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Abstract

In this paper we study the partial differential equation with piece-
wise constant argument of the form :

xt(t, s) = A(t)x(t, s) +B(t, s)x([t], s) + C(t, s)x(t, [s])+

D(t, s)x([t], [s]) + f(x(t, [s])), t, s ∈ IR+ = (0,∞)

where A(t) is a k × k invertible and continuous matrix function on
IR+, B(t, s), C(t, s), D(t, s) are k× k continuous and bounded matrix
functions on IR+× IR+, [t], [s] are the integral parts of t, s respectively
and f : IRk → IRk is a continuous function. More precisely under
some conditions on the matrices A(t), B(t, s), C(t, s), D(t, s) and the
function f we investigate the asymptotic behaviour of the solutions of
the above equation.

AMS Mathematics Subject Classification : Primary 39A10, 34K05,
34K20.
Keywords: Partial Differential Equation with Piecewise Constant Argu-
ment, exponential dichotomy, asymptotic behaviour.

1 Introduction

Since differential equations with piecewise constant argument describe hy-
brid dynamical systems, that is combine properties of both differential and
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difference equations, interest in studying them has increased (see [1]-[8],[13],
[18]-[25], [36]-[38] and the references cited therein). As it is widely known,
differential equations have a remarkable ability to describe phenomena or
physical systems in the real world. In many of these cases, in formulating
the mathematical model, the variables or functions used have to be dis-
continuous such as piecewise constant, or other types like piecewise linear,
stepwise, impulsive etc, in order to translate the actual characteristics of
the real world problem. In fact, in many sciences and technology phenom-
ena described by equations with piecewise constant arguments can be found
(see [4], [11], [12] ). For instance, in [4], Busenberg and Cooke introduced
and studied the following mathematical model with a piecewise constant
argument

dx(t)

dt
= F (t, xt), [t] < t ≤ [t] + 1, x[t] = φ[t]

φ[t] = G([t], xt), [t] ≥ 2, φ1 = H,

for analyzing vertically transmitted diseases. Also, many of physics and
engineering systems can be described by a second-order differential equations
with piecewise constant arguments, such as

mẍ+ kx1 = ŕsin
(
2β
[ t
T0

])
which describes an elastic systems impelled by a Geneva wheel used mainly
in watches and instruments (for more information see [11]).

In this paper we study the partial differential equation with piecewise
constant argument of the form

xt(t, s) = A(t)x(t, s) +B(t, s)x([t], s) + C(t, s)x(t, [s])+

D(t, s)x([t], [s]) + f(x(t, [s])), t, s ∈ IR+ = (0,∞)

(1.1)

where A(t) is a k × k invertible and continuous matrix function on IR+,
B(t, s), C(t, s), D(t, s) are k× k continuous matrix functions on IR+ × IR+,
[t], [s] are the integral parts of t, s respectively and f : IRk → IRk is a
continuous function which satisfies

|f(x)− f(y)| ≤ γ|x− y|, x, y ∈ IRk (1.2)

where γ is a constant and

f(0̄) = 0̄, 0̄T = (0, 0, . . . , 0) ∈ IRk. (1.3)

A function x(t, s) is a solution of (1.1) if the following conditions are
satisfied
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(i) the function x is continuous on IR+ × IR+ \ IN and left continuous at
the points (t,m), t ∈ IR+,m ∈ IN .

(ii) the partial derivative with respect to t of x, denoted by xt, exists except
possibly at the points (n, s), n = 0, 1, . . . , s ∈ IR+, where one-sided
partial derivatives exist and

(iii) x satisfies (1.1) on every set [n, n+1)×[m,m+1) where n = [t],m = [s].

In what follows we denote by | · | any convenient norm either for a vector
or for a matrix.

We say that a solution x(t, s) of (1.1) tends exponentially to zero as
t → ∞ uniformly with respect to s if there exist constants Λ ≥ 1, µ > 0
such that

|x(t, s)| ≤ Λe−µt, t ∈ IR+.

We consider the linear differential equation

x′ = A(t)x, t ∈ IR+. (1.4)

We say that (1.4) is uniformly aysmptotically stable (see [9]) if there exist
constant a > 0 and K > 1 such that for t, u ∈ IR+

|X(t)X−1(u)| ≤ Ke−a(t−u), t ≥ u (1.5)

where X(t) is the fundamental matrix solution of (1.4) such that X(0) = I,
I is the k × k identity matrix.

We say that the equation (1.4) possesses an exponential dichotomy (see
[10]) if there exist a projection P (P 2 = P ) and constants a,K, a > 0,
K ≥ 1 such that for t, u ∈ IR+

|X(t)PX−1(u)| ≤ Ke−a(t−u), t ≥ u
|X(t)(I − P )X−1(u)| ≤ Ke−a(u−t), u ≥ t. (1.6)

In the paper [18] the authors consider the differential equation with piecewise
constant argument of the form

y′(t) = A(t)y(t) +B(t)y([t]) + f(t, y(t)), t ∈ IR+ (1.7)

where A(t), B(t) are k × k matrices and f : IR+ × IRk → IRk is a function
which satisfies a Lipschitz condition. More precisely, using some conditions
on the matrices A(t), B(t) and the function f he studied the existence
and the asymptotic behavior of the solutions of (1.7). For some differential,
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difference and related equations close to equation (1.7) and their applications
see, for example, [26]-[35] and the references cited therein.

In this paper, firstly, using some assumptions on the matrices A(t),
B(t, s), C(t, s), D(t, s) and the function f we study the existence of the
solutions of equation (1.1). Moreover, under the asymptotical stability (1.5)
of (1.4) or the exponential dichotomy (1.6) of (1.4) and some further as-
sumptions, we study the asymptotic behavior of the solutions of (1.1).

2 MAIN RESULTS

In the following proposition we study the existence of the solutions of (1.1).

Proposition 2.1 Consider equation (1.1) where where A(t) is a k × k in-
vertible and continuous matrix function on IR+, B(t, s), C(t, s), D(t, s) are
k×k continuous matrix functions on IR+×IR+, [t], [s] are the integral parts
of t, s respectively and f : IRk → IRk is a continuous function such that (1.2)
holds. Suppose also that

|A(t)| ≤ N, |B(t, s)| ≤M, |C(t, s)| ≤M, |D(t, s)| ≤M, t, s ∈ IR+

(2.1)
where M,N are positive constants such that

M <
N

2(eN − 1)
. (2.2)

Then, if p : IR+ → IRk is a continuous and bounded function, there exists a
unique solution x(t, s) of (1.1) such that

x(0, s) = p(s), s ∈ IR+. (2.3)

Proof. We fix an s ∈ IR+. Let m = [s]. Then from (1.1) and for n ≤ t <
n+ 1 we take

xt(t,m) = A(t)x(t,m) +B(t,m)x(n,m) + C(t,m)x(t,m)+

D(t,m)x(n,m) + f(x(t,m)).

(2.4)

Then from (1.2) and (2.4) we get for n ≤ t < n+ 1

x(t,m) =

(
X(t)X−1(n) +

∫ t

n
X(t)X−1(u)(B(u,m) +D(u,m))du

)
x(n,m)+

∫ t

n
X(t)X−1(u)

(
C(u,m)x(u,m) + f(x(u,m))

)
du

(2.5)
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where X(t) is a fundamental matrix solution of (1.4). We take t→ n+ 1 in
(2.5). Then

x(n+ 1,m) =

(
X(n+ 1)X−1(n)+∫ n+1

n
X(n+ 1)X−1(u)(B(u,m) +D(u,m))du

)
x(n,m)+

∫ n+1

n
X(n+ 1)X−1(u)

(
C(u,m)x(u,m) + f(x(u,m))

)
du.

(2.6)
We consider the linear difference equation

w(n+ 1,m) = S(n,m)w(n,m),

S(n,m) = X(n+ 1)X−1(n) +

∫ n+1

n
X(n+ 1)X−1(u)(B(u,m) +D(u,m))du.

(2.7)
We prove that S(n,m) is invertible for n ∈ IN . We get

S(n,m) = X(n+1)X−1(n)

(
Ik+

∫ n+1

n
X(n)X−1(u)(B(u,m)+D(u,m))du

)
(2.8)

where Ik is the k × k identity matrix. Moreover, from [9] and (2.1) we take
for u ≥ n

|X(n)X−1(u)| ≤ eN |u−n| = eN(u−n). (2.9)

Then from (2.1), (2.2) and (2.9) we get

∣∣∣∫ n+1

n
X(n)X−1(u)(B(u,m) +D(u,m))du

∣∣∣ ≤ 2M
eN − 1

N
< 1. (2.10)

Therefore relations (2.8) and (2.10) imply that S(n,m) is invertible. Let
W (n,m) be the fudamental matrix solution of (2.7) such that W (0,m) = Ik.
Then from (2.6) we take

x(n,m) = W (n,m)x(0,m) +
n−1∑
r=0

W (n,m)W−1(r + 1,m)H(r,m),

H(r,m) =

∫ r+1

r
X(r + 1)X−1(u)

(
C(u,m)x(u,m) + f(x(u,m))

)
du.

(2.11)
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From (1.1) we take for n ≤ t < n+ 1

x(t, s) =

(
X(t)X−1(n) +

∫ t

n
X(t)X−1(u)B(u, s)du

)
x(n, s)+

∫ t

n
X(t)X−1(u)

(
C(u, s)x(u,m) +D(u, s)x(n,m) + f(x(u,m))

)
du.

(2.12)
We get t → n + 1 in (2.12) . Then we take the inhomogenous difference
equation

x(n+ 1, s) =

(
X(n+ 1)X−1(n)+∫ n+1

n
X(n+ 1)X−1(u)B(u, s)du

)
x(n, s)+

∫ n+1

n
X(n+ 1)X−1(u)

(
C(u, s)x(u,m) +D(u, s)x(n,m) + f(x(u,m))

)
du.

(2.13)
We consider the linear difference equation

z(n+ 1, s) = R(n, s)z(n, s),

R(n, s) = X(n+ 1)X−1(n) +

∫ n+1

n
X(n+ 1)X−1(u)B(u, s)du.

(2.14)

Using the same argument to prove that S(n,m) is invertible we can prove
that R(n, s) is also invertible. Then if Z(n, s) is a fudamental matrix solution
of (2.14) such that Z(0, s) = Ik, from (2.13) we have,

x(n, s) = Z(n, s)x(0, s) +
n−1∑
r=0

Z(n, s)Z−1(r + 1, s)G(r, s),

G(r, s) =

∫ r+1

r
X(r + 1)X−1(u)

(
C(u, s)x(u,m) +D(u, s)x(r,m) + f(x(u,m))

)
du.

(2.15)
Using (2.5), (2.11), (2.12) and (2.15) x(t, s) is well defined.

We prove that x(t, s) is continuous in IR+×IR+−IN and left continuous
in IR+ × IR+. Let t, t0 ∈ [n0, n0 + 1), s, s0 ∈ [m0,m0 + 1), n0,m0 ∈ IN .
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Then from (2.12) we take

x(t, s)− x(t0, s0) =

(
X(t)X−1(n0) +

∫ t

n0

X(t)X−1(u)B(u, s)du

)
x(n0, s)−(

X(t0)X
−1(n0) +

∫ t0

n0

X(t0)X
−1(u)B(u, s0)du

)
x(n0, s0)+∫ t

n0

X(t)X−1(u)
(
C(u, s)x(u,m0) +D(u, s)x(n0,m0) + f(x(u,m0))

)
du−

∫ t0

n0

X(t0)X
−1(u)

(
C(u, s0)x(u,m0) +D(u, s0)x(n0,m0) + f(x(u,m0))

)
du =

(X(t)−X(t0))X
−1(n0)x(n0, s) +X(t0)X

−1(n0)(x(n0, s)− x(n0, s0))+

(∫ t

n0

(X(t)−X(t0))X
−1(u)B(u, s)du

)
x(n0, s)+

(∫ t

t0
X(t0)X

−1(u)B(u, s)du
)
x(n0, s)+

(∫ t0

n0

X(t0)X
−1(u)(B(u, s)−B(u, s0))du

)
x(n0, s)+

(∫ t0

n0

X(t0)X
−1(u)B(u, s0)du

)
(x(n0, s)− x(n0, s0))+∫ t

n0

(X(t)−X(t0))X
−1(u))C(u, s)x(u,m0)du+

∫ t

t0
X(t0)X

−1(u)C(u, s)x(u,m0)du+

∫ t0

n0

X(t0)X
−1(u)(C(u, s)− C(u, s0))x(u,m0)du+

(∫ t

n0

(X(t)−X(t0))X
−1(u))D(u, s)du

)
x(n0,m0)+

(∫ t

t0
X(t0)X

−1(u)D(u, s)du
)
x(n0,m0)+

(∫ t0

n0

X(t0)X
−1(u)(D(u, s)−D(u, s0))du

)
x(n0,m0)

(2.16)
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Moreover, from (2.15) we get

x(n0, s)− x(n0, s0) = Z(n0, s)x(0, s)− Z(n0, s0)x(0, s)+

Z(n0, s0)x(0, s)− Z(n0, s0)x(0, s0)+

n0−1∑
r=0

(Z(n0, s)Z
−1(r + 1, s)− Z(n0, s0)Z

−1(r + 1, s0))G(r, s)+

n0−1∑
r=0

(Z(n0, s0)Z
−1(r + 1, s0)(G(r, s)−G(r, s0)) =

(Z(n0, s)− Z(n0, s0))x(0, s) + Z(n0, s0)(x(0, s)− x(0, s0))+

n0−1∑
r=0

(
Z(n0, s)Z

−1(r + 1, s)− Z(n0, s0)Z
−1(r + 1, s0)

)
G(r, s)+

n0−1∑
r=0

Z(n0, s0)Z
−1(r + 1, s0)(G(r, s)−G(r, s0))

(2.17)

where

G(r, s)−G(r, s0) =

∫ r+1

r
X(r + 1)X−1(u)

(
C(u, s)− C(u, s0)

)
x(u,m)+

(D(u, s)−D(u, s0))x(r,m)
)
du.

(2.18)
In addition from (1.2), (1.3), (2.5), (2.9) and (2.10) we take

|x(t,m0)| ≤ (eN + 2M
eN − 1)

N
)|x(n0,m0)|+

(M + γ)

∫ t

n0

eN(t−u)|x(u,m0)|du ≤

(eN + 2M
eN − 1)

N
)|x(n0,m0)|+

(M + γ)eN
∫ t

n0

|x(u,m0)|du.

Then by Gronwall’s Lemma (see [9]) to the interval [n0, n0 + 1) we get

|x(t,m0)| ≤ (eN + 2M
eN − 1

N
)|eeN (M+γ)|x(n0,m0)| = L|x(n0,m0)|. (2.19)
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Since relations (2.1), (2.14) imply that

|R(n0, s)| ≤ eN +M
eN − 1

N

and
Z(n0, s) = R(n0 − 1, s)R(n0 − 2, s) · · ·R(0, s)

we get

|Z(n0, s)| ≤
(
eN +M

eN − 1

N

)n0
. (2.20)

From (1.2), (2.1), (2.15), (2.19) we take

|G(r, s)| ≤
∫ r+1

r
eN(r+1−u)

(
(M + γ)|x(u,m0)|+M |x(r,m0)|

)
du ≤

∫ r+1

r
eN(r+1−u)

(
(M + γ)L+M

)
|x(r,m0)|du ≤

eN
(

(M + γ)L+M

)
|x(r,m0)|.

(2.21)
Therefore relations (2.15), (2.20), (2.21) imply that

x(n0, s)| ≤
(
eN +M

eN − 1

N

)n0 |x(0, s)|+

eN
(

(M + γ)L+M

)n0−1∑
r=0

(
eN +M

eN − 1

N

)n0−r−1|x(r,m0)|.

(2.22)
Then since A(t) is a continuous matrix function on IR+, B(t, s), C(t, s),
D(t, s) are continuous matrix functions on IR+× IR+, from relations (2.16),
(2.17), (2.19) and (2.22) we take that if t, t1 ∈ (n0, n0+1), s, s1 ∈ (m0,m0+
1), n0,m0 ∈ IN , then

lim
t→t1,s→s1

x(t, s) = x(t1, s1)

lim
t→t1,s→m+

0

x(t, s) = x(t1,m0)

lim
t→n+

0 ,s→s1
x(t, s) = x(n0, s1)

lim
t→n+

0 ,s→m
+
0

x(t, s) = x(n0,m0)

(2.23)
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Using relations (2.12), (2.15) and using the argument as above we can
prove that if t ∈ [n0 − 1, n0), s, s0 ∈ [m0,m0 + 1), s1 ∈ (m0,m0 + 1),
n0,m0 ∈ IN then relations (2.16), (2.17), (2.19), (2.22) hold for n0 = n0 − 1
and t0 = n0 and so

lim
t→n−

0 ,s→s1
x(t, s) = x(n0, s1)

lim
t→n−

0 ,s→m
+
0

x(t, s) = x(n0,m0)
(2.24)

From (2.23) and (2.24) the function x(t, s) of (2.15) is continous on IR+ ×
IR+ − IN and left continuous at the points (t,m), t ∈ IR+,m ∈ IN . Thus,
the proof of the proposition is completed.

In the next proposition we study the asymptotic behavior of the solutions
of (1.1) in the case where (1.5) holds.

Proposition 2.2 Consider equation (1.1) where A(t) is a k × k invertible
and continuous matrix function on IR+, B(t, s), C(t, s), D(t, s) are k × k
continuous matrix functions on IR+×IR+, [t], [s] are the integral parts of t, s
respectively and f : IRk → IRk is a continuous function such that (1.2), (1.3)
hold. Suppose also that relations (1.5), (2.1), (2.2) are fulfilled. Moreover,
suppose that

max{2M,M + γ} < a3

K2ea(a+K(a+ 2ea − 2))
. (2.25)

Then, if x(t, s) is a solution of (1.1) where x(0, s) is a bounded and con-
tinuous function, we have that x(t, s) tends exponentially to zero as t→∞
uniformly with respect to s.

Proof. Let x(t, s) be s a solution of (1.1) such that (2.3) is satisfied. We fix
an s ∈ IR+. If m = [s] , n = [t] from (1.1) we get (2.5). We claim that

|x(t,m)| ≤ L|x(n,m)|, L = K +
2MK

a
(ea − 1) (2.26)
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Using (1.2), (1.3), (1.5), (2.1) , (2.5) we get for n ≤ t < n+ 1

|x(t,m)| ≤ Ke−a(t−n)|x(n,m)|+ 2MK|x(n,m)|
∫ t

n
e−a(t−u)du+

K(M + γ)

∫ t

n
e−a(t−u)|x(u,m)|du =

(
Ke−a(t−n) − 2KM

a e−a(t−n) + 2KM
a

)
|x(n,m)|+

K(M + γ)

∫ t

n
e−a(t−u)|x(u,m)|du

and so,

ea(t−n)|x(t,m)|

≤
(
K + 2KM

a (ea(t−n) − 1)
)
|x(n,m)|+K(M + γ)

∫ t

n
ea(u−n)|x(u,m)|du

≤ L|x(n,m)|+K(M + γ)

∫ t

n
ea(u−n)|x(u,m)|du.

(2.27)
Then, by setting in (2.27) φ1(t,m) = ea(t−n)|x(t,m)| we get

φ1(t,m) ≤ L|x(n,m)|+K(M + γ)

∫ t

n
φ1(u,m)du. (2.28)

Using Gronwall’s Lemma in (2.28) we take

φ1(t,m) ≤ L|x(n,m)|eK(M+γ)(t−n)

and so
|x(t,m)| ≤ L|x(n,m)|e(−a+K(M+γ))(t−n). (2.29)

Since from (2.25) it is obvious that −a + K(M + γ) < 0 we have that our
claim (2.26) is true.

Now, we prove that

|x(n,m)| ≤ Ke−bn|x(0,m)|, b = b1−
K2L(M + γ)

a
eb1 > 0, b1 = a−2MK2ea

a
> 0.

(2.30)
Firstly, we prove that

b1 > 0, b > 0. (2.31)
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Relation (2.25) implies that b1 > 0 and since from (2.25) M < 1 we get

b = a− 2MK2ea

a
− K2L(M + γ)

a
eb1 >

a− 2MK2ea

a
− K2L(M + γ)

a
ea >

a− K2ea

a
(1 + L) max{2M,M + γ} >

a− K2ea

a

(
1 +K(1 + 2

ea − 1

a
)

)
max{2M,M + γ} > 0.

Let Y (n) be the fudamental matrix solution of the equation

y(n+ 1) = L(n)y(n), L(n) = X(n+ 1)X−1(n), n = 0, 1, . . . (2.32)

such that Y (0) = Ik. Then for n, r ∈ IN we get

W (n,m)W−1(r,m) = Y (n)Y −1(r)+
n−1∑
v=r

Y (n)Y −1(v+1)T (v,m)W (v,m)W−1(r,m)

(2.33)
where W (n,m) is the fundamental matrix solution of (2.7) and

T (v,m) =

∫ v+1

v
X(v + 1)X−1(u)

(
B(u,m) +D(u,m)

)
du.

We have

Y (n)Y −1(r) =
X(n)X−1(n− 1)X(n− 1)X−1(n− 2) · · ·X(1)X−1(0)×
X(0)X−1(1) · · ·X(r − 1)X−1(r) = X(n)X−1(r).

(2.34)

Then relations (1.5) and (2.34) imply that

|Y (n)Y −1(r)| ≤ Ke−a(n−r), n ≥ r. (2.35)

Furthermore from (1.5), (2.1) we take

|T (v,m)| ≤ 2MK

∫ v+1

v
e−a(v+1−u)du ≤ 2KM

a
. (2.36)

Relations (2.33), (2.35) and (2.36) imply that

|W (n,m)W−1(r,m)| ≤ Ke−a(n−r) +
2MK2

a

n−1∑
v=r

e−a(n−v−1)|W (v,m)W−1(r,m)|
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and so

ea(n−r)|W (n,m)W−1(r,m)| ≤ K+
2MK2ea

a

n−1∑
v=r

ea(v−r)|W (v,m)W−1(r,m)|.

So, if φ2(r,m) = ea(n−r)|W (n,m)W−1(r,m)| we get

φ2(r,m) ≤ K +
2MK2ea

a

n−1∑
v=r

φ2(v,m).

By discrete Gronwall’s lemma (see [15]) we have

φ2(r,m) ≤ Ke
2MK2ea

a
(n−r).

Therefore,
|W (n,m)W−1(r,m)| ≤ Ke−b1(n−r) (2.37)

where b1 is defined in (2.30). From (2.6) we take

x(n,m) = W (n,m)W−1(0,m)x(0,m) +
n−1∑
v=0

W (n,m)W−1(v + 1,m)R(v,m),

R(v,m) =

∫ v+1

v
X(v + 1)X−1(u)

(
C(u,m)x(u,m) + f(x(u,m))

)
du.

(2.38)
Relations (1.2), (1.3), (1.5), (2.1), (2.26) and (2.38) imply that

|R(v,m)| ≤ KL(M + γ)

a
|x(v,m)|. (2.39)

Hence, from (2.26), (2.37), (2.38) and (2.39) we get

|x(n,m)| ≤ Ke−b1n|x(0,m)|+ K2L(M + γ)

a

n−1∑
v=0

e−b1(n−v−1)|x(v,m)|.

Thus,

eb1n|x(n,m)| ≤ K|x(0,m)|+ K2L(M + γ)

a
eb1

n−1∑
v=0

eb1v|x(v,m)|.

By taking φ3(n,m) = eb1n|x(n,m)| we take

φ3(n,m) ≤ K|x(0,m)|+ K2L(M + γ)

a
eb1

n−1∑
v=0

|φ3(v,m)|.

13



By discrete Gronwall’s lemma we get

φ3(n,m) ≤ K|x(0,m)|e
K2L(M + γ)

a
eb1n

which implies that (2.30) is satisfied.
Arguing as in (2.37) and using (2.25) we get

|Z(n,m)Z−1(r,m)| ≤ Ke−b2(n−r), b2 = a− MK2ea

a
> 0 (2.40)

where Z(n,m) is defined in Proposition 2.1. In addition from (1.2), (1.3),
(1.5), (2.1), (2.15), (2.26) we obtain

|G(r, s)| ≤ K(ML+ γL+M)|x(r,m)|
∫ r+1

r
e−a(r+1−u)du ≤

K(ML+ γL+M)

a
|x(r,m)|.

(2.41)

where G(r, s) is defined in (2.15). Thus, from (2.15), (2.30), (2.40), (2.41)
we get

|x(n, s)| ≤ Ke−b2n|x(0, s)|+ K2(ML+M+γL)
a

n−1∑
r=0

e−b2(n−r−1)|x(r,m)|

≤ Ke−b2n|x(0, s)|+ K3(ML+M+γL)
a |x(0,m)|

n−1∑
r=0

e−b2(n−r−1)e−br

= Ke−b2n|x(0, s)|+ K3(ML+M+γL)eb2

a

e−bn − e−b2n

eb2−b − 1
|x(0,m)|.

(2.42)
In addition from (1.2), (1.3), (1.5), (2.1), (2.12), (2.25) and (2.26) we get

|x(t, s)| ≤
(
Ke−a(t−n) +

KM

a
(1− e−a(t−n)

)
|x(n, s)|+

K(ML+M + γL)
1

a
(1− e−a(t−n))|x(n,m)| ≤

K

(
1 +

M

a

)
|x(n, s)|+ K(ML+M + γL)

a
|x(n,m)|.

(2.43)

Hence, using (2.25), (2.30), (2.31), (2.42), (2.43) the proof of the proposition
follows immediately.

Finally, using the exponential dichotomy of (1.4) we study the asymp-
totic behaviour of the solutions of (1.1).
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Proposition 2.3 Consider the equation (1.1) where where A(t) is a k × k
invertible and continuous matrix function on IR+, B(t, s), C(t, s), D(t, s)
are k × k continuous matrix functions on IR+ × IR+, [t], [s] are the integral
parts of t, s respectively and f : IRk → IRk is a continuous function such
that (1.2), (1.3) are fulfilled. Suppose also that relations (1.6), (2.1), (2.2)
hold. Furthermore, suppose that

(3M + γ)
(Ke2N (1 + ea)

N(ea − 1)
+
eN

N

)
< 1,

M < N
2KeN

min{ ea−11+ea ,
eε−1

(1+e−ε)eα }, 0 < ε < a,

λ =
KeN (2M + c(M + γ))

N
<

1− e−a

1 + e−a
, c = (eN +

2MeN

N
)e

eN (M+γ)
N ,

µ = a− λea

1− d
> 0, d = λ

1 + e−a

1− e−a
.

(2.44)
Then there exist solutions x(t, s) of (1.1) which tend exponentially to zero
as t → ∞ uniformly with respect to s. Moreover, every bounded solution
x(t, s) of (1.1), where x(0, s) is a bounded and continuous function, tends
exponentially to zero as t→∞ uniformly with respect to s.

Proof. Let E be the set of all bounded and continuous functions from IR+

into IRk. Let ξ ∈ IRk. For a fixed s ∈ IR and a function x(t,m) ∈ E,
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n ≤ t < n+ 1, m = [s], we define the operator Tm on E as follows:

Tmx(t,m) = X(t)X−1(n)b(n,m) +

∫ t

n
X(t)X−1(u)

(
B(u,m)x(n,m)+

C(u,m)x(u,m) +D(u,m)x(n,m) + f(x(u,m))

)
du,

b(n,m) = X(n)Pξ +
n−1∑
v=0

X(n)PX−1(v + 1)H1(v,m)−

∞∑
v=n

X(n)(I − P )X−1(v + 1)H1(v,m),

H1(v,m) =

∫ v+1

v
X(v + 1)X−1(u)

(
B(u,m)x(v,m)+

C(u,m)x(u,m) +D(u,m)x(v,m) + f(x(u,m))

)
du.

(2.45)
Using (1.2), (1.3), (1.6), (2.1), (2.9) and if |x|m = sup{|x(t,m)|, t ∈ IR+} we
take for n ≤ t < n+ 1

|Tmx(t,m)| ≤ eN(t−n)|b(n,m)|+ (3M + γ)|x|m
∫ t

n
eN(t−u)du ≤

eN |b(n,m)|+ eN

N (3M + γ)|x|m,

|b(n,m)| ≤ Ke−an|ξ|+K
n−1∑
v=0

e−a(n−v−1)|H1(v,m)|+K
∞∑
v=n

e−a(v+1−n)|H1(v,m)|,

|H1(v,m)| ≤ (3M + γ)|x|m
∫ v+1

v
eN(v+1−u)du ≤ eN

N
(3M + γ)|x|m.

(2.46)
So, relations (2.46) imply that

|Tmx(t,m)| ≤ eN
(
Ke−an|ξ|+K

ea + 1

ea − 1

eN

N
(3M + γ)|x|m

)
+
eN

N
(3M + γ)|x|m.

Hence, we have that Tmx(t,m) is a bounded function.
Now, we prove that Tmx(t,m) is continuous at t ∈ IR+. From (2.45) we

can prove that

b(n+ 1,m) = L(n)b(n,m) +H1(n,m), L(n) = X(n+ 1)X−1(n). (2.47)
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Therefore, from (2.45) and (2.47) we have

lim
t→n+1

Tmx(t,m) = X(n+ 1)X−1(n)b(n,m)+

∫ n+1

n
X(n+ 1)X−1(u)

(
B(u,m)x(n,m)+

C(u,m)x(u,m) +D(u,m)x(n,m) + f(x(u,m))

)
du =

L(n)b(n,m) +H1(n,m) = b(n+ 1,m) = Tmx(n+ 1,m).

(2.48)

Therefore, from (2.45), (2.48) we have that Tmx(t,m) is continuous for any
t ∈ IR+.

To continue, we prove that Tm is a contraction on E. Let x1(t,m), x2(t,m) ∈
E, then

Tmx1(t,m)− Tmx2(t,m) = X(t)X−1(n)(b1(n,m)− b2(n,m))+

∫ t

n
X(t)X−1(u)

(
B(u,m)(x1(n,m)− x2(n,m)) + C(u,m)(x1(u,m)− x2(u,m))+

D(u,m)(x1(n,m)− x2(n,m)) + f(x1(u,m))− f(x2(u,m))

)
du,

bi(n,m) = X(n)Pξ +
n−1∑
v=0

X(n)PX−1(v + 1)H
(i)
1 (v,m)−

∞∑
v=n

X(n)(I − P )X−1(v + 1)H
(i)
1 (v,m), i = 1, 2

H
(i)
1 (v,m) =

∫ v+1

v
X(v + 1)X−1(u)

(
B(u,m)xi(v,m)+

C(u,m)xi(u,m) +D(u,m)xi(v,m) + f(xi(u,m))

)
du, i = 1, 2.

(2.49)
Hence, from (1.2), (1.3), (2.1), (2.9) and (2.49) we get

|Tmx1(t,m)−Tmx2(t,m)| ≤ eN |b1(n,m)−b2(n,m)|+ eN

N
(3M+γ)|x1−x2|m.

(2.50)
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Moreover,

|b1(n,m)− b2(n,m)| ≤ K
n−1∑
v=0

e−a(n−v−1)|H(1)
1 (v,m)−H(2)

1 (v,m)|+

K
∞∑
v=n

e−a(v+1−n)|H(1)
1 (v,m)−H(2)

1 (v,m)|,

(2.51)
and

|H(1)
1 (v,m)−H(2)

1 (v,m)| ≤ (3M + γ)|x1 − x2|m
∫ v+1

v
eN(v+1−u)du ≤

eN

N
(3M + γ)|x1 − x2|m.

(2.52)
So, from (2.51) and (2.52) we have,

|b1(n,m)− b2(n,m)| ≤ Kea + 1

ea − 1

eN

N
(3M + γ)|x1 − x2|m. (2.53)

Relations (2.44), (2.50), (2.53) imply that Tm is a contraction on E. Hence,
there exists a unique x(t,m) such that

Tmx(t,m) = x(t,m). (2.54)

Therefore, relations (2.45), (2.54) imply that

x(n,m) = b(n,m), n = 0, 1, . . . . (2.55)

Furthermore, from (2.45) and (2.55) for n = 0 we get

x(0,m) = b(0,m) = Pξ −
∞∑
v=0

(I − P )X−1(v + 1)H1(v,m)

and so,
Px(0,m) = Pξ. (2.56)
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Therefore, from (2.45), (2.54), (2.55) and (2.56) we take

x(t,m) = X(t)X−1(n)x(n,m) +

∫ t

n
X(t)X−1(u)

(
B(u,m)x(n,m)+

C(u,m)x(u,m) +D(u,m)x(n,m) + f(x(u,m))

)
du,

x(n,m) = X(n)Px(0,m) +
n−1∑
v=0

X(n)PX−1(v + 1)H1(v,m)−

∞∑
v=n

X(n)(I − P )X−1(v + 1)H1(v,m).

(2.57)
We can easily prove that x(n,m) satisfies (2.6).

Since X(n) is the fundamental matrix solution of the difference equation
(2.32) from (1.6) we have that (2.32) has an exponential dichotomy (see [14],
[16] and the references cited therein)

|X(n)PX−1(v)| ≤ Ke−a(n−v), n ≥ v
|X(n)(I − P )X−1(v)| ≤ Ke−a(v−n), v ≥ n (2.58)

where n, v ∈ IN . Using the roughness of exponential dichotomies for dif-
ference equations (see [16]) and using (2.44) we have that there exists a
projection Qs, rankQs =rank P such that the difference equation (2.14) has
an exponential dichotomy

|Z(n, s)QsZ
−1(v, s)| ≤ K1e

−b(n−v), n ≥ v
|Z(n, s)(I −Qs)Z−1(v, s)| ≤ K1e

−b(v−n), v ≥ n (2.59)

where K1 = 2K eε+1
1−e−ε , b = a− ε, 0 < ε < a.

From (2.12) and (2.57) we define x(t, s) where x(n, s) satisfies the relation

x(n, s) = Z(n, s)Qsx(0, s) +
n−1∑
v=0

Z(n, s)QsZ
−1(v + 1, s)G(v, s)−

∞∑
v=n

Z(n, s)(I −Qs)Z−1(v + 1, s)G(v, s),

G(v, s) =

∫ v+1

v
X(v + 1)X−1(u)

(
C(u, s)x(u,m)+

D(u, s)x(v,m) + f(x(u,m))

)
du

(2.60)
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We can easily prove that x(n, s) satisfies (2.13). Since x(t,m), x(t, s) satisfy
relations (2.5), (2.12) respectively and x(n,m), x(n, s) satisfy the difference
equations (2.6), (2.13) correspondingly, then arguing as in Proposition 2.1
we have that x(t, s) is continuous in IR+ × IR+ \ IN and left continuous at
the points (t,m), t ∈ IR+,m ∈ IN . Therefore, the function x(t, s) defined
from relations (2.12), (2.57), (2.60) is a solution of (1.1).

From (1.2), (1.3), (2.1), (2.9), (2.57) we take

|x(t,m)| ≤
(

2MeN

N
+ eN

)
|x(n,m)|+ (M + γ)

∫ t

n
eN(t−u)|x(u,m)|du.

Then by Gronwall’s lemma we take

|x(t,m)| ≤ c|x(n,m)|. (2.61)

Furthermore, from (1.6), (2.45), (2.57), (2.61) we take

|x(n,m)| ≤ Ke−an|x(0,m)|+K
∞∑
v=0

e−a|n−v−1||H1(v,m)|,

|H1(v,m)| ≤
∫ v+1

v
eN(v+1−u)(2M |x(v,m)|+ (M + γ)|x(u,m)|)du ≤

(2M + c(M + γ))eN

N
|x(v,m)|.

(2.62)
Hence, relations (2.62) imply that

|x(n,m)| ≤ Ke−an|x(0,m)|+ λ
∞∑
v=0

e−a|n−v−1||x(v,m)|. (2.63)

By applying Lemma 6 of [17] to (2.63) and from (2.44)we have

|x(n,m)| ≤ K

1− d
e(

λea

1−d−a)n|x(0,m)| = K

1− d
e−µn. (2.64)
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Moreover, from (2.12), (2.59), (2.60) and (2.61) we take

|x(t, s)| ≤ (eN +
MeN

N
)|x(n, s)|+ eN

N
(M + (M + γ)c)|x(n,m)|,

|x(n, s)| ≤ K1e
−bn|x(0, s)|+K1

eN

N
(M + c(M + γ))

(
n−1∑
v=0

e−b(n−v−1)|x(v,m)|+

∞∑
v=n

e−b(v+1−n)|x(v,m)|
)

= K1e
−bn|x(0, s)|+

K1
eN

N
(M + c(M + γ))

K

1− d

(e−bn+µ − e−nµ+µ
eµ−b − 1

+
e−nµ−b

1− e−b−µ
)
.

(2.65)
So, from (2.44), (2.59), (2.64) and (2.65) the solution x(t, s) of (1.1) defined
by (2.57), (2.12) and (2.60) tends exponentially to zero as n→∞.

Now, let x(t, s) be a bounded solution of (1.1). Then x(t, s) satisfies
relations (2.5), (2.12), where x(n,m), x(n, s) satisfy equations (2.6), (2.13)
respectively. We take

x̄(n,m) = x(n,m)−X(n)Px(0,m)−
n−1∑
v=0

X(n)PX−1(v + 1)H1(v,m)+

∞∑
v=n

X(n)(I − P )X−1(v + 1)H1(v,m).

Then, we can easily prove that x̄(n,m) is a bounded solution of (2.32). For
n = 0 we get Px̄(0,m) = 0̄. Then x̄(n,m) = 0̄, n ∈ IN since (2.32) has an
exponential dichotomy (2.58). So,

x(n,m) = X(n)Px(0,m) +
n−1∑
v=0

X(n)PX−1(v + 1)H1(v,m)−

∞∑
v=n

X(n)(I − P )X−1(v + 1)H1(v,m).

(2.66)

Similarly, since equation (2.14) has an exponential dichotomy (2.59) we can
prove that

x(n, s) = Z(n, s)Qx(0, s) +
n−1∑
v=0

Z(n, s)QsZ
−1(v + 1, s)G(v, s)−

∞∑
v=n

Z(n, s)(I −Qs)Z−1(v + 1, s)G(v, s).

(2.67)
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Hence, from (2.5), (2.12), (2.58), (2.59), (2.66), (2.67) and arguing as above
we can prove that x(t, s) tends exponentially to zero as n → ∞ uniformly
with respect to s. This completes the proof of the proposition.
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[35] S. Stević, J. Diblik and Z. Šmarda, On periodic and solutions converging
to zero of some systems of differential-difference equations, Appl. Math.
Comput. 227, 43-49 (2014)

[36] J. Wiener and K.L. Cooke, Oscillations in terms of differential equations
with piecewise constant argument, J. Math. Anal. Appl. 137 (1989), 221-
239.

[37] J. Wiener and L. Debnath, A survey of partial differential equations
with piecewise constnat arguments, Internat. J. Math. Math. Sci. Vol.
18 No. 2 (1995) 209-228

[38] C. Zou, Y. Xia, M. Pinto, J. Shi, Y. Bai, Boundness and linearization of
a class of differential equations with piecewise constant argument. Qual.
Theory Dyn. Syst. 18, 495–531 (2019)

25


