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Abstract

Rural  communities  in  the  drylands  of  Sub-Saharan  Africa  (SSA)  derive  their  livelihoods

primarily from their natural resource base. Unprecedented changes in these environments

over the past few decades are likely to intensify in the future and land users need to develop

sustainable adaptation strategies. This study aims to identify land use and land cover (LULC)

changes and their drivers in a Sub-Saharan dryland, between 1986 and 2017, by integrating

local  knowledge  and  remote  sensing  analysis.  Local  knowledge  and  environmental

perception are used as the basis for defining LULC classes and for training and validation of

change  detection.  This  study  identifies  bush  encroachment  into  former  pastures  as  the

dominant LULC change with an increase of woodland by 39 % and a decrease of grassland by

74%. This process is perceived as severe degradation by local respondents and is linked to

changing management regimes and unreliable rainfall patterns. Deforestation and woodland

thinning  can  be  traced  back  to  increased  habitation  and  farming,  though  the  local

community also identifies charcoal production as a driving factor. The integration of remote

sensing  and  local  knowledge  provides  a  holistic  view on LULC  change  in  Pokot  Central,

Kenya, and offers a solid base for site specific and actor-centred management approaches

necessary for sustainable pathways of drylands.

Keywords: Remote sensing - Landsat - local knowledge - Land use and land cover change -

Pokot Central - Kenya 
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Introduction

Rural  communities  in  the  drylands  of  Sub-Saharan  Africa  (SSA)  derive  their  livelihoods

primarily from their natural resource base. 

Unprecedented changes  in  these  environments  over  the  past  few  decades  are  likely  to

intensify in the future and land users need to develop sustainable adaptation strategies.

These changes have been driven by local and external anthropogenic as well as ecological

causes  (Chalmers  &  Fabricius,  2007;  Liao  et  al.,  2020;  Thondhlana  et  al.,  2012).  Future

climate predictions for SSA indicate that the region will experience (if it has not already) less

reliable precipitation patterns, more frequent and severe droughts, and more intense rainfall

events (Funk et al., 2008; IPPC, 2014; Niang et al., 2014; Serdeczny et al., 2017; Shongwe et

al., 2010). As a result of these drivers, current and predicted changes in plant biodiversity

and  ecosystem  functioning  present  new  challenges  to  rural  communities.  An  improved

understanding  of  how  local  land  users  perceive  of,  and  manage  their  environment,  is

therefore required so that more appropriate land use decisions can be made. One way to

better understand human-environmental interactions and its effects on the environment is

through the study of the patterns of land-use and land-cover (LULC) change.

The  Sub-Saharan  region  of  Africa  shows  a  heterogenous  pattern  of  LULC  change,  with

agricultural  land  replacing  natural  vegetation  as  the  most  prominent  transformation

(Ordway et al., 2017; Rukundo et al., 2018; Xu et al., 2018) and with another major trend

showing an increase of woody vegetation at the expense of grasslands (Archer et al., 2017;

Brandt et al.,  2017; Marston et al.,  2017; Nüsser,  2002; Osborne et al.,  2018). The rapid

encroachment  of  woody  species  in  the  drylands  has  reduced  the  availability  of  grazing

resources for pastoralists prompting them to adjust their land based livelihood strategies

(Becker  et  al.,  2016),  for  example  by  diversifying  their  livestock  mix  to  include  more

browsers (goats  and camels)  so as to exploit  these woody species  (Kagunyu & Wanjohi,

2014; Ouko et al.,  2020; Vehrs, 2016). Whilst some pastoralists increasingly include other

non-land based livelihood strategies such as wage labour or small business (Bergmann et al.,

2019). Changes in LULC patterns do have knock on effects on the wellbeing of land users that

are not immediately obvious. For example, a reduction or complete loss of vegetation cover

does not only cause more frequent flooding events and landslides, but can also increase the

risk of vector- and waterborne diseases  (Anthonj  et al.,  2019; Levy et al.,  2016; Okaka &
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Odhiambo, 2018), and, a decrease in tree cover reduces the availability of fuel wood and

increases the workload,  particularly  for  women, during wood collection  (Garedew et  al.,

2009; Yiran et al.,  2012).Therefore, in order to better contextualise LULC change and its

social and environmental impacts requires an intimate understanding of local perceptions of

their landscapes. Local knowledge is now accepted as a critical research component that can

help fill the gap in our understanding on how to mitigate against and adapt to structural

changes (Bollig & Schulte, 1999; Makondo & Thomas, 2018; Mistry & Berardi, 2016; Reed et

al., 2007).

The present study defines local knowledge following Raymond et al. (2010) who demarcate

it from scientific knowledge through its recognition of local nuances, often left unnoticed by

external experts who generate their knowledge through formalised processes rather than

traditional norms and recently experienced human-environment interactions (C. D. Becker &

Ghimire, 2003; Olsson & Folke, 2001).

It is widely accepted that the integration of local knowledge and remote sensing analyses

can provide new insights (Herrmann et al., 2014; Zaehringer et al., 2018) and further holds

the potential to upturn popular narratives on forest and land degradation that place the

blame  squarely  on  the  land  users  (Fairhead  &  Leach,  1995).  In  general,  a  high

correspondence  can  be  found  between  conventionally  classified  LULC  change  and  local

perceptions, as shown, for instance, by Ariti et al. (2015).

However,  the  overall  objective  of  most  studies  dealing  with  both  local  and  scientific

knowledge  is  to  assess  the  reliability  of  stakeholders’  perceptions  by  comparing  it  with

conventional  approaches  rather  than  by  integrating  both  sets  as  an  equal  source  of

information, though each one might have specific features and contain certain pitfalls (e.g.

Delgado-Aguilar  et  al.,  2019;  Eddy  et  al.,  2017).  In  order  to  foster  the latter  integrative

approach, this study is based on the recognition of local knowledge as a sound and reliable

source of information on LULC change (Del Rio et al., 2018). It thus includes local knowledge

and environmental perception as the basis for the definition, training, and validation of LULC

classes.  As  people  whose  livelihoods  depend  directly  on  their  natural  environmental

resources  are  understood  as  local  experts,  a  participatory  approach  frames  the  entire

research design.
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This study aims at identifying LULC changes and their drivers in a Sub-Saharan dryland over

three  decades.  To  better  understand  the  underlying  processes,  it  asks  the  following

questions:

- What LULC changes can be observed in the study area between 1986 and 2017?

- What  processes  are  driving  these  changes  and  how are  they  influenced by  local

perceptions and values?

- How can local  knowledge be integrated into remote sensing techniques and thus

become key to contextualize LULC change?

As a case study a remote dryland region of Kenya was chosen. While LULC change has been

studied in neighbouring regions  (Egeru et al.,  2015; Nyberg et al.,  2015), the lowlands of

Pokot Central have largely been neglected, though the area typifies many of the livelihood

possibilities and constraints faced by communities in Sub-Saharan drylands. It is therefore a

representative  case  study  to  derive  appropriate  adaptation  strategies  that  offer  rural

communities more sustainable and desirable development pathways.
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Study area

The drylands of Pokot Central  (West Pokot County)  in northwestern Kenya are a border

region  with  several  ethno-linguistic  groups,  located  at  a  distance  of  350 km  to  Nairobi

(Figure 1).  The study area between 35°25’ and 35°41’ E and 1°24’ and 1°48’ N comprises

approximately  705 km²  and  is  bordered  in  the  east,  south  and  west  by  the  Masol,

Cherangani and Sekerr Hills, reaching altitudes of about 3,000 m a.s.l. Precipitation depicts a

high interannual and spatial variability, ranging from 400 mm in the plains to 1,200 mm in

the highlands, distributed over two rainy seasons  (GeoInformatiks Ltd, 2017). The area is

dominated by bush savanna mostly comprised of Vachellia tortilis (FORSSK.) GALASSO & BANFI

and Vachellia reficiens (WAWRA) KYAL. & BOATWR. Rivers and seasonal streams are lined by

gallery forests, while in some areas dense evergreen thickets of Euphorbia  spp. occur. The

A1  Highway  between  Kapenguria  and  Lodwar  (the  capitals  of  West  Pokot  County  and

Turkana  County)  is  the  area’s  only  tarmacked connection with  larger  agglomerations  of

Kenya. While there are no urban areas, some basic facilities, including several small shops,

weekly markets, health centres, and a police station can be found in small centres such as,

Marich, Tikit and Orwa (Figure 1). The administrative centre of Pokot Central is Sigor, the

only settlement in the study areas that can be considered a town. Pokot Central is one of five

sub-counties in West Pokot County, where the majority of the Pokot ethno-linguistic group

lives.  The  land  assigned  to  the  Pokot  also  includes  East  Pokot  Sub-County  in  the

neighbouring  Baringo  County.  According  to  census  reports,  population  numbers  in  the

district of Pokot Central increased from 43,159 inhabitants in 1989 to 119,016 in 2019 with a

corresponding  rise  in  population density  from 21 to  58  persons/km²  (Central  Bureau of

Statistics,  1994; KNBS,  2019).  Livelihoods in the study area are based primarily  on agro-

pastoral  land  use  practices  with  an  increasing  importance  of  small  businesses  or  wage

labour.  During the 1990s production of  wood charcoal  became a wide-spread source of

income  and  has  developed  into  a  common  part  of  many  peoples’  livelihood  portfolio

(Bergmann et al., 2019).
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Methods

The methodological approach integrates empirically based social scientific assessments of

local stakeholder knowledge through focus group discussions (FGD) with ground validated

remote sensing techniques.  Based on  Landsat  imagery from 1986,  1995, 2000, 2010 and

2017  (USGS,  2017;  Table  1) long-term vegetation change was monitored.  Owing to high

inter-annual variation in plant phenology in the region, the peak of the dry season around

January was identified as the most appropriate time for analysis  (Roden et al.,  2016). In

regions with a relatively low or irregular temporal availability of suitable Landsat imagery,

such as in East Africa, changes are best detected through a post-classification comparison

(Banskota et al., 2014). The accuracy of such a pixel-by-pixel comparison depends on the

quality of initial classifications since errors are compounded in the final output. However,

given a qualified sample of training and validation data this approach offers the advantage to

support the generation of ‘from-to’ matrices that register detailed quantitative information

of detected land-cover change, which can be visualized on easy-to-interpret maps (e.g. Biro

et al., 2011; Kamusoko & Aniya, 2009; Petit & Lambin, 2002).

Focus group discussions

To  integrate  local  knowledge  from  the  beginning,  eight  one  to  three-day  FGDs  were

conducted  between  March  2017  and  January  2019.  They  were  facilitated  by  four

experienced Pokot field assistants and involved three to seven people from the study area,

representing an  age  and gender  sensitive  cross-section of  the  community  (Table 2).  The

purpose of the FGDs was to identify and map locally recognized land-cover classes, assess

their criteria of differentiation, gather narratives of socio-environmental change, and discuss

daily practices as well as the perceived value of individual land cover classes. During FGDs,

notes were taken and later transcribed and coded in MaxQDA. In order to identify different

LULC classes,  participatory  mapping  was  conducted  in  three  FGDs.  After  presenting

characteristic photographs of a broad range of vegetation types that were taken, with the

guidance of local rangeland scouts, earlier during field surveys, the participants of the FGD

discussed these characteristics and categorised their own LULC classes. In the next step, a

large size printout of the most recent Landsat scene from 2017 was presented to the group.

As participants were unfamiliar with maps, they had to be introduced to satellite imagery by

trained research assistants. Together they identified, distinguished, and delineated specific
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areas, such as the approximate location of their homesteads, grazing grounds, water ponds,

seasonal  streams,  and settlements.  Subsequently,  the group was split  into  subgroups  to

colour-  or  number-code the previously  developed LULC classes on older Landsat  scenes.

Additions and changes could be made during a final plenary session. The repetition of this

procedure  during  three  workshops  made  it  possible  to  identify  LULC  classes  and  their

locations, agreed upon by all participants.

Training and validation of remote sensing data

Training  and  validation  of  remote  sensing  data  was  derived  from  field  surveys,  local

stakeholder  knowledge,  and  additional  very  high  resolution (VHR)  image  data  (Table  3).

During two field campaigns in January 2016 and February-March 2017 a total of 93 sample

plots (50x50 m2) were selected based on a stratified random sampling strategy, with support

of a knowledgeable local informant. Each plot’s centre was GPS tagged, whilst the vegetation

structure,  dominant  species,  and  other  features  of  interest  such  as  tree  stumps,  active

charcoal kilns or kiln burn marks were documented. Approximately 30 % of these plots were

revisited after heavy rains in November-December 2017 to document seasonal precipitation

effects on land cover dynamics. This was particularly important to distinguish permanent

bare  ground  from  seasonal  grasslands  and  to  detect  differences  in  the  density  of  the

herbaceous understory layer in bushy areas during the rainy season.

After some of the delineated classes from the FGD exercise were combined following Mialhe

et  al.  (2015),  thresholds  were  defined  to  allow  operationalization  and  comparison  with

remote sensing procedures. The resulting LULC classes and their spatial distribution were

used  for  training  and  validation  of  classifications,  especially  of  older  Landsat  images.

Wherever  possible,  visual  interpretation of  very high resolution (VHR)  datasets  including

WorldView, Quickbird and Google Earth data as well as historical aerial photographs were

used for cross-checking and contextualization (Table 3).

Image Classification

Image pre-processing and classification were conducted in R  (R Development Core Team,

2008).  The  analysis  comprised  visual,  near-  and  shortwave  infrared  bands,  spectral

vegetation  indices  (VI)  and  texture  measures.  Different  predictors  were  tested  as  input

(Table 1) in order to select only those with the highest variable importance. The preliminary
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results revealed the Green Normalized Difference Vegetation Index (Gitelson et al., 1996),

the Soil Adjusted Vegetation Index (Huete, 1988), texture dissimilarity (Lu & Batistella, 2005)

and the first three bands of a Tasseled Cap Transformation  (Crist, 1985) as most relevant

(Table 1).

The resulting 17 band composite stack was then used for the final image classification using

non-parametric  Random  Forest  (RF)  classifier  (Breiman,  2001) through  the  R  function

superClass  (Leutner & Horning,  2017).  This machine learning algorithm has already been

successfully employed for land cover classifications (Adam et al., 2017; Gislason et al., 2006;

Rodriguez-Galiano et al., 2012; Zoungrana et al., 2015). The default number of 500 decision

trees (ntree) was adopted, as suggested by Belgiu & Drăguţ (2016). The superClass function

provides  an  independent  accuracy  assessment  by  splitting  the  input  into  training  and

validation data  before building the trees  (train  partition=0.7).  It  then builds the random

forests with different values for mtry, defining the number of image layers considered at

each node. In this case, mtry=9 was selected based on an internally calculated accuracy. The

resulting model was then used for image classification.

Change detection

Subsequently, the oldest and newest scene (1986/2017) were compared on a pixel-by-pixel

basis. The ‘from-to’ changes were quantified in change matrices (SI 1) and classified into five

change classes. An accuracy assessment (Congalton, 1991; Story & Congalton, 1986) using a

previously separated set of validation data was conducted for all scenes. A drawback of post

classification change detection is the accumulation of classification errors in the final product

(Congalton  &  Green,  2019,  pp.  233–246).  To  estimate  this  error  an  additional  accuracy

assessment was conducted for detected changes between 1986 and 2017. For this purpose,

199 random points were generated. The LULC classes for the 1986 and the 2017 scenes were

visually interpreted and classified according to the five change classes. This dataset was then

used for accuracy assessment.
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Results

Land use and land cover classes

During  the  FGDs  nine  LULC  classes  were  identified,  described,  and  mapped  (Figure 2).

Participants  were  able  to  distinguish  LULC  classes  by  small  differences  in  species

composition, herbal layer and phenological characteristics. Due to the spatial resolution of

Landsat  images,  open  (wuw  nyo  tartar)  and  closed  (wuw  nyo  anger)  woodland  were

combined into one class. Wuw nyo kieghe, a special type of woodland where all trees are the

same height, belong to one species and allow almost no herbal layer, is also included in this

class.  Farmland  (paren)  is  not  separated  into  irrigated  or  rain-fed  but  could  be  further

specified by its location next to a river (paren pa lalwa) or close to a homestead (paren po

kiror). The Pokot names were used throughout the study and during all further conversations

as an expression of appreciation for the local knowledge.

Image classification and change detection

Image classification reveals a dynamically changing mosaic of wood- and grasslands across

the study area (Figure 3). In 1986, half (51 %) of the area was covered by open to closed

woodlands while 27 % were grasslands. This LULC class was typically found in areas with a

loose, sandy soil, as prevalent in the Masol Plains but also on several alluvial fans west of the

A1 highway (Tamakaru) and some smaller ones along the foot slopes of the Cherangani Hills.

Another 16 % were comprised of Euphorbia spp. thickets and gallery forest (4 %) along the

main rivers, covering a larger area between Marich, Sigor and Tikit.

In the 2017 scene, which has the highest overall accuracy and the most reliable training and

validation data, many patches along the rivers were classified as bare areas or farmland.

Bare areas are particularly noteworthy, as they increased by 490 % from 1.3 % in 1986 to 8 %

in 2017. Grassland is only found in small patches in the Masol Plains (7 %) while open top

closed woodlands dominate the scene by 71 %. Field observations have shown that bare

areas along the rivers are usually sandy riverbeds, indicating an increased vulnerability to

flood erosion, or fallow farms. Many fields were harvested shortly before the Landsat image

acquisition in January,  and not yet tilled, again.  Furthermore, the Sigor irrigation scheme

reached its third phase of expansion in December 2016, explaining the large patch of bare
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ground, north of the farmlands at Sigor. This irrigation scheme was implemented in 1987 by

the Government of Kenya, in cooperation with Italian partners.

Whereas the overall accuracies for the 2000 and 2017 classification are very high (95  % and

97 % respectively), those for the remaining scenes are lower but still within an acceptable

range (1986: 87 %; 1995: 89 %; 2010: 78 %; for detailed accuracies: SI 2.1 – 2.5).

Change detection between 1986 and 2017 reveals significant shifts in vegetation cover for

46 % of the study area. Only transitions between two clearly distinguishable LULC classes

were considered significant (Figure 4). The change between open to closed woodland and

sparsely vegetated areas for example was considered too subtle and might be due to slight

changes in the phenology due to rainfall variability.

An increase in canopy cover accounts for 50 % of change detected in the study area, most of

which (117 km2) is associated with bush encroachment into former grasslands. Evidence can

be  found  in  the  Masol  Plains,  which  have  recently  been  dominated  by  homogenous

communities of V. reficiens with little to no herbaceous or grass layer, even during the rainy

season.

Hotspots of forest and woodland thinning are located in the vicinity of Marich, Sigor and

Tikit  (Figure 4).  Around  these  more  densely  populated  areas,  thickets  have  widely  been

transformed into open to closed woodlands (67.5 km2 or 61 %; SI 1). Field observations and

participatory  analysis  of  the  LULC  classifications,  confirm  that  deforestation  is  mostly

associated  with  agricultural  expansion.  Along  both  the  Wei  Wei  and  the  Moruny  River,

gallery forests and thickets have been cleared for irrigated farming, now covering 16 km2

across the whole study area (Table 4).

As errors from the LULC classification accumulate in the post classification change detection,

the accuracy assessment of the change detection shows a larger error than those for the

single scenes. The overall accuracy is 60 %, while the user’s 50 % and producer’s accuracy

40 % for the change class of decrease in canopy cover is lowest.

Drivers of change

The LULC thickets class shows a pronounced decline between 1986 and 2017. This LULC class

has  “no importance for  the people” and is  perceived as  dangerous  because of  the wild
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animals living in there (FGD3). Families would clear the area close to their homestead or

fields to avoid encounters with these (FGD3). The expansion of human settlements explains

the large decrease in thickets,  especially  in the triangle between Marich,  Sigor  and Tikit

(Figure 4).

The most prevalent change observed in the image analysis is the encroachment of bushes

into former grasslands. These former pastures are now vastly dominated by two species of

Vachellia.  While the majority  of  the Masol  Plains have been encroached by  V.  reficiens,

Tamakaru is  covered  almost  exclusively  with  V.  nubica.  Typical  for  both  is  the  almost

complete absence of an herbal layer and existence of homogenous tree height. Locals have

repeatedly mentioned the increase of these species as now “Pilil [V. nubica] is everywhere”

(FGD1). They evaluated its expansion as a degradation of former pastures and identified

overgrazing,  reduction  in  rainfall  (FGD2)  and  introduction  of  Vachellia seeds  into  the

grasslands through smallstock (FGD6) as main drivers. Another important factor, brought up

by the respondents is the discontinuation of traditional pasture burning due to its banning

by government decree in the 1980s (FGD3).

The increase of  sparsely  vegetated areas  is  characteristic for  woodlands that  have been

thinned out, typically around settlements. Population growth and the increased demand for

wood for building and fuel was also identified as a driving factor for the thinning of bushland

by FGD participants (FGD3, FGD5, FGD6). However, most people were said to leave some

trees and bushes on their homesteads and tend to them “because the shade is needed for

kids and small animals” (FGD7). Except for the surroundings of Sigor Centre, where there is

almost no vegetation left, other relatively denser populated villages, such as Marich or Tikit,

some fractional vegetation cover remains.

Gallery forests were identified as a valued LULC class by local stakeholders, especially due to

its ability to limit flood erosion (FGD3) and owing to the higher prevalence of V. tortilis, that

provides much needed leaves and pods that are valued as nutritious livestock fodder (FGD3,

FGD5). Thus, informal regulations exist to protect these forests (FGD4, FGD7), even though

wood from these forests are most preferred for charcoal production, building material and

beehive construction (FGD5). Nevertheless, competing resource use for wood-based forest

products and expansion of land for crop cultivation has led to deforestation along rivers. The

from-to-change matrix between 1986 and 2017 (SI1) shows many patches of gallery forest
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that have been transformed into agricultural land or bare areas (with a dominance of bare

fields according to field observations). However, locals do not usually mention the expansion

of agriculture as a driver of deforestation. It was even stated, that “as long as the intention is

to farm, the clearing of the bush is not a problem with the government” (FGD3). Only when

they were asked directly for the effects of clearings for agriculture, participants agreed that

cutting of trees along the rivers is worse than further away from it, because “it has more

negative effects on soil and the river” (FGD3). It was also explained that farming too close to

the river is responsible for the widening of the riverbed with farmland often swept away

during floods in the rainy season (FGD3). Nevertheless, agricultural land is perceived very

positively,  with  only  the  unreliability  of  the  harvests  and  the  prevalence  of  crop  pests

considered to be a negative feature of this land use class (FGD3). There was a considered

downside to gallery  forests in that  they provide cover to wild animal  pests (porcupines,

antelope,  monkeys,  and elephants)  which  invade  and  destroy  riverine  based  crop  fields

(FGD3). Despite local demands for arable land, the net amount of gallery forests remained

comparatively stable between 1986 and 2017. While one explanation for this is that up until

recently,  shifting  cultivation was  a  common practice,  also  the abandonment  of  Amolem

(Figure 1) due to conflict (FGD3), allowed forest regeneration in this area.

In addition to increased settlements and farming, local stakeholders regularly mention wood

extraction for charcoal production as an important driver of tree cover loss (FGD2, FGD6).

Image  analysis,  however,  does  not  reveal  a  correlation  between  charcoal  production

hotspots along the A1 highway (Bergmann et al., 2019) and a decrease in vegetation cover.

But while the spatial resolution of Landsat data cannot offer details on species composition,

local respondents observed that in certain areas, “trees used for charcoal production are

almost gone“ (FGD6). As tree species most preferred for charcoal production respondents

named V. reficience, V. tortilis, Senegalia mellifera (M. VAHL) SEIGLER & EBINGER, and Vachellia

nubica BENTH. (FGD5, FGD6, FGD7) though informal rules aim at protecting the more valued

trees  species  (FGD1,  FGD4,  FGD6).  Other  drivers  of  change  include  wood extraction  for

timber (FDG2, FGD5) and the felling of trees by elephants (FGD2).
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Discussion

LULC change in the drylands of Pokot Central shows dynamic pathways over the past three

decades and a better understanding of driving forces requires an analysis of local histories of

development and human-environmental interactions.

The present change detection revealed that the most prevalent change between 1986 and

2017 in the study area is the increase in woody vegetation at the expense of grassland. The

phenomenon of bush encroachment or “green desertification” has been observed in several

regions across Sub-Saharan Africa  (M. Becker et al., 2016; Liao et al., 2018; Venter et al.,

2018). In many East African drylands, including Baringo and Turkana County neighbouring

Pokot Central  (Maundu et al.,  2009; Mwangi & Swallow, 2005), the South American tree

Prosopis juliflora plays a major role in this process  (Shiferaw et al., 2019), but only single

specimen of this particular tree species were found in the present study. For the adjoining

plains of East Pokot, located in Baringo County, Vehrs (2016) also reported a transformation

from grasslands  to  Vachellia dominated woodlands starting in  the 1950s,  based on oral

evidence. Likewise, in the study area, this process was already detected in the Masol Plains

for the time between 1973 and 1978 by Conant  (1982), who identified reduced rains and

changing management regimes as main drivers based on analysis of early Landsat imagery. A

series  of  violent  conflicts,  droughts  and  government  regulations  had  led  to  the  near

complete abandonment of the Masol Plains in 1976 (Roden & Bergmann, 2015; Zaal et al.,

1985).  The present  study traces an intensification of  the process of  bush encroachment

between 1986 and 2017 and temporally  and spatially  expands  the underlying  causes  of

reduction in annual rainfall, overgrazing and the lack of pasture burning. These findings are

similar to studies in other regions of Africa that identify a correlation between woody plant

proliferation with changing  rainfall  patterns  and reduction in  the use of  fire  for  pasture

management (J.N.  de Klerk,  2004; Stevens et al.,  2017).  Reduced mobility of  pastoralists

communities has recently been discussed thoroughly by Liao et al. (2020) as a crucial cause

of dryland degradation and unsustainable rangeland management.

Abandonment of former grazing areas is one of several  factors that forced the Pokot to

adjust their cattle-centred economic and cultural fabric to altered structural conditions from

the mid-1980s onwards  (Bollig, 2016). An increasing importance of sedentary and market-

oriented small-stock keeping,  especially  of  goats,  and “the adoption of  farming as a  key
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element  in  the  overall  process  of  economic  diversification”  are  identified  as  dominant

regional  trends  (Österle,  2008).  Several  projects  by  the  Kenyan  government  and

international  partners  are  furthering  this  transition  through  the  promotion  of  modern

irrigation farming  (Adams,  1990; Government of the Republic of Kenya, 2012; Mugova &

Mavunga,  2000) even  though  the  expansion  of  cropland  is  known  to  contribute  to

deforestation  (Shiferaw  et  al.,  2019).  In  the  present  study,  increased  settlements  and

farming were found to be the main drivers for deforestation and decrease in forest cover.

However,  LULC  change  is  also  effected  by  cultural  perceptions  and  values  as  has  been

demonstrated in the massive decline of thickets that are deemed dangerous, while food

provision  is  regarded  as  the  most  relevant  service  a  LULC  class  can  deliver  to  local

communities.

Repeatedly mentioned by respondents as a driver of negative environmental change, was

the production of wood charcoal which was widely adopted as a source of income by people

in the study area since the 1990s.  These people were forced to adopt thus activity as a

consequence  of  conflict,  displacement  and  socio-economic  change  (Roden  & Bergmann,

2015).  Many  studies  in  other  areas  report  the  harmful  effects  of  wood  extraction  for

commercial charcoal production on woodland resources (Kutsch et al., 2011; Rembold et al.,

2013; Sedano et al., 2016). The Landsat analysis, however, does not reveal such link in our

study area. And, in contrast to findings by Kiruki et al.  (2017) from Kitui County, in south-

eastern Kenya, increased charcoal production in areas of decreased canopy cover cannot be

observed. It can be assumed that the scale of charcoal production in Pokot Central is still at a

level where environmental effects are not as pronounced as in primary production regions

such as Kitui County and are thus currently not observable with the spatial resolution of

Landsat imagery. The local perceptions give a more fine grained picture on decreasing tree

species, though they could also be clouded by a widespread negative image of this activity

(Mwampamba  et  al.,  2013).  Respondents  stated  that  the  encroaching  V.  reficiens  is

predominantly cut as wood for charcoal production while trees that are more valuable for

livestock are tried to be preserved. This can be interpreted as an adaptation strategy by local

communities that should be taken into consideration by higher-level decision-making actors

in government.  Similarly,  Oduor & Githiomi  (2013) prescribe community management of

invasive  P. juliflora in Baringo, Kenya as one means to control its spread whilst securing a

livelihood for local inhabitants. Further developments of this activity, however, should be
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closely  monitored,  as  an  expected  growing  demand  for  wood charcoal  could  alter  local

practices and rapidly increase the pressure on woodland resources  (Taylor et al., 2020). A

marked  empathy  for  local  producers,  as  well  as  consideration  of  their  knowledge  and

development solutions are crucial for successful management.

The present study further promotes the integration of local knowledge and remote sensing

approaches. While a LULC change analysis based on Landsat imagery has proven to be a solid

scientific approach, subpixel changes may go undetected. At the same time, the drivers of

LULC  change  can  only  partially  be  reconstructed  using  remote  sensing  approaches  as  a

stand-alone  technique.  While  the  correlation  between  deforestation  and  agricultural

expansion can be made based on multitemporal image analysis alone, the complexities of

canopy increase in former grasslands as well as the reasons behind agricultural expansion

need ground-based information. Against this background the study on Pokot Central adds to

the  growing  number  of  studies  that  demonstrate  the  usefulness  of  integrating  remote

sensing techniques with local stakeholder knowledge (Del Rio et al., 2018; Egeru et al., 2015;

Sulieman & Ahmed, 2013). Chalmers and Fabricius (2007) stress that ecological knowledge

can be unevenly distributed among local communities and advise to carefully select local

experts.  They  define  those  experts  as  people  whose  livelihoods  are  directly  based  on

surrounding  natural  resources.  As  all  respondents  from  the  present  study  were  either

livestock keepers, farmers or both and had grown up in the study area they do fulfil this

criterion. The broad ecological knowledge of the Pokot has also been confirmed by Wasonga

et al.  (2003). The present study takes local knowledge one level  further into the remote

sensing approach.

While most studies incorporate local knowledge at the end by comparison with results from

remote sensing approaches or to add depths, here, local knowledge contextualized every

step  of  the  remote  sensing  analysis;  from the  delineation  of  LULC  classes,  collecting  of

training and validation data and finally the discussion of driving factors. Applying local terms

and  definitions  facilitated  discussions  about  changes,  validation  of  results  and

communication of findings. It furthermore helped to understand the way the environment is

categorized by the Pokot and their motivation to protect certain ecosystems or not. The

integration of remote sensing and local knowledge provides an holistic view on LULC change
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in  Pokot Central  and offers a  solid base for  site specific and actor-centred management

approaches as will be needed for the sustainable development of drylands (Fu et al., 2021).

Conclusion

This study identifies LULC changes and their drivers in a Sub-Saharan dryland over three

decades  between  1986  and  2017.  Bush  encroachment  into  former  grasslands  was

recognized as the most prevalent change, while deforestation and decrease in canopy cover

occurred  mainly  in  the  context  of  agricultural  expansion  and  increased  settlements.  By

relying strongly on local land user perceptions of LULC change it was possible to not only

identify changes and their drivers but also the intrinsic motivations of the local community

to prefer certain LULC classes over others. This study will help understand environmental

changes of the past and their linkages with the livelihoods of the dryland population. Future

programs to develop adaptation strategies for climate change or management guidelines for

drylands can draw from this study the value of local perceptions and the need to include

them and their ecological understandings into decision making processes.
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Tables

Table 1. Summary of satellite imagery, derived classification parameters and tested parameters

Parameter Description Equation Specifications Reference

Landsat
bands

Blue  (B),  Green
(G),  Red (R),  NIR,
SWIR1, SWIR2

28.01.1986: Landsat 5 TM L1TP
21.01.1995: Landsat 5 TM L1TP
27.01.2000: Landsat 7 ETM L1TP
30.01.2010: Landsat 5 TM L1TP
17.01.2017: Landsat 8 OLI L1TP
Path: 169; Row: 59; 30m resolution

(USGS, 2017)

Vegetation Indices

GNDVI
Green Normalized
Difference
Vegetation Index

NIR−G
NIR+G

(Gitelson  et  al.,
1996)

SAVI
Soil  Adjusted
vegetation Index

(NIR−R )∗(1+L)
NIR+R+L

Coefficient: L=0.7 (Huete, 1988)

Texture Variables

Dissimilarit
y

∑
i , j=0

N−1

i Pi , j|i− j|

Where:

Pi , j=V i , j/ ∑
i , j=0

N=0

V i , j
Where  Vi,j = Value in
cell  i  (row)  j (column)
of  moving  window
and  N  =  number  of
rows and columns

Window size: 3 x 3
Offset distance: 1
Grey level quantization: 64
(Karlson et al. 2015)

(Lu  &  Batistella,
2005)

Transformations

TCT 1-3

Tasselled  Cap
Transformation
(Brightness  (1),
Greenness (2) and
Wetness (3))

B*a1/2/3+G*b1/2/3+R*c1/2/3+
NIR*d1/2/3+SWIR1*e1/2/3+
SWIR2*f1/2/3;

Coefficients a-f see references

(Baig  et  al.,  2014
(OLI);  Crist,  1985
(TM);  Huang  et  al.,
2002 (ETM))

Tested Vegetation Indices

Modified Soil Adjusted Vegetation Index (MSAVI: Qi et al., 1994);  Normalized Difference Vegetation Index (NDVI: Rouse
Jr et al., 1974);  Ratio Vegetation Index (RVI: Jordan, 1969); Transformed Vegetation Index (TVI: Deering & Haas, 1980);
Thiam's Transformed Vegetation Index (TTVI: Thiam, 1997)

Tested Texture Variables

Mean, Variance, Homogeneity. Contrast, Entropy, Second Moment, Correlation  (Haralick et al., 1973; Lu & Batistella,
2005)

34



Table 2. List of focus group discussions (FGD) between 2017 and 2019 with details on the participants and

discussed topics

FGD Date
(duration)

Number of
participants

(women)

Source
s of

income

Discussed
topics,
methods

FGD1
03/2017

(3d)
5 (4) P, C, F EC, CCP, R

FGD2
03/2017

(1d)
4 (0) P EC

FGD3
11/2017

(3d)
6 (2) P, F, C

EC, CCP, 
PM, FS

FGD4
11/2017

(3d)
7 (2)

P, F, C, 
B

EC, CCP, 
PM, FS

FGD5
12/2017

(3d)
6 (4)

P, F, C, 
B, G, 
FW

EC, CCP, 
PM, FS

FGD6
12/2018

(1d)
3 (3) C, B, CCP

FGD7
01/2019

(1d)
5 (0)

P, F, C, 
E

EC, CCP, R

Occupations: P= Pastoralists; C= Charcoal Producer; F= 
Farmer; B=Business Owner; G= Gold Panning; FW= 
Firewood Seller; E= FGD only with Village Elders

Topics: CCP= Charcoal Production; EC= Environmental 
Change; R= Rules and Regulations; PM= Participatory 
Mapping; FS= Future Scenario

Table 3. Additional data sources used to train the image classification

Image type Image source Date Resolution Extent Training for

Sentinel2 ESA 2017 12.01.2017 10 m 705 km2 2017

GoogleEarth Google Inc. 2017 May/June 2017 300 km2 2017

WorldView2 DigitalGlobe 2017 24.06.2013 0.5 m 100 km2

GoogleEarth - historical Google Inc. 2017 2013 2010

VHR Quickbird DigitalGlobe 2017 10.12.2011 0.6 m 100 km2 2010

GoogleEarth - historical Google Inc. 2017 2001 2000

Historical aerial images*
Royal  Airforce;  Hunting

Aerosurveys Ltd.
1950s – 1970s

1:50,000

1:12,500
1986

Collected training data: 4.5 – 9 km2; *available through Bodleian Libraries of the University of Oxford
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Table 4. Land use and land cover (LULC) change for the years 1986, 1995, 2000, 2010 and 
2017

Area [km²] Net changes [km²]

1986 1995 2000 2010 2017 1986-2017

Gallery Forest 27.15 31.66 24.86 28.74 34.92 +7.77 (29 %)

Thicket 110.45 105.62 85.52 76.17 34.16 -76.29 (69 %)

Woodland 350.70 368.42 410.33 484.33 486.09 +135.39 (39 %)

Sparsely vegetated 0.00 6.70 21.89 21.60 13.38 +13.38

Grassland 180.93 147.99 110.92 59.85 46.92 -134.01 (74 %)

Farmland 7.81 13.36 17.56 10.85 16.11 +8.30 (106 %)

Bare areas 9.25 12.76 15.13 4.65 54.59 +45.34 (490 %)

Overall Accuracy 0.87 0.89 0.95 0.78 0.97
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Figure legends

Figure 1. Study area in West Pokot County, Kenya.

Figure 2. Land use and land cover (LULC) classes as defined in participatory workshops and

used for image classification.

Figure 3. Land use land cover (LULC) classifications for 1986, 1995, 2000, 2010 and 2017

based on Landsat scenes (path 169, row 59) and the resulting percentages for the respective

LULC classes.

Figure 4. Land use land cover (LULC) changes between 1986 and 2017 based on Landsat

image classification (path 169, row 59) and the change matrix, colour coded in accordance

with the defined change classes.
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Supplementary Information

SI 1. Change Matrix 1986 - 2017

2017[km²]

Gallery
Forest

Thicket Woodland
Sparsely
vegetated

Grassland Farmland Bare areas

19
86

 [
km

²]

Gallery Forest 12.31 0.25 5.00 0.23 0.20 4.78 4.24

Thicket 13.39 19.00 67.47 2.39 1.31 2.47 4.35

Woodland 5.87 14.47 295.59 4.77 7.24 4.78 17.90

Grassland 0.46 0.26 112.95 3.56 37.65 1.28 24.75

Farmland 2.41 0.08 1.61 0.16 0.17 2.04 1.34

Bare areas 0.45 0.10 3.38 2.28 0.34 0.74 1.97

SI 2.1. Error Matrix for 1986

Reference

P
re

d
ic

ti
o

n

Gallery
Forest

Thicket
Woodlan
d

Grassland Farmland
Bare
areas

Sum PA UA

Gallery
Forest

618 0 0 0 0 0 618 1.00 1.00

Thicket 0 591 3 2 1 3 600 0.79 0.99

Woodland 0 158 723 190 0 0 1071 0.94 0.68

Grassland 0 0 45 678 0 0 723 0.78 0.94

Farmland 1 0 0 0 22 0 23 0.96 0.96

Bare
areas

0 0 0 2 0 53 55 0.95 0.96

Sum 619 749 771 872 23 56 3090

Overall Accuracy 0.87

Kappa (Cohen, 1960) 0.83
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SI 2.2. Error Matrix for 1995

Reference

P
re

d
ic

ti
o

n

Gallery
Forest

Thicket Woodland
Sparsely
vegetate
d

Grasslan
d

Farmlan
d

Bare
area
s

Sum PA UA

Gallery
Forest

195 1 0 0 0 0 0 196
0.9
8

0.99

Thicket 3 231 0 0 0 0 0 234
0.7
7

0.99

Woodland 0 68 426 1 0 1 0 496
0.9
6

0.86

Sparsely
vegetated

0 0 1 19 14 0 0 34
0.7
6

0.56

Grassland 0 0 17 5 201 0 0 223
0.8
5

0.90

Farmland 2 0 0 0 0 39 0 41
0.9
8

0.95

Bare areas 0 0 0 0 22 0 36 58
1.0
0

0.62

Sum 200 300 444 25 237 40 36
128
2

Overall Accuracy 0.89

Kappa (Cohen, 1960) 0.86

SI 2.3. Error Matrix for 2000

Reference

P
re

d
ic

ti
o

n

Gallery
Forest

Thicke
t

Woodlan
d

Sparsely
vegetate
d

Grasslan
d

Farmlan
d

Bare
areas

Sum PA UA

Gallery
Forest

194 0 0 0 0 0 0 194
0.9
5

1.00

Thicket 2 307 0 0 0 0 0 309
1.0
0

0.99

Woodlan
d

0 0 667 2 6 0 14 689
0.9
8

0.97

Sparsely
vegetated

0 0 7 114 5 0 8 134
0.7
9

0.85

Grassland 0 0 6 16 425 0 7 454
0.9
6

0.94

Farmland 8 0 0 0 0 89 0 97
1.0
0

0.92

Bare
areas

0 0 0 13 6 0 21 40
0.4
2

0.53

Sum 204 307 680 145 442 89 50
191
7

Overall Accuracy 0.95

Kappa (Cohen, 1960) 0.93
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SI 2.4. Error Matrix for 2010

Reference

P
re

d
ic

ti
o

n

Gallery
Forest

Thicket
Woodlan
d

Sparsely
vegetate
d

Grasslan
d

Farmlan
d

Bare
areas

Sum PA UA

Gallery
Forest

259 50 0 0 0 0 0 309 0.97 0.84

Thicket 8 167 19 0 0 12 2 208 0.73 0.80

Woodland 1 7 474 39 71 0 10 602 0.86 0.79

Sparsely
vegetated

0 0 18 9 0 0 28 55 0.15 0.16

Grassland 0 0 38 12 105 0 0 155 0.60 0.68

Farmland 0 4 0 0 0 64 0 68 0.84 0.94

Bare areas 0 0 0 1 0 0 36 37 0.47 0.97

Sum 268 228 549 61 176 76 76 1434

Overall Accuracy 0.78

Kappa (Cohen, 1960) 0.71

SI 2.5. Error Matrix for 2017

Reference

P
re

d
ic

ti
o

n

Gallery
Forest

Thicket
Woodlan
d

Sparsely
vegetate
d

Grasslan
d

Farmlan
d

Bare
areas

Sum PA UA

Gallery
Forest

372 0 0 0 0 2 0 374 0.99 0.99

Thicket 3 118 0 0 0 0 0 121 1.00 0.98

Woodlan
d

0 0 817 6 1 0 9 833 0.99 0.98

Sparsely
vegetated

0 0 1 60 3 0 1 65 0.85 0.92

Grassland 0 0 1 3 281 0 4 289 0.99 0.97

Farmland 2 0 0 0 0 66 0 68 0.97 0.97

Bare
areas

0 0 8 2 0 0 35 45 0.71 0.78

Sum 377 118 827 71 285 68 49 1795

Overall Accuracy 0.97

Kappa (Cohen, 1960) 0.96

40


	Contextualizing land use and land cover change with local knowledge: a case study from Pokot Central, Kenya
	Abstract
	Introduction
	Study area
	Methods
	Focus group discussions
	Training and validation of remote sensing data
	Image Classification
	Change detection

	Results
	Land use and land cover classes
	Image classification and change detection
	Drivers of change

	Discussion
	Conclusion
	Acknowledgements
	Conflict of interest
	References
	Tables
	Figure legends
	Supplementary Information

