004) The plastic plant: root responses to heterogeneous
supplies of nutrients. New Phytologist, 162: 9-24.https://doi.org/10.1111/j.1469-8137.2004.01015.x
Hobbie, J. E, Hobbie, E. A. (2006) 15N in symbiotic
fungi and plants estimates nitrogen and carbon flux rates in arctic
tundra. Ecology, 87: 816–822.https://doi.org/10.2307/20069010
Houlton, B. Z, Sigman, D. M, Schuur, E. A. G, Hedin, L. O. (2007) A
climate-driven switch in plant nitrogen acquisition within tropical
forest communities. Proceedings of the National Academy of
Sciences of the United States of America, 104: 8902–8906.https://doi.org/10.1073/pnas.0609935104
Jackson, R. B., Caldwell, M. M. (1996) Integrating resource
heterogeneity and plant plasticity: modelling nitrate and phosphate
uptake in a patchy soil environment. Journal of Ecology, 84:
891–903.https://doi.org/10.2307/2960560
Jiang, J., Moore, J. A, Priyadarshi, A., Classen, A. T. (2017)
Plant-mycorrhizal interactions mediate plant community coexistence by
altering resource demand. Ecology, 98: 187–197.https://doi.org/10.1002/ecy.1630
Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. M.,
Allen, E. B. (2003) Nitrogen enrichment alters mycorrhizal allocation at
five mesic to semiarid grasslands. Ecology, 84: 1895–1908.https://doi.org/10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
Johnson, N. C. (2010) Resource stoichiometry elucidates the structure
and function of arbuscular mycorrhizas across scales. New
Phytologist, 185 (3): 631–647.https://doi.org/10.1111/j.1469-8137.2009.03110.x
Johnson, N. C, Angelard, C., Sanders, I. R, Kiers, E. T. (2013)
Predicting community and ecosystem outcomes of mycorrhizal responses to
global change. Ecology Letters, 16: 140–153.https://doi.org/10.1111/ele.12085
Keyimu, M., Li, Z. S., Wu, X. C., Fu, B. J., Liu, G. H., Shi, S. L.,
Fan, Z. X., Wang, X. C. (2020) Recent decline of high altitude
coniferous growth due to thermo-hydraulic constrains: evidence from the
Miyaluo Forest Reserve, Western Sichuan Plateau of China.Dendrochronologia, 63:125751.https://doi.org/10.1016/j.dendro.2020.125751
Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J, Reich, P. B.
(2012) No globally consistent effect of ectomycorrhizal status on foliar
traits. New Phytologist, 196: 845–852.https://doi.org/10.1111/j.1469-8137.2012.04297.x
Koerselman, W., Meuleman, A. F. M. (1996) The Vegetation N: P Ratio: A
New Tool to Detect the Nature of Nutrient limitation. The Journal
of Applied Ecology, 33(6): 1441–1450.https://www.jstor.org/stable/2404783
Köhle, J., Yang, N., Pena, R., Rahavan, V., Polle, A., Meier, I. C.
(2018) Ectomycorrhizal fungal diversity increases phosphorus uptake
efficiency of European beech. New Phytologist, 220(4):
1200–1210.https://doi.org/10.1111/nph.15208
Ladd, J. N., Butler J. H. A. (1972) Short-term assays of soil
proteolytic enzyme activities using proteins and dipeptide derivatives
as substrates. Soil Biology and Biochemistry 4(1): 19–30.https://doi.org/10.1016/0038-0717(72)90038-7
Lande, R. (1996) Statistics and partitioning of species diversity, and
similarity among multiple communities. Oikos 76: 5–13.https://doi.org/10.2307/3545743
Landis, F. C., Fraser, L. H. (2008) A new model of carbon and phosphorus
transfers in arbuscular mycorrhizas. New Phytologist 177 (2):
466.https://doi.org/10.1111/j.1469-8137.2007.02268.x
Li, Z. S, Liu, G. H., Fu, B. J., Zhang, Q. B., Ma, K. P., Neil, P.
(2013) The growth-ring variations of alpine shrub Rhododendron
przewalskii reflect regional climate signals in the alpine environment
of Miyaluo Town in Western Sichuan Province, China. Acta Ecologica
Sinica 33: 23–31.https://doi.org/10.1016/j.chnaes.2012.12.004
Li, Y., Li, D., Xu, Z., Zhao, C., Lin, H., Liu, Q. (2015) Effects of
warming on ectomycorrhizal colonization and nitrogen nutrition ofPicea asperata seedlings grown in two contrasting forest
ecosystems. Scientific Reports 5: 17546.https://doi.org/10.1038/srep17546
Li, Z. S., Keyimu, M., Fan, Z., Wang, X. C. (2020) Climate sensitivity
of conifer growth doesn’t reveal distinct low–high dipole along the
elevation gradient in the Wolong National Natural Reserve, SW China.Dendrochronologia, 61: 125702.https://doi.org/10.1016/j.dendro.2020.125702Lilleskov, E., Hobbie, E., Horton, T. (2011) Conservation of
ectomycorrhizal fungi: Exploring the linkages between functional and
taxonomic responses to anthropogenic N deposition. Fungal
Ecology, 4: 174–183.https://doi.org/10.1016/j.funeco.2010.09.008
Liu, G. F., Freschet, G. T., Pan, X., Cornelissen, J. H. C., Li, Y.,
Dong, M. (2010) Coordinated variation in leaf and root traits across
multiple spatial scales in Chinese semi-arid and arid ecosystems.New Phytologist, 188: 543–553.https://doi.org/10.1111/j.1469-8137.2010.03388.x
Lõhmus, K., Truu, M., Truu, J., Ostonen, I., Kaar, E., Vares, A., Uri,
V., Alam, S., Kanal, A. (2006) Functional diversity of culturable
bacterial communities in the rhizosphere in relation to fine-root and
soil parameters in alder stands on forest, abandoned agricultural, and
oil-shale mining areas. Plant and Soil, 283: 1–10.https://doi.org/10.1007/s11104-005-2509-8
Magyar, G., Kun, Á., Oborny, B., Stuefer, J. F. (2007) Importance of
plasticity and decision-making strategies for plant resource acquisition
in spatio-temporally variable environments. New Phytologist, 174:
182–193.https://doi.org/10.1111/j.1469-8137.2007.01969.x
Matsuda, Y., Hijii, N. (2004) Ectomycorrhizal fungal communities in anAbiea firma forest, with special reference to ectomycorrhizal
associations between seedlings and mature trees. Canadian Journal
of Botany, 83: 822–829.https://doi.org/10.1139/b04-065
Merrild, M. P., Ambus, P., Rosendahl, S., Jakobsen, I. (2013) Common
arbuscular mycorrhizal networks amplify competition for phosphorus
between seedlings and established plants. New Phytologist, 200
(1): 229–240.https://doi.org/10.1111/nph.12351
Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C., Sleep, D.
(1996) Leaf 15N abundance of subarctic plants provides
field evidence that ericoid, ectomycorrhizal and non- and arbuscular
mycorrhizal species access different sources of soil nitrogen.Oecologia, 105: 53–63.https://doi.org/10.1007/BF00328791
Mitchell, K. (2007) Quantitative analysis by the point-centered
quarter method. PhD thesis. Hobart and William Smith Colleges, New
York, USA.
Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S. G.,
Campbell, C., Hurry, V., Linder, S., Högberg, M. N. (2013) Are
ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of
tree growth in boreal forests? New Phytologist, 198: 214–221.https://doi.org/10.1111/nph.12139
Nehls, U., Kleber, R., Wiese, J., Hampp, R. (1999) Isolation and
characterization of a general amino acid permease from the
ectomycorrhizal fungus Amanita muscaria. New Phytologist 144(2):
343–349.https://doi.org/10.1046/j.1469-8137.1999.00513.x
Nehls, U., Plassard, C. (2018) Nitrogen and phosphate metabolism in
ectomycorrhizas. New Phytologist, 220: 1047–1058.https://doi.org/10.1046/j.1469-8137.1999.00513.x
Nelson, D. W., Sommers, L. E. (1982) Total carbon, organic carbon,
and organic matter. In A.L.Page, R.H.Miller &D.R.Keeney (Eds.),
Methods of soil analysis (pp. 101-129). Madison: American Sociert of
Afronomy and Soil Science Society of American.
Olde Venterink, H., Wassen, M., Verkroost, A. W. M., de Ruiter, P. C.
(2003) Species richness-productivity patterns differ between N-, P-, and
K-limited wetlands. Ecology, 84: 2191–2199.https://doi.org/10.1890/01-0639
Ostonen, I., Helmisaari, H. S., Borken, W., Tedersoo, L., Kukumagi, M.,
Bahram, M., Lindroos, A-J, Nojd, P., Uri, V., Merila, P., Asi, E,
Lõhmus, K. (2011) Fine root foraging strategies in Norway spruce forests
across a European climate gradient. Global Change Biology, 17:
3620–3632.https://doi.org/10.1111/j.1365-2486.2011.02501.x
Ostonen, I., Lõhmus, K., Helmisaari, H. S., Truu, J., Meel, S. (2007)
Fine root morphological adaptations in Scots pine, Norway spruce and
silver birch along a latitudinal gradient in boreal forests. Tree
Physiology, 27: 1627–1634.https://doi.org/10.1093/treephys/27.11.1627
Ostonen, I., Tedersoo, L., Suvi, T., Lõhmus, K. (2009) Does a fungal
species drive ectomycorrhizal root traits in Alnus spp.? Canadian
Journal of Forest Research, 39: 1787–1796.https://doi.org/10.1139/X09-093
Perez, T. J., Testillano, P. S., Balestrini, R., Fiorilli, V., Azcon, A.
C., Ferrol, N. (2011) GintAMT2, a new member of the ammonium transporter
family in the arbuscular mycorrhizal fungus Glomus intraradices.Fungal Genetics and Biology, 48(11): 1044–1055.https://doi.org/10.1139/X09-093
Plassard, C, Dell, B. (2010) Phosphorus nutrition of mycorrhizal trees.Tree Physiology, 30(9):1129–1139.https://doi.org/10.1093/treephys/tpq063
Pritsch, K., Garbaye, J. (2011) Enzyme secretion by ECM fungi and
exploitation of mineral nutrients from soil organic matter. Annals
of Forest Science, 68: 25–32.https://doi.org/10.1007/s13595-010-0004-8
Read, D. J. (1991) Mycorrhizas in ecosystems. Cellular and
Molecular Life Sciences, 47: 376–391.https://doi.org/10.1007/BF01972080
Reich, P. B., Oleksyn, J. (2004) Global patterns of plant leaf N and P
in relation to temperature and latitude. Proceedings of the
National Academy of Sciences of the United States of America, 101(30):
11001–11006.https://doi.org/10.1073/pnas.0403588101
Rosinger, C., Sandén, H., Matthews, B., Mayer, M. Godbold, D. L. (2018)
Patterns in ectomycorrhizal diversity, community composition, and
exploration types in European Beech, Pine, and Spruce forests.Forests, 9: 445.https://doi.org/10.3390/f9080445
Schinner, F., Ohlinger, R., Kandeler, E., Margesin, R. (1996)Methods in Soil Biology . Berlin: Springer.
Smith, S., Read, D. (2008) Mycorrhizal symbiosis. Cambridge, UK:
Academic Press.
Smith, S. E., Jakobsen, I., Grönlund, M., Smith, F. A. (2011) Roles of
arbuscular mycorrhizas in plant phosphorus nutrition: interactions
between pathways of phosphorus uptake in arbuscular mycorrhizal roots
have important implications for understanding and manipulating plant
phosphorus acquisition. Plant Physiology, 156: 1050–1057.https://doi.org/10.1104/pp.111.174581
Steven, A. T., Rygiewcz, P. T., Edmonds, R. L. (2004) Patterns of
nitrogen and carbon stable isotope ratios in macrofungi, plants and
soils in two old-growth conifer forests. New Phytologist, 164:
317–335.https://doi.org/10.1111/j.1469-8137.2004.01162.x
Taylor, A. H., Jang, S. W., Zhao, L. J., Liang, C. P., Miao, C.J.,
Huang, J. Y. (2006) Regeneration patterns and tree species coexistence
in old-growth Abies-Picea forests in southwestern China.Forest Ecology Management, 223: 303–317.https://doi.org/10.1016/j.foreco.2005.11.010
Tedersoo, L., Naadel, T., Bahram, M., Pritsch, K., Buegger, F., Leal,
M., Kõljalg, U., Põldmaa, K. (2012) Enzymatic activities and stable
isotope patterns of ectomycorrhizal fungi in relation to phylogeny and
exploration types in an afrotropical rain forest. New
Phytologist, 195: 832–843.https://doi.org/10.1111/j.1469-8137.2012.04217.x
Tessier, J. T., Raynal, D. J. (2003) Use of nitrogen to phosphorus
ratios in plant tissue as an indicator of nutrient limitation and
nitrogen saturation. Journal of Apllied Ecology, 40(3): 523–534.https://doi.org/10.1046/j.1365-2664.2003.00820.x
Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B., Tilman, D.
(2005) Linking leaf and root trait syndromes among 39 grassland and
savannah species. New Phytologist, 167: 493–508.https://doi.org/10.1111/j.1469-8137.2005.01428.x
Toljander, J. F., Eberhardt, U., Toljander, Y. K., Paul, L. R., Taylor,
A. F. S. (2006) Species composition of an ectomycorrhizal fungal
community along a local nutritional gradient. New Phytologist,170: 873–884.https://doi.org/10.1111/j.1469-8137.2006.01718.x
Treseder, K. K. (2004) A meta-analysis of mycorrhizal responses to
nitrogen, phosphorus, and atmospheric CO2 in field
studies. New Phytologist, 164: 347–355.https://doi.org/10.1111/j.1469-8137.2004.01159.x
Treseder, K. K., Allen, M. F. (2002) Direct nitrogen and phosphorus
limation of arbuscular mycorrhizal fungi: a model and field test.New Phytologist, 155(3): 507-515.https://doi.org/10.1046/j.1469-8137.2002.00470.x
Vandenkoornhuyse, P., Ridgway, K. P., Watson, I. J., Fitter, A. H.,
Young, J. P. (2003) Co-existing grass species have distinctive
arbuscular mycorrhizal communities. Molecular Ecology, 12:
3085–3095.https://doi.org/10.1046/j.1365-294X.2003.01967.x
Vitousek, P. M., Porder, S., Houlton, B. Z., Chadwick, O. A. (2010)
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen–phosphorus interactions. Ecological Applications,20(1):1–5.https://doi.org/10.1890/08-0127.1
Walker, T. W., Syers, J. K. (1976) The fate of phosphorus during
pedogenesis. Geoderma, 15: 1–19.https://doi.org/10.1016/0016-7061(76)90066-5
Wang, L., Mou, P. P., Jones, R. H. (2006) Nutrient foraging via
physiological and morphological plasticity in three plant species.Canadian Journal of Forest Research, 36: 164– 173.https://doi.org/10.1139/x05-239
New, M., Hulme, M., Jones, P. (2000) Representing twentieth-century
space-time climate variability. Part II: Development of 1901-96 monthly
grids of terrestrial surface climate. Journal of Climate, 13(13):
2217-2238.https://doi.org/10.1175/1520-0442(1999)0122.0.CO
Xu, Y., Gao, X. J., Shen, Y., Xu, C. H., Shi, Y., Giorgi, F. (2009) A
daily temperature dataset over China and its application in validating a
RCM simulation. Advances in Atmospheric Sciences, 26(4):
763–772.https://doi.org/10.1007/s00376-009-9029-z
Zavišić, A., Nassal, P., Yanga, N., Heuck, C., Spohn, M., Marhan, S.,
Pena, R., Kandeler, E., Polle, A. (2016) Phosphorus availabilities in
beech (Fagus sylvatica L.) forests impose habitat filtering on
ectomycorrhizal communities and impact tree nutrition. Soil
Biology and Biochemistry, 98: 127–137.https://doi.org/10.1016/j.soilbio.2016.04.006
Zhang, W. R. (1983) The forest soils of Wolong Natural Reserve and its
vertical zonalties distribution. Scientia Silvae Sinicae, 19(3):
254–268.
Zhang, Z., Li, N., Xiao, J., Zhao, C., Zou, T. T., Li, D. D., Liu, Q.,
Yin, H. (2018) Changes in plant nitrogen acquisition strategies during
the restoration of spruce plantations on the eastern Tibetan Plateau,
China. Soil Biology and Biochemistry, 119: 50–58.https://doi.org/10.1016/j.soilbio.2018.01.002
Zhang, Z. L., Yuan, Y. S., Liu, Q., Yin, H. J. (2019) Plant nitrogen
acquisition from inorganic and organic sources via root and mycelia
pathways in ectomycorrhizal alpine forests. Soil Biology and
Biochemistry, 136: 1–9.https://doi.org/10.1016/j.soilbio.2019.06.013
Zhao, Z. J., Eamus, D., Yu, Q., Li, Y., Yang, H. W., Li, J. Q. (2012)
Climate constraints on growth and recruitment patterns of Abies
faxoniana over altitudinal gradients in the Wanglang Natural Reserve,
eastern Tibetan Plateau. Australian Journal of Botany, 60:
602–614.https://doi.org/10.1071/BT12051
Zhao, T. B., Guo, W. D., Fu, C. B. (2008) Calibrating and evaluating
reanalysis surface temperature error by topographic correction.Journal of Climate, 21(6): 1440–1446.https://doi.org/10.1175/2007JCLI1463.1