References
1.Devereux G. The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol. 2006;6(11):869–874.
2. Pawankar R. Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J [Internet]. 2014;7(1):12.
3. Upton MN, McConnachie A, McSharry C, Hart CL, Smith GD, Gillis CR, et al. Intergenerational 20 year trends in the prevalence of asthma and hay fever in adults: the Midspan family study surveys of parents and offspring. BMJ [Internet]. 2000;321(7253):88–92.
4. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med [Internet]. 2012;18(5):693–704.
5. Galli SJ, Kalesnikoff J, Grimbaldeston M a, Piliponsky AM, Williams CMM, Tsai M. Mast Cells as “Tunable” Effector and Immunoregulatory Cells : Recent Advances. Annu Rev Immunol. 2005;23:749–786.
6. Finkelman FD, Khodoun M V, Strait R. Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol [Internet]. 2016 Jun 1;137(6):1674–80.
7. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature [Internet]. 2008;454(7203):445–54.
8. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol [Internet]. 2008 Mar [cited 2014 Mar 19];8(3):205–127.
9. Conrad DH, Ford JW, Sturgill JL, Gibb DR. CD23: An overlooked regulator of allergic disease. Curr Allergy Asthma Rep [Internet]. 2007;7(5):331–3177.
10. Acharya M, Borland G, Edkins a L, Maclellan LM, Matheson J, Ozanne BW, et al. CD23/FcεRII: molecular multi-tasking. Clin Exp Immunol [Internet]. 2010 Oct [cited 2014 Mar 25];162(1):12–23.
11. Schwarzmeier JD, Hubmann R, Düchler M, Jäger U, Shehata M. Regulation of CD23 expression by Notch2 in B-cell chronic lymphocytic leukemia. Leuk Lymphoma [Internet]. 2005 Jan 1;46(2):157–165.
12. Fournier S, Rubio M, Delespesse G, Sarfati M. Role for low-affinity receptor for IgE (CD23) in normal and leukemic B-cell proliferation. Blood. 1994;84(6):1881–1886.
13. Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, et al. C-Type Lectin Receptor CD23 Is Required for Host Defense against Candida albicans and Aspergillus fumigatus Infection. J Immunol [Internet]. 2018;ji1800620.
14. Zhao X, Guo Y, Jiang C, Chang Q, Zhang S, Luo T, et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med [Internet]. 2017;23(3):337–346.
15. Jégouzo SAF, Feinberg H, Morrison AG, Holder A, May A, Huang Z, et al. CD23 is a glycan-binding receptor in some mammalian species. J Biol Chem. 2019;294(41):14845–14859.
16. Kijimoto-Ochiai S. CD23 (the low-affinity IgE receptor) as a C-type lectin: a multidomain and multifunctional molecule. Cell Mol Life Sci C [Internet]. 2002;59(4):648–64. Available from: https://doi.org/10.1007/s00018-002-8455-8461
17. Mossalayi MD, Vouldoukis I, Mamani-Matsuda M, Kauss T, Guillon J, Maugein J, et al. CD23 mediates antimycobacterial activity of human macrophages. Infect Immun [Internet]. 2009 Dec [cited 2014 Jul 21];77(12):5537–5542.
18. Wang TT, Maamary J, Tan GS, Bournazos S, Davis CW, Krammer F, et al. Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy. Cell [Internet]. 2015;162(1):160–169.
19. Maamary J, Wang TT, Tan GS, Palese P, Ravetch J V. Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization. Proc Natl Acad Sci [Internet]. 2017;201707950.
20. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch J V. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci [Internet]. 2013 Jun 11;110(24):9868 LP – 9872.
21. Platzer B, Ruiter F, van der Mee J, Fiebiger E. Soluble IgE receptors - elements of the IgE network. Immunol Lett. 2012;141(1):36–44.
22. Sarfati M, Chevret S, Chastang C, Biron G, Stryckmans P, Delespesse G, et al. Prognostic importance of serum soluble CD23 level in chronic lymphocytic leukemia. Blood [Internet]. 1996;88(11):4259–4264.
23. Boccafogli a, Vicentini L, Lambertini D, Scolozzi R. Soluble CD23 is increased in allergy. Allergy [Internet]. 1997 Apr 29;52(3):357–8. Available from: https://doi.org/10.1111/j.1398-9995.1997.tb01009.x
24. Moura RA, Quaresma C, Vieira AR, Gonçalves MJ, Polido-Pereira J, Romão V, et al. A2.12 Increased CXCR5 B cell expression, CXCL13 and SCD23 serum levels in untreated early rheumatoid arthritis patients support B cell activation since the initial phase of the disease. Ann Rheum Dis [Internet]. 2016 Feb 1;75(Suppl 1):A20 LP-A20.
25. Rezzonico R, Chicheportiche R, Imbert V, Dayer J-M. Engagement of CD11b and CD11c β2 integrin by antibodies or soluble CD23 induces IL-1β production on primary human monocytes through mitogen-activated protein kinase–dependent pathways. Blood [Internet]. 2000 Jun 15;95(12):3868 LP – 3877.
26. Lecoanet-Henchoz S, Gauchat J-F, Aubry J-P, Graber P, Life P, Paul-Eugene N, et al. CD23 Regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity [Internet]. 1995;3(1):119–125.
27. Lecoanet-Henchoz S, Plater-Zyberk C, Graber P, Gretener D, Aubry JP, Conrad DH, et al. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18. Eur J Immunol. 1997;27(9):2290–2294.
28. Sun PD. Human CD23: Is It a Lectin in Disguise? Structure. 2006;14(6):950–951.
29. Delespesse G, Sarfati M, Wu CY, Fournier S, Letellier M. The Low-Affinity Receptor for IgE. Immunol Rev [Internet]. 1992 Feb 1;125(1):77–97.
30. Borland G, Edkins AL, Acharya M, Matheson J, White LJ, Allen JM, et al. alphavbeta5 integrin sustains growth of human Pre-B cells through an RGD-independent interaction with a basic domain of the CD23 protein. J Biol Chem. 2007;282(37):27315–2726.
31. Yokota A, Kikutani H, Tanaka T, Sato R, Barsumian EL, Suemura M, et al. Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell [Internet]. 1988 Nov 18;55(4):611–18.
32. Weskamp G, Ford JW, Sturgill J, Martin S, Docherty AJP, Swendeman S, et al. ADAM10 is a principal “sheddase” of the low-affinity immunoglobulin E receptor CD23. Nat Immunol. 2006;7(12):1293–1298.
33. Lemieux GA, Blumenkron F, Yeung N, Zhou P, Williams J, Grammer AC, et al. The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10. J Biol Chem [Internet]. 2007/03/27. 2007 May 18;282(20):14836–14844.
34. Sutton BJ, Davies AM. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol Rev. 2015;268(1):222–235.
35. Holdom MD, Davies AM, Nettleship JE, Bagby SC, Dhaliwal B, Girardi E, et al. Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcεRI. Nat Struct Mol Biol [Internet]. 2011;18(5):571–576.
36. Wurzburg BA, Garman SC, Jardetzky TS. Structure of the human IgE-Fc C epsilon 3-C epsilon 4 reveals conformational flexibility in the antibody effector domains. Immunity [Internet]. 2000;13(3):375–385.
37. Borthakur S, Hibbert RG, Pang MOY, Yahya N, Bax HJ, Kao MW, et al. Mapping of the CD23 binding site on immunoglobulin E(IgE) and allosteric control of the IgE-FceRI interaction. J Biol Chem. 2012;287(37):31457–31461.
38. Dhaliwal B, Pang MOY, Yuan D, Yahya N, Fabiane SM, McDonnell JM, et al. Conformational plasticity at the IgE-binding site of the B-cell receptor CD23. Mol Immunol [Internet]. 2013;56(4):693–697.
39. Dhaliwal B, Pang MOY, Keeble AH, James LK, Gould HJ, McDonnell JM, et al. IgE binds asymmetrically to its B cell receptor CD23. Sci Rep [Internet]. 2017;7(November 2016):45533.
40. Aubry J-P, Pochon S, Graber P, Jansen KU, Bonnefoy J-Y. CD21 is a ligand for CD23 and regulates IgE production. Nature [Internet]. 1992 Aug 6;358:505.
41. Hibbert RG, Teriete P, Grundy GJ, Beavil RL, Reljic R, Holers VM, et al. The structure of human CD23 and its interactions with IgE and CD21. J Exp Med. 2005;202(6):751–60.
42. Aubry JP, Pochon S, Gauchat JF, Nueda-Marin A, Holers VM, Graber P, et al. CD23 interacts with a new functional extracytoplasmic domain involving N-linked oligosaccharides on CD21. J Immunol [Internet]. 1994 Jun 15;152(12):5806 LP – 5813.
43. Kilmon MA, Ghirlando R, Strub MP, Beavil RL, Gould HJ, Conrad DH. Regulation of IgE production requires oligomerization of CD23. J Immunol. 2001 Sep;167(6):3139–45.
44. Munoz O, Brignone C, Grenier-Brossette N, Bonnefoy J-Y, Cousin J-L. Binding of Anti-CD23 Monoclonal Antibody to the Leucine Zipper Motif of FcεRII/CD23 on B Cell Membrane Promotes Its Proteolytic Cleavage: EVIDENCE FOR AN EFFECT ON THE OLIGOMER/MONOMER EQUILIBRIUM . J Biol Chem [Internet]. 1998 Nov 27;273(48):31795–800.
45. Selb R, Eckl-Dorna J, Neunkirchner A, Schmetterer K, Marth K, Gamper J, et al. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells. J Allergy Clin Immunol. 2015;139(1):290–9.
46. Reginald K, Eckl-Dorna J, Zafred D, Focke-Tejkl M, Lupinek C, Niederberger V, et al. Different modes of IgE binding to CD23 revealed with major birch allergen, Bet v 1-specific monoclonal IgE. Immunol Cell Biol [Internet]. 2013 Feb 1;91(2):167–72.
47. Engeroff P, Caviezel F, Mueller D, Thoms F, Bachmann MF, Vogel M. CD23 provides a noninflammatory pathway for IgE-allergen complexes. J Allergy Clin Immunol [Internet]. 2020 Jan 1;145(1):301-311.e4. Available from: https://doi.org/10.1016/j.jaci.2019.07.045
48. Brostoff J, Carini C, Wraith DG, Johns P. PRODUCTION OF IgE COMPLEXES BY ALLERGEN CHALLENGE IN ATOPIC PATIENTS AND THE EFFECT OF SODIUM CROMOGLYCATE. Lancet [Internet]. 1979;313(8129):1268–70.
49. Brostoff J, Johns Dennis P, Stanworth R. COMPLEXED IgE IN ATOPY. Lancet [Internet]. 1977;310(8041):741–2.:
50. Jensen-Jarolim E, Vogel M, de Weck AL, Stadler BM. Anti-IgE autoantibodies mistaken for specific IgG. J Allergy Clin Immunol [Internet]. 1992 Jan 1 [cited 2018 Jun 13];89(1):31–43. https://www.sciencedirect.com/science/article/pii/S0091674905800387?via%3Dihub
51. Bracken SJ, Adami AJ, Rafti E, Schramm CM, Matson AP. Regulation of IgE activity in inhalational tolerance via formation of IgG anti-IgE/IgE immune complexes. Clin Mol Allergy [Internet]. 2018;16(1):13.
52. Chan Y-C, Ramadani F, Santos AF, Pillai P, Ohm-Laursen L, Harper CE, et al. “Auto-anti-IgE”: Naturally occurring IgG anti-IgE antibodies may inhibit allergen-induced basophil activation. J Allergy Clin Immunol [Internet]. 2014 Dec 1 [cited 2018 Jun 13];134(6):1394-1401.e4.
53. Shakib F, Powell-Richards A. Elucidation of the Epitope Locations of Human Autoanti-IgE: Recognition of Two Epitopes Located within the Cε2 and the Cε4 Domains. Int Arch Allergy Immunol [Internet]. 1991;95(2–3):102–8.
54. Meulenbroek LAPM, de Jong RJ, den Hartog Jager CF, Monsuur HN, Wouters D, Nauta AJ, et al. IgG Antibodies in Food Allergy Influence Allergen − Antibody Complex Formation and Binding to B Cells: A Role for Complement Receptors. J Immunol. 2013;191(7):3526–33.
55. Shamji MH, Kappen J, Abubakar-Waziri H, Zhang J, Steveling E, Watchman S, et al. Nasal allergen-neutralizing IgG4 antibodies block IgE-mediated responses: Novel biomarker of subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol [Internet]. 2019;143(3):1067–76.
56. Wachholz PA, Kristensen Soni N, Till SJ, Durham SR. Inhibition of allergen-IgE binding to B cells by IgG antibodies after grass pollen immunotherapy. J Allergy Clin Immunol [Internet]. 2003;112(5):915–22.
57. Shamji MH, Wilcock LK, Wachholz PA, Dearman RJ, Kimber I, Wurtzen PA, et al. The IgE-facilitated allergen binding (FAB) assay: Validation of a novel flow-cytometric based method for the detection of inhibitory antibody responses. J Immunol Methods [Internet]. 2006;317(1):71–9.
58. Payet M, Conrad DH. IgE regulation in CD23 knockout and transgenic mice. Allergy Eur J Allergy Clin Immunol. 1999;54(11):1125–9.
59. Payet-Jamroz M, Helm SLT, Wu J, Kilmon M, Fakher M, Basalp A, et al. Suppression of IgE Responses in CD23-Transgenic Animals Is Due to Expression of CD23 on Nonlymphoid Cells. J Immunol [Internet]. 2001 Apr 15;166(8):4863 LP – 4869.
60. Yu P, Kosco-Vilbois M, Richards M, Köhler G, Lamers MC. Negative feedback regulation of IgE synthesis by murine CD23. Nature. 1994;369(6483):753–6.
61. Flores-Romo L, Shields J, Humbert Y, Graber P, Aubry JP, Gauchat JF, et al. Inhibition of an in vivo antigen-specific IgE response by antibodies to CD23. Science (80- ) [Internet]. 1993 Aug 20;261(5124):1038 LP – 1041.
62. Fellmann, M., Buschor, P., Röthlisberger, S., Zellweger, F. Vogel M, Fellmann M, Buschor P, Röthlisberger S, Zellweger F, Vogel M. High affinity targeting of CD23 inhibits IgE synthesis in human B cells. Immunity, Inflamm Dis [Internet]. 2015;3(4):339–49.
63. Cooper AM, Hobson PS, Jutton MR, Kao MW, Drung B, Schmidt B, et al. Soluble CD23 Controls IgE Synthesis and Homeostasis in Human B Cells. 2012;188(7):3199–207.
64. Schulz O, Sutton BJ, Beavil RL, Shi J, Sewell HF, Gould HJ, et al. Cleavage of the low-affinity receptor for human IgE (CD23) by a mite cysteine protease: Nature of the cleaved fragment in relation to the structure and function of CD23. Eur J Immunol. 1997;27(3):584–8.
65. McCloskey N, Hunt J, Beavil RL, Jutton MR, Grundy GJ, Girardi E, et al. Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis in human B cells. J Biol Chem. 2007;282(33):24083–91.
66. Cheng LE, Wang Z-E, Locksley RM. Murine B Cells Regulate Serum IgE Levels in a CD23-Dependent Manner. J Immunol [Internet]. 2010;185(9):5040–7.
67. Jabs F, Plum M, Laursen NS, Jensen RK, Mølgaard B, Miehe M, et al. Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcϵRI interaction. Nat Commun [Internet]. 2018;9(1).
68. Yokota A, Yukawa K, Yamamoto A, Sugiyama K, Suemura M, Tashiro Y, et al. Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc Natl Acad Sci U S A. 1992;89(11):5030–4.
69. Peng W, Grobe W, Walgenbach-Brünagel G, Flicker S, Yu C, Sylvester M, et al. Distinct Expression and Function of FcεRII in Human B Cells and Monocytes. J Immunol [Internet]. 2017;1601028.
70. Chan M a, Gigliotti NM, Matangkasombut P, Gauld SB, Cambier JC, Rosenwasser LJ. CD23-mediated cell signaling in human B cells differs from signaling in cells of the monocytic lineage. Clin Immunol [Internet]. 2010 Dec [cited 2014 Oct 20];137(3):330–6.
71. Ten RM, McKinstry MJ, Trushin S a, Asin S, Paya C V. The signal transduction pathway of CD23 (Fc epsilon RIIb) targets I kappa B kinase. J Immunol [Internet]. 1999 Oct 1;163(7):3851–7.
72. Gosset P, Tillie-Leblond I, Oudin S, Parmentier O, Wallaert B, Joseph M, et al. Production of chemokines and proinflammatory and antiinflammatory cytokines by human alveolar macrophages activated by IgE receptors. J Allergy Clin Immunol [Internet]. 1999;103(2):289–97.
73. Liu C, Richard K, Wiggins M, Zhu X, Conrad DH, Song W. CD23 can negatively regulate B-cell receptor signaling. Sci Rep [Internet]. 2016;6(May):25629.
74. Engeroff P, Fellmann M, Yerly D, Bachmann MF, Vogel M. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation. J Allergy Clin Immunol. 2018;142(2):557–68.
75. Karagiannis SN, Warrack JK, Jennings KH, Murdock PR, Christie G, Moulder K, et al. Endocytosis and recycling of the complex between CD23 and HLA-DR in human B cells. Immunology [Internet]. 2001 Jul;103(3):319–31.
76. Hjelm F, Karlsson MCI, Heyman B. A novel B cell-mediated transport of IgE-immune complexes to the follicle of the spleen. J Immunol. 2008;180(10):6604–10.
77. Ding Z, Dahlin JS, Xu H, Heyman B, Heyman B, Heyman B, et al. IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8α− conventional dendritic cells. Sci Rep [Internet]. 2016;6(February):28290.
78. Xu H, van Mechelen L, Henningsson F, Heyman B. Antigen conjugated to anti-CD23 antibodies is rapidly transported to splenic follicles by recirculating B cells. Scand J Immunol [Internet]. 2014 Oct 30 [cited 2014 Nov 5];
79. Tu Y, Salim S, Bourgeois J, Di Leo V, Irvine EJ, Marshall JK, et al. CD23-Mediated IgE Transport Across Human Intestinal Epithelium: Inhibition by Blocking Sites of Translation or Binding. Gastroenterology [Internet]. 2005 Sep 1;129(3):928–40.
80. Palaniyandi S, Tomei E, Li Z, Conrad DH, Zhu X. CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. J Immunol [Internet]. 2011 Mar 15 [cited 2014 May 8];186(6):3484–96.
81. Yang P-C, Berin MC, Yu LCH, Conrad DH, Perdue MH. Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcεRII). J Clin Invest [Internet]. 2000 Oct 1;106(7):879–86.
82. Bevilacqua C, Montagnac G, Benmerah A, Candalh C, Brousse N, Cerf-Bensussan N, et al. Food Allergens Are Protected from Degradation during CD23-Mediated Transepithelial Transport. Int Arch Allergy Immunol [Internet]. 2004;135(2):108–16.
83. Li H, Chehade M, Liu W, Xiong H, Mayer L, Berin MC. Allergen-IgE Complexes Trigger CD23-Dependent CCL20 Release From Human Intestinal Epithelial Cells. Gastroenterology [Internet]. 2007;133(6):1905–15.
84. Getahun A, Hjelm F, Heyman B. IgE enhances antibody and T cell responses in vivo via CD23+ B cells. J Immunol. 2005;175(3):1473–82.
85. van der Heijden FL, Joost van Neerven RJ, van Katwijk M, Bos JD, Kapsenberg ML. Serum-IgE-facilitated allergen presentation in atopic disease. J Immunol. 1993;150(8 Pt 1):3643–50.
86. Holm J, Willumsen N, Würtzen PA, Christensen LH, Lund K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J Allergy Clin Immunol [Internet]. 2011;127(4):1029–37.
87. van Neerven RJ, Wikborg T, Lund G, Jacobsen B, Brinch-Nielsen A, Arnved J, et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J Immunol [Internet]. 1999;163(5):2944–52.
88. Villazala-Merino S, Rodriguez-Dominguez A, Stanek V, Campion NJ, Gattinger P, Hofer G, et al. Allergen-specific IgE levels and ability of IgE-allergen complexes to cross-link determine extent of CD23-mediated T cell activation. J Allergy Clin Immunol [Internet]. 2019;
89. Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik K-O, et al. IgE-Mediated Enhancement of CD4+ T Cell Responses in Mice Requires Antigen Presentation by CD11c+ Cells and Not by B Cells. PLoS One [Internet]. 2011 Jul 6;6(7):e21760.
90. Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, et al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol. 2007;120(6):1418–24.
91. Qazi KR, Gehrmann U, Domange Jordö E, Karlsson MCI, Gabrielsson S. Antigen-loaded exosomes alone induce Th1-type memory through a B cell–dependent mechanism. Blood [Internet]. 2009 Mar 19;113(12):2673–83.
92. Mathews JA, Gibb DR, Chen B-H, Scherle P, Conrad DH. CD23 Sheddase A disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes. J Biol Chem [Internet]. 2010 Nov 26 [cited 2014 Mar 25];285(48):37531–41.
93. Padro CJ, Shawler TM, Gormley MG, Sanders VM. Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes. J Immunol [Internet]. 2013 Dec 1 [cited 2014 Oct 6];191(11):5383–97.
94. Martin RK, Brooks KB, Henningsson F, Heyman B, Conrad DH. Antigen Transfer from Exosomes to Dendritic Cells as an Explanation for the Immune Enhancement Seen by IgE Immune Complexes. PLoS One [Internet]. 2014;9(10):e110609.
95. Palaniyandi S, Liu X, Periasamy S, Ma A, Tang J, Jenkins M, et al. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of allergic airway inflammation. Mucosal Immunol [Internet]. 2015;8(6):1262–74.
96. Cernadas M, De Sanctis GT, Krinzman SJ, Mark DA, Donovan CE, Listman JA, et al. CD23 and Allergic Pulmonary Inflammation: Potential Role as an Inhibitor. Am J Respir Cell Mol Biol [Internet]. 1999 Jan 1;20(1):1–8. Available from: https://doi.org/10.1165/ajrcmb.20.1.3299
97. HACZKU A, TAKEDA K, HAMELMANN E, OSHIBA A, LOADER J, JOETHAM A, et al. CD23 Deficient Mice Develop Allergic Airway Hyperresponsiveness Following Sensitization with Ovalbumin. Am J Respir Crit Care Med [Internet]. 1997 Dec 1;156(6):1945–55.
98. Jutel M, Agache I, Bonini S, Burks AW, Calderon M, Canonica W, et al. International consensus on allergy immunotherapy. J Allergy Clin Immunol. 2015;136(3):556–68.
99. Jutel M, Agache I, Bonini S, Burks AW, Calderon M, Canonica W, et al. International Consensus on Allergen Immunotherapy II: Mechanisms, standardization, and pharmacoeconomics. J Allergy Clin Immunol. 2016;137(2):358–68.
100. Jutel M, Akdis CA. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol. 2011;66(6):725–32.
101. Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol. 2011;127(1):18–27.
102. Gasser P, Eggel A. Targeting IgE in allergic disease. Curr Opin Immunol [Internet]. 2018;54:86–92.
103. Lanier B, Bridges T, Kulus M, Taylor F, Berhane I. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic ( IgE-mediated ) asthma. J Allergy Clin Immunol [Internet]. 124(6):1210–6.
104. Strunk RC, Bloomberg GR. Omalizumab for Asthma. N Engl J Med [Internet]. 2006 Jun 22;354(25):2689–95.
105. Pennington LF, Tarchevskaya S, Brigger D, Sathiyamoorthy K, Graham MT, Nadeau KC, et al. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat Commun [Internet]. 2016;7(May):11610. A
106. Gauvreau GM, Arm JP, Boulet L-PP, Leigh R, Cockcroft DW, Davis BE, et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol [Internet]. 2016;138(4):1051–9.
107. Gasser P, Tarchevskaya SS, Guntern P, Brigger D, Ruppli R, Zbären N, et al. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun [Internet]. 2020;11(1).
108. Chen J-B, Ramadani F, Pang MOY, Beavil RL, Holdom MD, Mitropoulou AN, et al. Structural basis for selective inhibition of immunoglobulin E-receptor interactions by an anti-IgE antibody. Sci Rep [Internet]. 2018;8(1):11548.
109. Shiung Y-Y, Chiang C-Y, Chen J-B, Wu PC, Hung AF-H, Lu DC-S, et al. An anti-IgE monoclonal antibody that binds to IgE on CD23 but not on high-affinity IgE.Fc receptors. Immunobiology [Internet]. 2012;217(7):676–83.
110. Poole J a, Meng J, Reff M, Spellman MC, Rosenwasser LJ. Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J Allergy Clin Immunol [Internet]. 2005 Oct [cited 2014 Mar 25];116(4):780–8.