
Response of soil aggregate disintegration to the different content of

organic carbon and its fractions during splash erosion

Abstract

Aggregate disintegration is a critical process in soil splash erosion. However,

the  effect  of  soil  organic  carbon  (SOC)  and  its  fractions  on  soil  aggregates

disintegration is still  not clear.  In this study, five soils with similar  physical and

chemical properties and different contents of SOC have been used. The effects of

slaking  and  mechanical  striking  on  splash  erosion  were  distinguished  by  using

deionized water and 95% ethanol as raindrops. The simulated rainfall experiments

were carried out in four heights (0.5, 1.0, 1.5, and 2.0 m). The result indicated that

the soil aggregate stability increased with the increases of SOC and light fraction

organic  carbon  (LFOC).  The  relative  slaking  and  the  mechanical  striking  index

increased with the decreases of SOC and LFOC. The reduction of macroaggregates

in eroded soil gradually decreased with the increase of SOC and LFOC, especially in

alcohol test.  The amount of macroaggregates (>0.25mm) in deionized water tests

were significantly less than that in alcohol tests under the same rainfall heights. The

contribution  of  slaking  to  splash  erosion  increased  with  the  decrease  of  heavy

fractions  organic  carbon  (HFOC).  The  contribution  of  mechanical  striking  was

dominant when the rainfall kinetic energy increased to a range of threshold between

9 J m-2 mm-1 and 12 m-2 mm-1. This study could provide the scientific basis for deeply

understanding the mechanism of soil aggregates disintegration and splash erosion.

1. Introduction

Splash erosion is an initial stage and an important component of interrill erosion

(Kinnell,  2005;  Van  Dijk, Meesters,  &  Bruijnzeel,  2002). The  aggregate

fragmentation  caused  by  raindrops  striking  is  the  first  critical  process  in  splash
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erosion  (Legout, Leguedois,  Le  Bissonnais,  &  Lssa,  2005;  Shainberg, Levy,

Rengasamy, & Frenkel, 1992). Many studies have showed that raindrops striking can

damage the soil structure, disperse and transport soil particles, thereby reducing soil

permeability. The amount of soil particles splashed increases with the speed at which

the raindrop hits the ground (Moss & Green, 1987). Fu et al. (2017) found that there

are significant exponential relations between the distance of splash and the size of

raindrops. Xiao et al. (2017) reported that the contribution of slaking decreasing with

the increased of the  rainfall kinetic energy in splash, and that the contribution of

mechanical striking was opposite. It was also found that the soil texture plays vital

role in soil  aggregates disintegration during splash erosion when the soil  organic

carbon (SOC) was low (Xiao et al., 2018).

Soil  aggregate  stability  is  a  crucial  physical  indicator  that  determine

disintegration resistance in soil erosion process, it determines the resistance of the

soil  to  erosion (Barthes  & Roose,  2002;  Bronick & Lal, 2005;  Nichols &  Toro,

2011). The SOC plays an important role in formation of aggregates (Reeves, 1997;

Smith  & Petersen,  2000; Tisdall  & Oades,  1982).  Furthermore,  the  physical

protection of aggregates is one of the main stabilizing mechanisms of SOC (Feller &

Beare, 1997; Li & Pang, 2014; Tisdall & Oades, 1982). Emerson (1967) found that

90% of SOC in the topsoil was in aggregates. Six et al. (1998; 2004) reported that

the SOC is one of the most important cementing materials in aggregates. Tisdall and

Oades  (1982)  proposed  the  soil  aggregate  theoretical  model,  which  states  that

microaggregate is an important precondition to form macroaggregate.

In order to distinguish the influence of  SOC on the formation of aggregates,

some researchers used physical or chemical methods to classify SOC into different

components (Barrios, Buresh, & Sprent, 1996; Dhillon & Van Rees, 2017; Guan et

al, 2018;  Six,  Paustian, Elliott, & Combrink, 2000; Xiang,  Zhang, & Wen, 2015).
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Density  fractionation  of  SOC is  a  common  way to  separate  the  SOC into  light

fraction  organic  carbon  (LFOC)  and  heavy  fraction  organic  carbon  (HFOC)

(Christensen, 1992; Turchenek & Oades, 1979; Wagai, 2009). The LFOC was labile

fractions  that  represent  an  intermediate  organic  carbon  pool  between  humified

organic matter and undecomposed residues (Janzen, Campbell, Brandt, Lafond, &

Townley Smith, 1992). The HFOC was stable that has lower carbon concentrations

and slow decomposition rate  and transformation rate (Golchin, Clarke,  Oades,  &

Skjemstad,  1995a;  Golchin & Oades,  1995b; Hassink,  1995;  John, Yamashita,

Ludwig, & Flessa, 2005). Oades (1984) and Elliott (1986) found that the roots and

the fungal hyphae in LFOC can promote the formation of aggregates directly. These

studies focused on the formation process of aggregates or the influences of different

components of organic carbon on the particle size of aggregates (Guan et al., 2018;

Holeplass, Singh, & Lal, 2004; Xiang et al., 2015). However, the role of SOC and its

fractions in inhibiting the destruction of aggregates during splash erosion is still not

clear.

The purposes  of  this  study were (i)  to  explore the influence of  SOC and its

fractions on the disintegration of aggregates; (ii) to quantify the effects of SOC on

contribution of slaking and mechanical striking to splash erosion.

2. Materials and methods

2.1 Study area and sampling

Five soils were collected from Fuxian (36°03′~36°04′N,  109°08′~109°09′E) in

Shaanxi province, China. The soils with distinct SOC contents, due to different years

after conversion from cropland to forestry, were selected. The sampling areas belong

to hilly and gully regions of the Loess Plateau and the main soil type is loessial soil.

The average annual temperature and precipitation in this area are 9℃ and 576 mm,

respectively. The main types of land use were forest.  The vegetation was mainly
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Ulmus pumila, Betula platyphlla, Prunus, Populus davidiana and so on.

Soil  samples  were  collected  from  the  uppermost  20 cm  layer, air-dried  and

sieved  through  a  5 mm sieve  to  remove  roots  and  gravels. The  basic  physical-

chemical properties of the soils in the experiment are showed in Table 1.

2.2 Experimental design

The rainfall device  is  composed of three parts, including rainfall liquid  supply,

raindrop generation and supporting frame (Figure  1). The  raindrop  generation part

was a cylinder with diameter of 30 cm which is made from smooth steel. Thirty-nine

rainfall needles with a diameter of 0.6 mm were evenly distributed on the bottom of

the cylinder. The fall height was controlled by adjusting the height of the supporting

frame. Splash pan is an inverted cone device with an outer ring (30 cm diameter on

top, 10 cm diameter on bottom, and 30 cm in height)  and  an  inner ring (10 cm

diameter and 10 cm in height) in the middle. Some small holes were drilled on the

bottom of inner ring for drainage. The outer ring and the inner ring were connected

to a smooth slope. An outlet was installed at the end of slope for water and sediment

collection. The detailed description of rainfall device can be found in Xiao et al.

(2017, 2018).

Before packing soil in the inner ring, the ring bottom was filled with some gravel

with diameters of  1-2 cm to ensure free drainage. Then a  filter paper was covered

over  the  gravel and air-dried soil was packed  over  the paper. The packed soil was

about 1.5 cm thick with bulk density of 1.20 g cm-3 and initial soil water content of

5%. The duration of simulated rainfall was 10 mins with an intensity of 60 mm h -1.

The kinetic energy was simulated at four different rainfall heights, 0.5 m, 1.0 m, 1.5

m and 2.0 m. Each treatment replicated twice. The splashed soil sticking on the wall

of outer ring and slope  was washed out with an injector, and then collected at the

outlet. The  collected  sediment  was  dried  and  weighted.  After  test,  the  remained
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topsoil of 0.5 cm thick in the splash pan was collected to measure the water stable

aggregates after air-dried.

Non-uniform  swelling of  soil  minerals  after  wetting  has  limited  damage  to

aggregates in  rainfall  conditions  (Almajmaie, Hardie,  Acuna,  & Birch,  2017;  Le

Bissonnais, 1996). At the same time, the loessal parent material of the test soils was

the  least  swelling  mineral.  Therefore,  the  destruction  of  soil  aggregates  by  non-

uniform swelling after soil mineral wetting was  neglected in short duration of this

study. The aggregates disintegration was mainly  caused by slaking and mechanical

striking (Xiao et al., 2017; 2018). The aggregates disintegration by 95% ethanol was

resulted mainly from the mechanical striking because of the limited slaking effects

of  ethanol.  Two raindrop  materials (deionized  water  and ethanol),  were  used  to

distinguish the slaking and mechanical striking.

2.3 Measurement

Soil particle size distribution, pH value, and soil organic carbon were analyzed

by  a  pipette  method (Liu,  1996),  the  Rex  Electric  Chemical  PHS-3E  precision

acidity  meter  (Shanghai  Precision Scientific  Instrument  Co.,  Ltd,  China)  and the

potassium dichromate oxidation-external heating method, respectively (Liu, 1996).

The content of CaCO3 was determined by using a gas volume method (Dreimanis,

1962; Zhao et al., 2016). The macroaggregate (>0.25 mm) measurement adopted the

wet sieving method improved  by Yoder (1936).  The  light and heavy fractions  of

organic carbon were separated in NaI solution with the density of 1.7 g cm-3 (Elliott,

1991).

LB method was used to measure the aggregate stability under three treatments:

fast wetting (FW), slow wetting (SW) and mechanical breakdown by slaking after

pre-wetting (WS) (Le Bissonnais, 1996). The soil samples were air dried and 3-5

mm aggregates were selected. The 3-5mm aggregates are dried in a 40 ℃ oven for
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24 hours to ensure they are at the same matrix potential. Then the aggregates were

treated in three different treatments. FW: the aggregates of 5 g were immersed in 50

mL deionized water, and the water was absorbed by pipette after 10 minutes. SW:

the aggregates with 5 g were gently placed on the matric potential of -0.3 kPa for 30

minutes to ensure that the aggregates were wetted completely. SW: the aggregates of

5 g were immersed in 50 mL ethanol (95% in mass), and the ethanol was absorbed

by pipette after 10 minutes.  And then transferred the aggregates to a 250 mL flask

filled with 200 cm3 deionized water, corked and stirred up and down for 20 times,

and the water was absorbed by pipette after 30 minutes. Transfer the soil aggregates

from the above three treatments to a sieve (0.05 mm) already immersed in alcohol

(95% in mass) and shake up and down 20 times. The aggregate retained in the sieve

was baked for 48 hours in the oven at 40 ℃. The dried aggregate was passed through

the dry sieve of 3, 2, 1, 0.5, 0.25, 0.1 and 0.05 mm, and then measured for their size.

Each treatment is repeated three times.

Aggregate stability is expressed in terms of mean weight diameter (MWD).

                          (1)

where wi is the weight fraction of aggregates in size class i with an average diameter

xi.

2.4 Data analysis

The relative slaking index (RSI) and the relative mechanical breakdown index

(RMI) were used to evaluate the sensitivity of aggregates to slaking and mechanical

breakdown effects (Zhang & Horn, 2001).

                                           (2)
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                                           (3)

where MWDFW, MWDWS, and MWDSW are the mean weight diameter obtained by

the FW, WS, and SW treatments, respectively (Le Bissonnais, 1996). The larger of

RSI  or  RMI,  the  higher  sensitivity  of  the  aggregates  to  slaking  or  mechanical

breakdown.

The splash erosion rate was the splashed-out soil mass from the test area per unit

area per unit time, which can be calculated with Eq. (4):

                                                   (4)

where D is the splash erosion rate (g m-2 min-1), S is the mass of the splashed material

(g), A is the test area (m2) and t is the duration of the rain (min).

The rainfall kinetic energy was calculated by referring to the formula in Xiao et

al. (2017; 2018). Alcohol and deionized water have different rainfall kinetic energy

due to their characteristics. The raindrop parameters and rainfall kinetic energy are

shown in Table 2.

All statistical analyses were performed by using Excel 2010 and SPSS 19.0. Soil

aggregate stability indexes were analyzed with a variance analysis (ANOVA), and

the others with the Pearson correlation analysis (i.e., splash erosion rate, contribution

of slaking and mechanical striking, etc.).

3. Results

3.1 Aggregate stability indexes

The aggregate stability indexes for the five soils are shown in  Figure 2. The

MWDFW, MWDWS and MWDSW ranged from 0.612 to 2.389, from 1.202 to 3.262,

and from 1.935 to 3.367, respectively. The MWD values increased with the increase
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of SOC contents. The aggregate stability values increased in the order of MWDSW

>MWDWS >MWDFW for  the  five  soils.  It  showed  that  the  effect  of  chemical

dispersion  (SW)  was  the  weakest  of  aggregate  breakdown mechanisms,  whereas

slaking  (FW)  had  the  most  effect  on  aggregate  breakdown.  The  RSI  and  RMI

decreased from 0.698 to 0.293, and from 0.325 to 0.033 with the increase of SOC,

respectively. The value of RSI was larger than that of RMI for the five soils.

Figure 3 indicated  that  MWDFW, MWDWS and MWDSW  had significant positive

correlations with SOC contents, but no significant positive correlation with  LFOC

and HFOC. They  were negatively correlated with clay and the content of CaCO3.

MWDFW,  MWDWS and MWDSW  had no significant  positive  relationships  with the

contents of free-form Fe, amorphous Fe, free-form Al and amorphous Al. RSI and

RMI had significant  negative  correlations  with  the  contents  of  SOC and  LFOC,

while they had no significant corrections with free-form Fe, amorphous Fe, free-

form Al and amorphous Al contents.

3.2 Splash erosion rate 

Splash erosion rate increased with the increase of rainfall kinetic energy for both

deionized water and alcohol raindrops  (Figure  4). The relationships for  five soils

could be described by power functions, and the coefficient of determination (R2) was

higher than 0.94 for both deionized water and ethanol tests (Table 3). The coefficient

of power function can serve as an indicator  of erosion severity with higher values

reflecting higher soil erodibility.

The splash erosion rate has no significant negative correlations with SOC and

HFOC in both deionized water and ethanol tests (Table 4). The negative and positive

correlations were found between splash erosion rate and LFOC in deionized water

and ethanol tests, respectively. An exception was that the negative correlation was

found for ethanol tests in 1.5 m rainfall height. Meanwhile, compared with SOC and
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HFOC, LFOC had weaker relations with splash erosion rate in deionized water tests.

3. 3 Macroaggregates

The macroaggregate (>0.25mm) contents remained in splash pan after rainfall in

ethanol  tests  were  more  than  that  in  deionized  water  tests  (Figure  5).  The

macroaggregate contents for eroded soils were less than those of the parent soil for

both deionized water and ethanol tests. However, the macroaggregate contents were

increasingly  closer to  the  parent  soil  with  the  increase  of  soil  organic  carbon

contents,  and  the trend  was  more  obvious  in  ethanol  tests.  The  macroaggregate

contents decreased with the increase of kinetic energy in both deionized water and

ethanol  tests,  whereas  the  kinetic  energy  had  no  such  significant  effects  in the

ethanol tests except for soil sample IV.

The positive correlations were found between the macroaggregate contents and

SOC, LFOC and HFOC in deionized water tests (Table 4). The correlations between

macroaggregate and HFOC were weaker than those of SOC and LFOC. However,

there were no significant correlations between them in ethanol tests.

3.4 Effects of slaking and mechanical striking on splash erosion

Figure  6 showed that the contribution rate of slaking and mechanical  striking

decreased from 75% to 25% and increased from 25% to 75% with the increase of

rainfall kinetic energy, respectively. Meanwhile, when the rainfall kinetic energy was

less than the range of critical values (between 9 J m-2 mm-1 and 12 J m-2 mm-1), the

contribution of slaking has dominant impact on aggregates disintegration. When the

rainfall kinetic energy was greater than the range of critical values, the contribution

of mechanical striking to splash erosion is gradually greater than that of slaking.

Table  4 indicated that the contribution rate of slaking had negative correlations

with SOC contents when the kinetic energy increased from 3 to 12 J m-2 mm-1, and it

had  positive correlations when the kinetic energy changed between  15 to  18 J m-2
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mm-1. With the increase of the kinetic energy, the correlation coefficient decreased

from  -0.774 to  0.061.  There  were  no  significant  correlations  between  the

contribution rate of slaking and LFOC, meanwhile the correlation coefficient had an

increasing trend with the increase of the kinetic energy. The correlations between

contribution rate of slaking and HFOC was significantly negative when the kinetic

energy increased from 3 to 6 J m-2 mm-1. The correlation coefficient decreased from

0.900 to 0.671 with the increase of kinetic energy.

4. Discussion

Generally, soil  clay, SOC, CaCO3, and Fe/Al oxides act as cementing agents

that affect the formation and stability of aggregates (An, Darboux, & Cheng, 2013;

Dimoyiannis, 2012;  Le Bissonnais., 1996;  Le Bissonnais &  Arrouays, 1997). The

aggregate stability had significant positive correlation with  SOC but not with  the

contents of clay, CaCO3, and Fe/Al oxides (Figure 3). In this study, SOC acted as the

main factor affecting the aggregate stability because the test soils had the similar

contents  of  clay,  CaCO3,  and  Fe/Al  oxides  (Table  1).  The SOC and LFOC had

significantly negative correlations with RSI and RMI, illustrating that the sensitivity

of  slaking and  mechanical  striking decreased with increases of  SOC and LFOC.

Therefore,  SOC,  especially  the  LFOC,  played  an  important  role  in  resisting

disintegration  of  aggregates.  The  formation  of  soil  aggregate  relies on  organic

materials, and the  organic binding agents were mainly  polysaccharides, roots and

fungal hyphae, strongly sorbed natural polymers, and so on (Sdall & Oades, 1982).

The roots and fungal in composition of LFOC could promote the formation of soil

aggregate directly (Elliott, 1986; Oades, 1984). Thus, the aggregate stability and the

organic binding agents increased with the content of LFOC.

The power function relationships between splash erosion rate and rainfall kinetic

energy is consistent with the conclusions of the previous researchers (Hu, Zhen, &
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Bian, 2016; Sharma, Gupta, & Rawls, 1991; Xiao et al., 2017; 2018).  There was a

tendency that splash erosion rate  was negatively correlated with SOC, LFOC and

HFOC for  both  deionized water  and ethanol tests. However, the correlations were

not statistically significant. This could be caused by the relatively narrow ranges of

SOC,  LFOC and  HFOC  used  in  this  study,  or  splash  erosion  might  be  not  as

sensitive to SOC and LFOC as the aggregate sensitivity to slaking and mechanical

breakdown effects.

Raindrops  hit  the  soil  surface with  a  certain  kinetic  energy,  which  is  often

sufficient to breakdown soil aggregates and compact the soil surface (Moss & Green,

1987).  The  deionized  water  raindrops  had  both  slaking  and  mechanical  striking

effects on aggregate disintegration,  whereas alcohol only had mechanical  striking

effects (Le Bissonnais, 1996). On the other hand, the kinetic energy of deionized

water raindrops was greater than that of ethanol raindrops  at the same fall height

(Table 2). These results lead to the destructive capacity of deionized water raindrops

were greater than that of ethanol.

The  mechanical  striking  of  raindrops  on  soil  could  be  greatly  reduced  by

vegetation cover (Lal,  1976; Adekalu, Olorunfemi,  & Osunbitan,  2007; Kukal  &

Sarkar,  2010). However,  vegetation  could  promote  the  accumulation  of  SOC,

especially the LFOC in short  term (Boone, 1994; Garcia,  Hemanderz,  Roldan, &

Martin, 2002; Gil-Sotres, Trasar-Cepeda, Leiros, & Seoane, 2005). That resulted in

the  increase  of  aggregate  stability  (Figure  2),  and  counteracted  the  increase  of

slaking contribution. Finally, vegetation coverage could improve soil antierodibility

by reducing both slaking and mechanical striking effects of raindrops.

There are some limitations for testing five soils developed from only one parent.

The effects of SOC on soil aggregates disintegration may be different for  different

soil types due to interactive effects of other factors. Furthermore, the coupled effects
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of  other  factors  in  aggregate  breakdown  during  splash  erosion  also  need  to  be

researched in the future.

5. Conclusions

In this study, the simulated rainfall experiments for five soils with different SOC

were  carried  out.  The  results  indicated  that  the  content  of  SOC and  LFOC had

substantial effects on aggregate stability.  The RSI and RMI decreased as SOC and

LFOC increased. The  amount  of  macroaggregates  in  deionized  water  tests  were

significantly  less  than  that  in  alcohol  tests  under  the  same rainfall  heights.  The

reduction of macroaggregates in eroded soil gradually decreased with the increase of

SOC and LFOC, especially in alcohol test. As the rainfall kinetic energy increased,

the  contribution  of  slaking  to  soil  splash  decreased  while  the  contribution  of

mechanical striking increased. The range of critical values between 9 J m-2 mm-1 and

12 J m-2 mm-1 were found to determine the dominated contribution of slaking and

mechanical striking to splash erosion.

Data sharing: Research data are not shared.
Conflict of interest: none
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Tables

Tab.1 Basic physical-chemical properties of five test soils in the experiments

Soil
samples

Year of
vegetation

restoration /
a

Longitude
and latitude

Clay /
%

Silt /
%

Sand 
/%

CaCO3/
g kg-1

Soil
moisture
content/

% 

Soil
organic
carbon/
g kg-1

Light
fractions
of soil
organic
carbon/
g kg-1

Heavy
fractions
of soil
organic
carbon/
g kg-1

pH
(1:2.5)

Free-form

Fe/g kg-1

Amorphous

Fe/g kg-1

Free-form

Al/g kg-1

Amorphous

Al/g kg-1

I 3
N36°03.61′,

E109°08.99′
22.36 21.16 56.48 81.09 2.46 7.54 5.89 1.68 8.51 5.10 0.48 1.57 0.58

II 20
N36°03.60′,

E109°09.03′
23.54 25.23 51.23 82.53 1.18 13.34 10.45 2.86 8.36 7.91 0.45 0.73 1.17

III 100
N36°04.94′,

E109°08.71′
20.18 29.63 50.20 77.63 0.72 14.85 9.83 4.99 8.42 8.93 0.64 0.56 1.31

IV 80
N36°03.68′,

E109°08.87′
21.05 18.06 60.88 76.76 1.30 18.39 15.70 2.66 8.25 6.16 0.81 1.87 1.63

V 55
N36°03.85′,

E109°08.78′
22.12 15.84 62.04 79.98 0.92 21.69 17.88 3.78 8.37 4.66 0.39 1.70 0.44
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Tab. 2 Rainfall kinetic energy for different fall heights

Liquid Fall height/m
Time for 10

raindrops/s

Weight of 10

raindrops/g

Mean raindrop

diameter/mm

Rainfall kinetic

energy/J m-2 mm-1

Deionized

water

0.5 9.91 0.09 2.62 1.77

1.0 9.91 0.09 2.63 6.15

1.5 9.91 0.09 2.62 12.06

2.0 9.92 0.09 2.63 18.75

Ethanol

0.5 6.45 0.04 2.03 1.49

1.0 6.23 0.04 2.03 5.00

1.5 6.34 0.04 2.03 8.90

2.0 6.29 0.04 2.03 13.06
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Tab. 3 Nonlinear regression between rainfall kinetic energy and splash erosion rate in simulated rainfall tests by using deionized water and

ethanol as raindrop

Number of

soil

samples

Deionized water

raindrop
R² Ethanol raindrop R²

I D = 1.1959 e1.15 0.97 D = 0.3055 e1.38 0.98

II D = 2.2951 e0.89 0.99 D = 0.5391 e1.27 0.99

III D = 0.7207 e1.18 0.99 D = 0.2026 e1.51 0.98

IV D = 1.8037 e1.03 0.97 D = 0.5753 e1.19 0.94

V D = 0.6303 e1.26 0.99 D = 0.2111 e1.41 0.96

Notes: D is the soil splash rate (g m−2 min−1) and e is the rainfall kinetic energy (J m−2 mm−1)
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Tab. 4 Pearson correlation coefficients between soil organic carbon and its fractions related to the splash erosion rate, contribution of slaking and

macroaggregates (>0.25mm) contents

Splash erosion rate
Contribution of slaking

Macroaggregates (>0.25mm) contents

Deionized water Ethanol Deionized water Ethanol

D0.5 D1.0 D1.5 D2.0 D0.5 D1.0 D1.5 D2.0 C3 C6 C9 C12 C15 C18 W0.5 W1.0 W1.5 W2.0 W0.5 W1.0 W1.5 W2.0

SOC -0.251 -0.270 -0.310 -0.513 -0.036 -0.031 -0.502 -0.026 -0.774 -0.334 -0.126 -0.005 0.016 0.061 0.632 0.429 0.616 0.656 0.083 0.036 -0.144 -0.016

LFOC -0.158 -0.086 -0.131 -0.363 0.095 0.056 -0.490 0.120 -0.623 -0.129 0.072 0.188 0.201 0.245 0.616 0.431 0.606 0.619 0.177 -0.129 -0.072 0.050

HFOC -0.468 -.0822 -0.818 -0.791 -0.525 -0.353 -0.263 -0.576 -0.900* -0.918* -0.802 -0.733 -0.692 -0.671 0.316 0.163 0.289 0.408 -0.328 -0.349 -0.343 -0.267

Note: D0.5, D1.0, D1.5, D2.0 is splash erosion rate at different fall heights (0.5m, 1.0m, 1.5m and 2.0m), respectively; C3, C6, C9, C12, C15  and C18 is the contribution of slaking in different rainfall kinetic

energy (3, 6, 9, 12, 15 and 18 J m-2 mm-1), respectively. SOC, LFOC and HFOC is soil organic carbon, light fractions organic carbon and heavy fractions organic carbon content, respectively. W 0.5, W1.0,

W1.5 and W2.0 is the contents of >0.25mm water stable aggregates at different heights (0.5m, 1.0m, 1.5m and 2.0m).

* Significant at 0.05 level of probability.
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Figure captions
Figure 1. Schematic representation of the experiment device

Figure 2. Aggregates water-stability of five loessial soils developed from same parent

material with different soil organic carbon (SOC) contents. The SOC contents of

I ,  I I ,  I I I ,  I V ,  a n d  V  i s  7 . 5 4 ,  1 3 . 3 4 ,  1 4 . 8 5 ,  1 8 . 3 9 ,  2 1 . 6 9  g  k g - 1 ,  r e s p e c t i v e l y .

Di f fe ren t  l e t t e r s  i n  the  same  se t  o f  da t a  o f  the  same co lo r  i nd ica te  s ign i f i can t

differences at 5% level.

Figure 3. Heatmap for the relationships between soil aggregate stability indexes and

s o i l  p r o p e r t i e s .  M W DF W,  M W DS W a n d  M W DW S d e n o t e  t h e  m e a n  w e i g h t

d i am e t e r s  ob t a i n ed  a f t e r  t h e  f a s t - w e t t i ng  ( F W ) ,  p r e - w e t t i n g  an d  s t i r r i ng  ( WS )

and slow wetting (SW), respectively; RSI and RMI denote relative slaking index

and relative mechanical breakdown index, respectively; SOC, LFOC and HFOC

denote  so i l  o rgan ic  ca rbon ,  l igh t  f r ac t i ons  o rgan ic  ca rbon  and  heavy  f rac t i ons

organic carbon content, respectively.

Figure 4. Relationships between rainfall kinetic energy of two kind of raindrops (A is

deionized water; B is ethanol) and splash erosion rate. I, II, III, IV and V were

f i v e  d i f f e r e n t  t e s t e d  s o i l s ,  w h i c h  w e r e  d e v e l o p e d  f r o m  t h e  s a m e  l o e s s  w i t h

similar physicochemical properties and different organic carbon content because

of different vegetation restoration time.

F i g u r e  5 .  T h e  c o n t e n t s  o f  m a c r o a g g r e g a t e s  ( > 0 . 2 5 m m )  i n  p a r e n t  s o i l  a n d  t o p s o i l

remained in splash pan after rainfall at different height (0.5, 1.0, 1.5, and 2.0 m)

with different raindrops (A is deionized water; B is ethanol). Different letters in

the same group of each soil  sample indicate significant differences at  the 0.05
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level.

Figure  6.  Changes  of  contr ibut ion ra te  of  s laking and mechanical  s t r iking (S is  the

contribution rate of slaking; M is the contribution rate of mechanical striking) to

splash erosion with rainfall kinetic energy. I, II, III, IV and V were five different

t e s t e d  s o i l s ,  w h i c h  w e r e  d e v e l o p e d  f r o m  t h e  s a m e  l o e s s  w i t h  s i m i l a r

p h y s i c o c h e m i c a l  p r o p e r t i e s  a n d  d i f f e r e n t  o r g a n i c  c a r b o n  c o n t e n t  b e c a u s e  o f

different vegetation restoration time.
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