References
Abedini, F., Ebrahimi, M., & Hosseinkhani, H. (2018). Technology of RNA
Interference in Advanced Medicine. MicroRNA, 7 (2), 74-84.
doi:10.2174/2211536607666180129153307
Adiseshaiah, P. P., Crist, R. M., Hook, S. S., & McNeil, S. E. (2016).
Nanomedicine strategies to overcome the pathophysiological barriers of
pancreatic cancer. Nat Rev Clin Oncol, 13 (12), 750-765.
doi:10.1038/nrclinonc.2016.119
Adler, A. F., & Leong, K. W. (2010). Emerging links between surface
nanotechnology and endocytosis: Impact on nonviral gene delivery.Nano Today, 5 (6), 553-569.
doi:https://doi.org/10.1016/j.nantod.2010.10.007
Aghamiri, S., Jafarpour, A., Gomari, M. M., Ghorbani, J., Rajabibazl,
M., & Payandeh, Z. (2019). siRNA nanotherapeutics: a promising strategy
for anti-HBV therapy. IET Nanobiotechnology, 13 (5), 457-463.
doi:10.1049/iet-nbt.2018.5286
Aghamiri, S., Jafarpour, A., Malekshahi, Z. V., Mahmoudi Gomari, M., &
Negahdari, B. (2019). Targeting siRNA in colorectal cancer therapy:
Nanotechnology comes into view. Journal of Cellular Physiology,
234 (9), 14818-14827. doi:10.1002/jcp.28281
Aghamiri, S., Jafarpour, A., & Shoja, M. (2019). Effects of silver
nanoparticles coated with anti-HER2 on irradiation efficiency of SKBR3
breast cancer cells. IET Nanobiotechnology, 13 (8), 808-815.
https://digital-library.theiet.org/content/journals/10.1049/iet-nbt.2018.5258
Aghamiri, S., Mehrjardi, K. F., Shabani, S., Keshavarz-Fathi, M.,
Kargar, S., & Rezaei, N. (2019). Nanoparticle-siRNA: a potential
strategy for ovarian cancer therapy? Nanomedicine, 14 (15),
2083-2100. doi:10.2217/nnm-2018-0379
Aslan, M., Shahbazi, R., Ulubayram, K., & Ozpolat, B. J. A. r. (2018).
Targeted Therapies for Pancreatic Cancer and Hurdles Ahead.38 (12), 6591-6606.
Banerjee, S., & Saluja, A. K. (2018). A Theranostic Approach to Target
Gastrin in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol,
6 (1), 117-118.e111. doi:10.1016/j.jcmgh.2018.04.002
Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011).
Perineural invasion and associated pain in pancreatic cancer.Nature Reviews Cancer, 11 , 695. doi:10.1038/nrc3131
Behlke, M. A. (2008). Chemical Modification of siRNAs for In Vivo Use.Oligonucleotides, 18 (4), 305-320. doi:10.1089/oli.2008.0164
Biscans, A., Rouanet, S., Bertrand, J.-R., Vasseur, J.-J., Dupouy, C.,
& Debart, F. (2015). Synthesis, binding, nuclease resistance and
cellular uptake properties of 2′-O-acetalester-modified oligonucleotides
containing cationic groups. Bioorganic & Medicinal Chemistry,
23 (17), 5360-5368. doi:https://doi.org/10.1016/j.bmc.2015.07.054
Burks, J., Nadella, S., Mahmud, A., Mankongpaisarnrung, C., Wang, J.,
Hahm, J.-I., . . . Smith, J. P. (2018). Cholecystokinin
Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis
of Pancreatic Cancer. Cellular and Molecular Gastroenterology and
Hepatology, 6 (1), 17-32.
doi:https://doi.org/10.1016/j.jcmgh.2018.02.013
Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura,
M., . . . Kataoka, K. (2011). Accumulation of sub-100 nm polymeric
micelles in poorly permeable tumours depends on size. Nature
Nanotechnology, 6 (12), 815-823. doi:10.1038/nnano.2011.166
Cabral, H., Murakami, M., Hojo, H., Terada, Y., Kano, M. R., Chung,
U.-i., . . . Kataoka, K. (2013). Targeted therapy of spontaneous murine
pancreatic tumors by polymeric micelles prolongs survival and prevents
peritoneal metastasis. Proceedings of the National Academy of
Sciences, 110 (28), 11397. doi:10.1073/pnas.1301348110
Chen, K., Li, Z., Jiang, P., Zhang, X., Zhang, Y., Jiang, Y., . . . Li,
X. (2014). Co-expression of CD133, CD44v6 and human tissue factor is
associated with metastasis and poor prognosis in pancreatic carcinoma.Oncol Rep, 32 (2), 755-763. doi:10.3892/or.2014.3245
Chernikov, I. V., Vlassov, V. V., & Chernolovskaya, E. L. (2019).
Current Development of siRNA Bioconjugates: From Research to the Clinic.Frontiers in Pharmacology, 10 (444). doi:10.3389/fphar.2019.00444
Chiu, Y.-L., & Rana, T. M. (2002). RNAi in Human Cells: Basic
Structural and Functional Features of Small Interfering RNA.Molecular Cell, 10 (3), 549-561.
doi:https://doi.org/10.1016/S1097-2765(02)00652-4
CHIU, Y.-L., & RANA, T. M. (2003). siRNA function in RNAi: A chemical
modification analysis. RNA, 9 (9), 1034-1048.
doi:10.1261/rna.5103703
Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Itty Ipe,
B., . . . Frangioni, J. V. (2007). Renal clearance of quantum dots.Nature Biotechnology, 25 (10), 1165-1170. doi:10.1038/nbt1340
Cives, M., & Strosberg, J. R. (2018). Gastroenteropancreatic
Neuroendocrine Tumors. CA Cancer J Clin, 68 (6), 471-487.
doi:10.3322/caac.21493
Das, M., Musetti, S., & Huang, L. (2018). RNA Interference-Based Cancer
Drugs: The Roadblocks, and the “Delivery” of the Promise.Nucleic Acid Therapeutics, 29 (2), 61-66.
doi:10.1089/nat.2018.0762
Davis, M. E., Zuckerman, J. E., Choi, C. H. J., Seligson, D., Tolcher,
A., Alabi, C. A., . . . Ribas, A. (2010). Evidence of RNAi in humans
from systemically administered siRNA via targeted nanoparticles.Nature, 464 (7291), 1067-1070. doi:10.1038/nature08956
Davoodi, P., Lee, L. Y., Xu, Q., Sunil, V., Sun, Y., Soh, S., & Wang,
C.-H. (2018). Drug delivery systems for programmed and on-demand
release. Advanced Drug Delivery Reviews, 132 , 104-138.
doi:https://doi.org/10.1016/j.addr.2018.07.002
de la Fuente, M., Jones, M.-C., Santander-Ortega, M. J., Mirenska, A.,
Marimuthu, P., Uchegbu, I., & Schätzlein, A. (2015). A nano-enabled
cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer.Nanomedicine: Nanotechnology, Biology and Medicine, 11 (2),
369-377. doi:https://doi.org/10.1016/j.nano.2014.09.010
Demeure, M. J., Armaghany, T., Ejadi, S., Ramanathan, R. K., Elfiky, A.,
Strosberg, J. R., . . . Kowalski, M. M. (2016). A phase I/II study of
TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer
(ACC). J. Clin. Oncol., 34 .
Ding, N., Zou, Z., Sha, H., Su, S., Qian, H., Meng, F., . . . Liu, B.
(2019). iRGD synergizes with PD-1 knockout immunotherapy by enhancing
lymphocyte infiltration in gastric cancer. Nature Communications,
10 (1), 1336. doi:10.1038/s41467-019-09296-6
Dong, Y., Siegwart, D. J., & Anderson, D. G. (2019). Strategies,
design, and chemistry in siRNA delivery systems. Advanced Drug
Delivery Reviews, 144 , 133-147.
doi:https://doi.org/10.1016/j.addr.2019.05.004
Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafrański, O.,
Karnas, K., & Karewicz, A. (2019). Superparamagnetic Iron Oxide
Nanoparticles—Current and Prospective Medical Applications.12 (4), 617.
Duong, H. T. T., Jung, K., Kutty, S. K., Agustina, S., Adnan, N. N. M.,
Basuki, J. S., . . . Boyer, C. (2014). Nanoparticle (Star Polymer)
Delivery of Nitric Oxide Effectively Negates Pseudomonas aeruginosa
Biofilm Formation. Biomacromolecules, 15 (7), 2583-2589.
doi:10.1021/bm500422v
Dvorak, A. M., Kohn, S., Morgan, E. S., Fox, P., Nagy, J. A., & Dvorak,
H. F. (1996). The vesiculo-vacuolar organelle (VVO): a distinct
endothelial cell structure that provides a transcellular pathway for
macromolecular extravasation. Journal of Leukocyte Biology,
59 (1), 100-115. doi:10.1002/jlb.59.1.100
Elahi, F. M., Farwell, D. G., Nolta, J. A., & Anderson, J. D. (2019).
Preclinical translation of exosomes derived from mesenchymal
stem/stromal cells. STEM CELLS, 0 (0). doi:10.1002/stem.3061
Erkan, M., Hausmann, S., Michalski, C. W., Fingerle, A. A., Dobritz, M.,
Kleeff, J., & Friess, H. (2012). The role of stroma in pancreatic
cancer: diagnostic and therapeutic implications. Nature Reviews
Gastroenterology & Hepatology, 9 (8), 454-467.
doi:10.1038/nrgastro.2012.115
Fisher, M., Abramov, M., Van Aerschot, A., Rozenski, J., Dixit, V.,
Juliano, R. L., & Herdewijn, P. (2009). Biological effects of hexitol
and altritol-modified siRNAs targeting B-Raf. European Journal of
Pharmacology, 606 (1), 38-44.
doi:https://doi.org/10.1016/j.ejphar.2009.01.030
Fujita, N., Watanabe, S., Ichimura, T., Tsuruzoe, S., Shinkai, Y.,
Tachibana, M., . . . Nakao, M. (2003). Methyl-CpG Binding Domain 1
(MBD1) Interacts with the Suv39h1-HP1 Heterochromatic Complex for DNA
Methylation-based Transcriptional Repression. Journal of
Biological Chemistry, 278 (26), 24132-24138. doi:10.1074/jbc.M302283200
Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of
receptor-mediated endocytosis. Proceedings of the National Academy
of Sciences of the United States of America, 102 (27), 9469.
doi:10.1073/pnas.0503879102
Gao, Y., Liu, X.-L., & Li, X.-R. (2011). Research progress on siRNA
delivery with nonviral carriers. International journal of
nanomedicine, 6 , 1017-1025. doi:10.2147/IJN.S17040
Gibori, H., Eliyahu, S., Krivitsky, A., Ben-Shushan, D., Epshtein, Y.,
Tiram, G., . . . Satchi-Fainaro, R. (2018). Amphiphilic
nanocarrier-induced modulation of PLK1 and miR-34a leads to improved
therapeutic response in pancreatic cancer. Nature Communications,
9 (1), 16. doi:10.1038/s41467-017-02283-9
Godsey, M. E., Suryaprakash, S., & Leong, K. W. (2013). Materials
innovation for co-delivery of diverse therapeutic cargos. RSC
Advances, 3 (47), 24794-24811. doi:10.1039/C3RA43094D
Golan, T., Khvalevsky, E. Z., Hubert, A., Gabai, R. M., Hen, N., Segal,
A., . . . Galun, E. (2015). RNAi therapy targeting KRAS in combination
with chemotherapy for locally advanced pancreatic cancer patients.Oncotarget, 6 (27), 24560-24570. doi:10.18632/oncotarget.4183
Gustafson, H. H., Holt-Casper, D., Grainger, D. W., & Ghandehari, H.
(2015). Nanoparticle uptake: The phagocyte problem. Nano Today,
10 (4), 487-510. doi:https://doi.org/10.1016/j.nantod.2015.06.006
Habraken, W., Habibovic, P., Epple, M., & Bohner, M. (2016). Calcium
phosphates in biomedical applications: materials for the future?Materials Today, 19 (2), 69-87.
doi:https://doi.org/10.1016/j.mattod.2015.10.008
Han, Y., Ding, B., Zhao, Z., Zhang, H., Sun, B., Zhao, Y., . . . Ding,
Y. (2018). Immune lipoprotein nanostructures inspired relay drug
delivery for amplifying antitumor efficiency. Biomaterials, 185 ,
205-218. doi:https://doi.org/10.1016/j.biomaterials.2018.09.016
Hashemi Goradel, N., Ghiyami-Hour, F., Jahangiri, S., Negahdari, B.,
Sahebkar, A., Masoudifar, A., & Mirzaei, H. (2018). Nanoparticles as
new tools for inhibition of cancer angiogenesis. Journal of
Cellular Physiology, 233 (4), 2902-2910. doi:10.1002/jcp.26029
Hill, A. B., Chen, M., Chen, C.-K., Pfeifer, B. A., & Jones, C. H.
(2016). Overcoming Gene-Delivery Hurdles: Physiological Considerations
for Nonviral Vectors. Trends in Biotechnology, 34 (2), 91-105.
doi:https://doi.org/10.1016/j.tibtech.2015.11.004
Hoshika, S., Minakawa, N., Kamiya, H., Harashima, H., & Matsuda, A.
(2005). RNA interference induced by siRNAs modified with
4′-thioribonucleosides in cultured mammalian cells. FEBS Letters,
579 (14), 3115-3118. doi:10.1016/j.febslet.2005.04.073
Hoshika, S., Minakawa, N., Shionoya, A., Imada, K., Ogawa, N., &
Matsuda, A. (2007). Study of Modification Pattern–RNAi Activity
Relationships by Using siRNAs Modified with 4′-Thioribonucleosides.ChemBioChem, 8 (17), 2133-2138. doi:10.1002/cbic.200700342
Hu, J., Sheng, Y., Shi, J., Yu, B., Yu, Z., & Liao, G. (2018). Long
Circulating Polymeric Nanoparticles for Gene/Drug Delivery.Current Drug Metabolism, 19 (9), 723-738.
doi:10.2174/1389200219666171207120643
Hu, Q. L., Jiang, Q. Y., Jin, X., Shen, J., Wang, K., Li, Y. B., . . .
Li, Z. H. (2013). Cationic microRNA-delivering nanovectors with
bifunctional peptides for efficient treatment of PANC-1 xenograft model.Biomaterials, 34 (9), 2265-2276.
doi:https://doi.org/10.1016/j.biomaterials.2012.12.016
Huang, H., Li, J., Liao, L., Li, J., Wu, L., Dong, C., . . . Liu, D.
(2012). Poly(l-glutamic acid)-based star-block copolymers as
pH-responsive nanocarriers for cationic drugs. European Polymer
Journal, 48 (4), 696-704.
doi:https://doi.org/10.1016/j.eurpolymj.2012.01.011
Hui, Y., Yi, X., Hou, F., Wibowo, D., Zhang, F., Zhao, D., . . . Zhao,
C.-X. (2019). Role of Nanoparticle Mechanical Properties in Cancer Drug
Delivery. ACS Nano, 13 (7), 7410-7424. doi:10.1021/acsnano.9b03924
Ilic, M., & Ilic, I. (2016). Epidemiology of pancreatic cancer.World journal of gastroenterology, 22 (44), 9694-9705.
doi:10.3748/wjg.v22.i44.9694
Ittig, D., Schümperli, D., & Leumann, C. J. (2008). Tc-DNA modified
siRNA. Nucleic Acids Symposium Series, 52 (1), 501-502.
doi:10.1093/nass/nrn254
Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J.,
Guo, J., . . . Linsley, P. S. (2006). Position-specific chemical
modification of siRNAs reduces “off-target” transcript silencing.RNA, 12 (7), 1197-1205. doi:10.1261/rna.30706
Jahns, H., Roos, M., Imig, J., Baumann, F., Wang, Y., Gilmour, R., &
Hall, J. (2015). Stereochemical bias introduced during RNA synthesis
modulates the activity of phosphorothioate siRNAs. Nature
Communications, 6 (1), 6317. doi:10.1038/ncomms7317
Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., Kalia, K., & Tekade,
R. K. (2019). Employment of enhanced permeability and retention effect
(EPR): Nanoparticle-based precision tools for targeting of therapeutic
and diagnostic agent in cancer. Materials Science and Engineering:
C, 98 , 1252-1276. doi:https://doi.org/10.1016/j.msec.2019.01.066
Kami, K., Doi, R., Koizumi, M., Toyoda, E., Mori, T., Ito, D., . . .
Imamura, M. (2005). Downregulation of survivin by siRNA diminishes
radioresistance of pancreatic cancer cells. Surgery, 138 (2),
299-305. doi:https://doi.org/10.1016/j.surg.2005.05.009
Kamisawa, T., Wood, L. D., Itoi, T., & Takaori, K. (2016). Pancreatic
cancer. The Lancet, 388 (10039), 73-85.
doi:https://doi.org/10.1016/S0140-6736(16)00141-0
Khan, S., Ebeling, M. C., Zaman, M. S., Sikander, M., Yallapu, M. M.,
Chauhan, N., . . . Kumar, D. J. O. (2014). MicroRNA-145 targets MUC13
and suppresses growth and invasion of pancreatic cancer. 5 (17),
7599.
Khvorova, A., & Watts, J. K. (2017). The chemical evolution of
oligonucleotide therapies of clinical utility. Nature
Biotechnology, 35 (3), 238-248. doi:10.1038/nbt.3765
Kim, B., Park, J. H., & Sailor, M. J. (2019). Rekindling RNAi Therapy:
Materials Design Requirements for In Vivo siRNA Delivery. Adv
Mater , e1903637. doi:10.1002/adma.201903637
Kim, B. S., Chuanoi, S., Suma, T., Anraku, Y., Hayashi, K., Naito, M., .
. . Kataoka, K. (2019). Self-Assembly of siRNA/PEG-b-Catiomer at Integer
Molar Ratio into 100 nm-Sized Vesicular Polyion Complexes (siRNAsomes)
for RNAi and Codelivery of Cargo Macromolecules. Journal of the
American Chemical Society, 141 (8), 3699-3709. doi:10.1021/jacs.8b13641
Kim, H. A., Nam, K., & Kim, S. W. (2014). Tumor targeting RGD
conjugated bio-reducible polymer for VEGF siRNA expressing plasmid
delivery. Biomaterials, 35 (26), 7543-7552.
doi:10.1016/j.biomaterials.2014.05.021
Kleeff, J., Korc, M., Apte, M., La Vecchia, C., Johnson, C. D., Biankin,
A. V., . . . Neoptolemos, J. P. (2016). Pancreatic cancer. Nature
Reviews Disease Primers, 2 , 16022. doi:10.1038/nrdp.2016.22
Koide, H., Fukuta, T., Okishim, A., Ariizumi, S., Kiyokawa, C.,
Tsuchida, H., . . . Shea, K. J. (2019). Engineering the Binding Kinetics
of Synthetic Polymer Nanoparticles for siRNA Delivery.Biomacromolecules, 20 (10), 3648-3657.
doi:10.1021/acs.biomac.9b00611
Kulhari, H., Jangid, A. K., & Adams, D. J. (2019). Monoclonal
Antibody-Conjugated Dendritic Nanostructures for siRNA Delivery.Methods Mol Biol, 1974 , 195-201.
doi:10.1007/978-1-4939-9220-1_14
Kumar, P., Parmar, R. G., Brown, C. R., Willoughby, J. L. S., Foster, D.
J., Babu, I. R., . . . Manoharan, M. (2019). 5′-Morpholino modification
of the sense strand of an siRNA makes it a more effective passenger.Chemical Communications, 55 (35), 5139-5142.
doi:10.1039/C9CC00977A
Kumar, S., & Kim, J. (2015). PLK-1 Targeted Inhibitors and Their
Potential against Tumorigenesis. Biomed Res Int, 2015 , 705745.
doi:10.1155/2015/705745
Kumar, S., Sharma, A. R., Sharma, G., Chakraborty, C., & Kim, J.
(2016). PLK-1: Angel or devil for cell cycle progression. Biochim
Biophys Acta, 1865 (2), 190-203. doi:10.1016/j.bbcan.2016.02.003
Kurtanich, T., Roos, N., Wang, G., Yang, J., Wang, A., & Chung, E. J.
(2018). Pancreatic Cancer Gene Therapy Delivered by Nanoparticles.SLAS TECHNOLOGY: Translating Life Sciences Innovation, 24 (2),
151-160. doi:10.1177/2472630318811108
Kurtanich, T., Roos, N., Wang, G., Yang, J., Wang, A., & Chung, E. J.
J. S. T. T. L. S. I. (2019). Pancreatic Cancer Gene Therapy Delivered by
Nanoparticles. 24 (2), 151-160.
Lai, W.-F., & Wong, W.-T. (2018). Design of Polymeric Gene Carriers for
Effective Intracellular Delivery. Trends in Biotechnology, 36 (7),
713-728. doi:https://doi.org/10.1016/j.tibtech.2018.02.006
Lancet, J. E., Cortes, J. E., Hogge, D. E., Tallman, M. S., Kovacsovics,
T. J., Damon, L. E., . . . Feldman, E. J. (2014). Phase 2 trial of
CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs
cytarabine/daunorubicin in older adults with untreated AML. Blood,
123 (21), 3239-3246. doi:10.1182/blood-2013-12-540971
Langkjær, N., Pasternak, A., & Wengel, J. (2009). UNA (unlocked nucleic
acid): A flexible RNA mimic that allows engineering of nucleic acid
duplex stability. Bioorganic & Medicinal Chemistry, 17 (15),
5420-5425. doi:https://doi.org/10.1016/j.bmc.2009.06.045
Lei, Y., Tang, L., Xie, Y., Xianyu, Y., Zhang, L., Wang, P., . . .
Jiang, X. (2017). Gold nanoclusters-assisted delivery of NGF siRNA for
effective treatment of pancreatic cancer. Nature Communications,
8 (1), 15130. doi:10.1038/ncomms15130
Li, J., Chen, Y., Zeng, L., Lian, G., Chen, S., Li, Y., . . . Huang, K.
(2016). A Nanoparticle Carrier for Co-Delivery of Gemcitabine and Small
Interfering RNA in Pancreatic Cancer Therapy. Journal of
Biomedical Nanotechnology, 12 (8), 1654-1666. doi:10.1166/jbn.2016.2269
Lin, G., Hu, R., Law, W.-C., Chen, C.-K., Wang, Y., Li Chin, H., . . .
Yong, K.-T. (2013). Biodegradable Nanocapsules as siRNA Carriers for
Mutant K-Ras Gene Silencing of Human Pancreatic Carcinoma Cells.Small, 9 (16), 2757-2763. doi:10.1002/smll.201201716
Liu, X., Lin, P., Perrett, I., Lin, J., Liao, Y.-P., Chang, C. H., . . .
Meng, H. (2017). Tumor-penetrating peptide enhances transcytosis of
silicasome-based chemotherapy for pancreatic cancer. The Journal
of Clinical Investigation, 127 (5), 2007-2018. doi:10.1172/JCI92284
Lu, Z.-R., & Qiao, P. (2018). Drug Delivery in Cancer Therapy, Quo
Vadis? Molecular Pharmaceutics, 15 (9), 3603-3616.
doi:10.1021/acs.molpharmaceut.8b00037
Luo, G., Jin, C., Long, J., Fu, D., Yang, F., Xu, J., . . . Ni, Q.
(2009). RNA interference of MBD1 in BxPC-3 human pancreatic cancer cells
delivered by PLGA-poloxamer nanoparticles. Cancer Biol Ther,
8 (7), 594-598. doi:10.4161/cbt.8.7.7790
Maeda, H. (2015). Toward a full understanding of the EPR effect in
primary and metastatic tumors as well as issues related to its
heterogeneity. Advanced Drug Delivery Reviews, 91 , 3-6.
doi:https://doi.org/10.1016/j.addr.2015.01.002
Mahajan, U. M., Teller, S., Sendler, M., Palankar, R., van den Brandt,
C., Schwaiger, T., . . . Mayerle, J. (2016). Tumour-specific delivery of
siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted
against PLK1, stops progression of pancreatic cancer. Gut,
65 (11), 1838. doi:10.1136/gutjnl-2016-311393
Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-Based
Nanomaterials for Biomedical Applications: A Recent Study.Frontiers in pharmacology, 9 , 1401-1401.
doi:10.3389/fphar.2018.01401
Matsumoto, Y., Nichols, J. W., Toh, K., Nomoto, T., Cabral, H., Miura,
Y., . . . Kataoka, K. (2016). Vascular bursts enhance permeability of
tumour blood vessels and improve nanoparticle delivery. Nature
Nanotechnology, 11 , 533. doi:10.1038/nnano.2015.342
Meng, H., & Nel, A. E. (2018). Use of nano engineered approaches to
overcome the stromal barrier in pancreatic cancer. Advanced Drug
Delivery Reviews, 130 , 50-57.
doi:https://doi.org/10.1016/j.addr.2018.06.014
Min, H. S., Kim, H. J., Ahn, J., Naito, M., Hayashi, K., Toh, K., . . .
Kataoka, K. (2018). Tuned Density of Anti-Tissue Factor Antibody
Fragment onto siRNA-Loaded Polyion Complex Micelles for Optimizing
Targetability into Pancreatic Cancer Cells. Biomacromolecules,
19 (6), 2320-2329. doi:10.1021/acs.biomac.8b00507
Naeye, B., Deschout, H., Caveliers, V., Descamps, B., Braeckmans, K.,
Vanhove, C., . . . Raemdonck, K. (2013). In vivo disassembly of IV
administered siRNA matrix nanoparticles at the renal filtration barrier.Biomaterials, 34 (9), 2350-2358.
doi:https://doi.org/10.1016/j.biomaterials.2012.11.058
Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P.
D., & Wise, J. G. (2018). Targeted inhibitors of P-glycoprotein
increase chemotherapeutic-induced mortality of multidrug resistant tumor
cells. Scientific Reports, 8 (1), 967.
doi:10.1038/s41598-018-19325-x
Negahdari, B., Darvishi, M., & Saeedi, A. A. (2019). Gold nanoparticles
and hepatitis B virus. Artificial Cells, Nanomedicine, and
Biotechnology, 47 (1), 455-461. doi:10.1080/21691401.2018.1553786
Nielsen, P. E., Egholm, M., & Buchardt, O. (1994). Peptide nucleic acid
(PNA). A DNA mimic with a peptide backbone. Bioconjugate
Chemistry, 5 (1), 3-7. doi:10.1021/bc00025a001
Nikolaou, M., Pavlopoulou, A., Georgakilas, A. G., & Kyrodimos, E.
(2018). The challenge of drug resistance in cancer treatment: a current
overview. Clinical & Experimental Metastasis, 35 (4), 309-318.
doi:10.1007/s10585-018-9903-0
Oh, Y.-K., & Park, T. G. (2009). siRNA delivery systems for cancer
treatment. Advanced Drug Delivery Reviews, 61 (10), 850-862.
doi:https://doi.org/10.1016/j.addr.2009.04.018
Onoue, S., Yamada, S., & Chan, H.-K. (2014). Nanodrugs:
pharmacokinetics and safety. International journal of
nanomedicine, 9 , 1025-1037. doi:10.2147/IJN.S38378
Öztürk-Atar, K., Eroğlu, H., & Çalış, S. (2018). Novel advances in
targeted drug delivery. Journal of Drug Targeting, 26 (8),
633-642. doi:10.1080/1061186X.2017.1401076
Pan, X., Zhu, Q., Sun, Y., Li, L., Zhu, Y., Zhao, Z., . . . Li, K.
(2015). PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the
treatment of pancreatic cancer in vitro and in vivo. Int J Mol
Med, 35 (4), 995-1002. doi:10.3892/ijmm.2015.2096
Paris, J. L., Baeza, A., & Vallet-Regí, M. (2019). Overcoming the
stability, toxicity, and biodegradation challenges of tumor
stimuli-responsive inorganic nanoparticles for delivery of cancer
therapeutics. Expert Opinion on Drug Delivery, 16 (10), 1095-1112.
doi:10.1080/17425247.2019.1662786
Paryan, M., Tavakoli, R., Rad, S. M. A. H., Feizi, N., Kamani, F.,
Mostafavi, E., & Mohammadi-Yeganeh, S. (2016). Over-expression of
NOTCH1 as a biomarker for invasive breast ductal carcinoma. 3
Biotech, 6 (1), 58. doi:10.1007/s13205-016-0373-2
Perrault, S. D., Walkey, C., Jennings, T., Fischer, H. C., & Chan, W.
C. W. (2009). Mediating Tumor Targeting Efficiency of Nanoparticles
Through Design. Nano Letters, 9 (5), 1909-1915.
doi:10.1021/nl900031y
Pirollo, K. F., Rait, A., Zhou, Q., Hwang, S. H., Dagata, J. A., Zon,
G., . . . Chang, E. H. (2007). Materializing the Potential of Small
Interfering RNA via a Tumor-Targeting Nanodelivery System. Cancer
Research, 67 (7), 2938. doi:10.1158/0008-5472.CAN-06-4535
Pittella, F., Zhang, M., Lee, Y., Kim, H. J., Tockary, T., Osada, K., .
. . Kataoka, K. (2011). Enhanced endosomal escape of siRNA-incorporating
hybrid nanoparticles from calcium phosphate and PEG-block
charge-conversional polymer for efficient gene knockdown with negligible
cytotoxicity. Biomaterials, 32 (11), 3106-3114.
doi:https://doi.org/10.1016/j.biomaterials.2010.12.057
Potenza, N., Moggio, L., Milano, G., Salvatore, V., Di Blasio, B.,
Russo, A., & Messere, A. (2008). RNA interference in mammalia cells by
RNA-3’-PNA chimeras. Int J Mol Sci, 9 (3), 299-315.
Prakash, T. P., Kraynack, B., Baker, B. F., Swayze, E. E., & Bhat, B.
(2006). RNA interference by 2′,5′-linked nucleic acid duplexes in
mammalian cells. Bioorganic & Medicinal Chemistry Letters,
16 (12), 3238-3240. doi:https://doi.org/10.1016/j.bmcl.2006.03.053
Riley, R. S., June, C. H., Langer, R., & Mitchell, M. J. (2019).
Delivery technologies for cancer immunotherapy. Nature Reviews
Drug Discovery, 18 (3), 175-196. doi:10.1038/s41573-018-0006-z
Ripka, S., Neesse, A., Riedel, J., Bug, E., Aigner, A., Poulsom, R., . .
. Michl, P. (2010). CUX1: target of Akt signalling and mediator of
resistance to apoptosis in pancreatic cancer. Gut, 59 (8), 1101.
doi:10.1136/gut.2009.189720
Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E.,
& Gottesman, M. M. (2018). Revisiting the role of ABC transporters in
multidrug-resistant cancer. Nature Reviews Cancer, 18 (7),
452-464. doi:10.1038/s41568-018-0005-8
Rossi, M., De Laurenzi, V., Munarriz, E., Green, D. R., Liu, Y. C.,
Vousden, K. H., . . . Melino, G. (2005). The ubiquitin-protein ligase
Itch regulates p73 stability. Embo j, 24 (4), 836-848.
doi:10.1038/sj.emboj.7600444
Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of
nanomedicines. Journal of Controlled Release, 145 (3), 182-195.
doi:https://doi.org/10.1016/j.jconrel.2010.01.036
Samanta, K., Setua, S., Kumari, S., Jaggi, M., Yallapu, M. M., &
Chauhan, S. C. (2019). Gemcitabine Combination Nano Therapies for
Pancreatic Cancer. Pharmaceutics, 11 (11).
doi:10.3390/pharmaceutics11110574
Satoh, K., Kaneko, K., Hirota, M., Masamune, A., Satoh, A., &
Shimosegawa, T. (2001). Expression of survivin is correlated with cancer
cell apoptosis and is involved in the development of human pancreatic
duct cell tumors. Cancer, 92 (2), 271-278.
doi:10.1002/1097-0142(20010715)92:2<271::AID-CNCR1319>3.0.CO;2-0
Schlegel, M. K., Foster, D. J., Kel’in, A. V., Zlatev, I., Bisbe, A.,
Jayaraman, M., . . . Manoharan, M. (2017). Chirality Dependent Potency
Enhancement and Structural Impact of Glycol Nucleic Acid Modification on
siRNA. J Am Chem Soc, 139 (25), 8537-8546.
doi:10.1021/jacs.7b02694
Schultheis, B., Strumberg, D., Kuhlmann, J., Wolf, M., Link, K.,
Seufferlein, T., . . . Pelzer, U. (2018). Combination therapy with
gemcitabine and Atu027 in patients with locally advanced or metastatic
pancreatic adenocarcinoma - a Phase Ib/IIa study. Oncol. Res.
Treat., 41 , 64.
Sekine, M. (2018). Recent Development of Chemical Synthesis of RNA. In
S. Obika & M. Sekine (Eds.), Synthesis of Therapeutic
Oligonucleotides (pp. 41-65). Singapore: Springer Singapore.
Setua, S., Khan, S., Yallapu, M. M., Behrman, S. W., Sikander, M., Khan,
S. S., . . . Chauhan, S. C. (2017). Restitution of Tumor Suppressor
MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer
Therapy. Journal of Gastrointestinal Surgery, 21 (1), 94-105.
doi:10.1007/s11605-016-3222-z
Sheehan, D., Lunstad, B., Yamada, C. M., Stell, B. G., Caruthers, M. H.,
& Dellinger, D. J. (2003). Biochemical properties of phosphonoacetate
and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids
Research, 31 (14), 4109-4118. doi:10.1093/nar/gkg439
Shmushkovich, T., Monopoli, K. R., Homsy, D., Leyfer, D.,
Betancur-Boissel, M., Khvorova, A., & Wolfson, A. D. (2018). Functional
features defining the efficacy of cholesterol-conjugated,
self-deliverable, chemically modified siRNAs. Nucleic Acids
Research, 46 (20), 10905-10916. doi:10.1093/nar/gky745
Sipa, K., Sochacka, E., Kazmierczak-Baranska, J., Maszewska, M.,
Janicka, M., Nowak, G., & Nawrot, B. (2007). Effect of base
modifications on structure, thermodynamic stability, and gene silencing
activity of short interfering RNA. RNA, 13 (8), 1301-1316.
doi:10.1261/rna.538907
Smith, C. I. E., & Zain, R. (2019). Therapeutic Oligonucleotides: State
of the Art. 59 (1), 605-630.
doi:10.1146/annurev-pharmtox-010818-021050
Smith, S. A., Selby, L. I., Johnston, A. P. R., & Such, G. K. (2019).
The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular
Delivery. Bioconjugate Chemistry, 30 (2), 263-272.
doi:10.1021/acs.bioconjchem.8b00732
Somoza, A., Silverman, A. P., Miller, R. M., Chelliserrykattil, J., &
Kool, E. T. (2008). Steric Effects in RNA Interference: Probing the
Influence of Nucleobase Size and Shape. Chemistry – A European
Journal, 14 (26), 7978-7987. doi:10.1002/chem.200800837
Sousa, A. R., Oliveira, A. V., Oliveira, M. J., & Sarmento, B. (2019).
Nanotechnology-based siRNA delivery strategies for metastatic colorectal
cancer therapy. International Journal of Pharmaceutics, 568 ,
118530. doi:https://doi.org/10.1016/j.ijpharm.2019.118530
Strumberg, D., Schultheis, B., Meyer-Sabellek, W., Vank, C., Gebhardt,
F., Santel, A., . . . Drevs, J. (2012). Antimetastatic activity of
Atu027, a liposomal small interfering RNA formulation, targeting protein
kinase N3 (PKN3): Final results of a phase I study in patients with
advanced solid tumors. Journal of Clinical Oncology,
30 (15_suppl), e13597-e13597. doi:10.1200/jco.2012.30.15_suppl.e13597
Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R., Agemy,
L., Greenwald, D. R., & Ruoslahti, E. (2010). Coadministration of a
Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs.Science, 328 (5981), 1031. doi:10.1126/science.1183057
Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016).
PEGylation as a strategy for improving nanoparticle-based drug and gene
delivery. Advanced Drug Delivery Reviews, 99 , 28-51.
doi:https://doi.org/10.1016/j.addr.2015.09.012
Sun, Q., Barz, M., De Geest, B. G., Diken, M., Hennink, W. E.,
Kiessling, F., . . . Shi, Y. (2019). Nanomedicine and macroscale
materials in immuno-oncology. Chem Soc Rev, 48 (1), 351-381.
doi:10.1039/c8cs00473k
Sun, Y., Kang, C., Liu, F., Zhou, Y., Luo, L., & Qiao, H. (2017). RGD
Peptide-Based Target Drug Delivery of Doxorubicin Nanomedicine.Drug Dev Res, 78 (6), 283-291. doi:10.1002/ddr.21399
Suurs, F. V., Lub-de Hooge, M. N., de Vries, E. G. E., & de Groot, D.
J. A. (2019). A review of bispecific antibodies and antibody constructs
in oncology and clinical challenges. Pharmacology & Therapeutics,
201 , 103-119.
doi:https://doi.org/10.1016/j.pharmthera.2019.04.006
Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011).
Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog
pathways. Nature Reviews Clinical Oncology, 8 (2), 97-106.
doi:10.1038/nrclinonc.2010.196
Tao, W., Zhu, X., Yu, X., Zeng, X., Xiao, Q., Zhang, X., . . . Mei, L.
(2017). Black Phosphorus Nanosheets as a Robust Delivery Platform for
Cancer Theranostics. Advanced Materials, 29 (1), 1603276.
doi:10.1002/adma.201603276
Teo, J., McCarroll, J. A., Boyer, C., Youkhana, J., Sagnella, S. M.,
Duong, H. T. T., . . . Phillips, P. A. (2016). A Rationally Optimized
Nanoparticle System for the Delivery of RNA Interference Therapeutics
into Pancreatic Tumors in Vivo. Biomacromolecules, 17 (7),
2337-2351. doi:10.1021/acs.biomac.6b00185
Terrazas, M., & Kool, E. T. (2008). RNA major groove modifications
improve siRNA stability and biological activity. Nucleic Acids
Research, 37 (2), 346-353. doi:10.1093/nar/gkn958
Vester, B., & Wengel, J. (2004). LNA (Locked Nucleic Acid):
High-Affinity Targeting of Complementary RNA and DNA.Biochemistry, 43 (42), 13233-13241. doi:10.1021/bi0485732
Wang, J., Lu, Z., Wang, J., Cui, M., Yeung, B. Z., Cole, D. J., . . .
Au, J. L. S. (2015). Paclitaxel tumor priming promotes delivery and
transfection of intravenous lipid-siRNA in pancreatic tumors.Journal of Controlled Release, 216 , 103-110.
doi:https://doi.org/10.1016/j.jconrel.2015.08.012
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., . . . Wang, S.
(2015). Mesoporous silica nanoparticles in drug delivery and biomedical
applications. Nanomedicine: Nanotechnology, Biology and Medicine,
11 (2), 313-327. doi:https://doi.org/10.1016/j.nano.2014.09.014
Warram, J. M., de Boer, E., Sorace, A. G., Chung, T. K., Kim, H.,
Pleijhuis, R. G., . . . Rosenthal, E. L. (2014). Antibody-based imaging
strategies for cancer. Cancer and Metastasis Reviews, 33 (2),
809-822. doi:10.1007/s10555-014-9505-5
Watts, J. K., Choubdar, N., Sadalapure, K., Robert, F., Wahba, A. S.,
Pelletier, J., . . . Damha, M. J. (2007).
2′-Fluoro-4′-thioarabino-modified oligonucleotides: conformational
switches linked to siRNA activity. Nucleic Acids Research, 35 (5),
1441-1451. doi:10.1093/nar/gkl1153
Watts, J. K., Katolik, A., Viladoms, J., & Damha, M. J. (2009). Studies
on the hydrolytic stability of 2′-fluoroarabinonucleic acid (2′F-ANA).Organic & Biomolecular Chemistry, 7 (9), 1904-1910.
doi:10.1039/B900443B
Weng, Y., Xiao, H., Zhang, J., Liang, X.-J., & Huang, Y. (2019). RNAi
therapeutic and its innovative biotechnological evolution.Biotechnology Advances, 37 (5), 801-825.
doi:https://doi.org/10.1016/j.biotechadv.2019.04.012
Wolfgang, C. L., Herman, J. M., Laheru, D. A., Klein, A. P., Erdek, M.
A., Fishman, E. K., & Hruban, R. H. (2013). Recent progress in
pancreatic cancer. CA Cancer J Clin, 63 (5), 318-348.
doi:10.3322/caac.21190
Wu, D., Han, H., Xing, Z., Zhang, J., Li, L., Shi, W., & Li, Q. (2016).
Ideal and Reality: Barricade in the Delivery of Small Interfering RNA
for Cancer Therapy. Current Pharmaceutical Biotechnology, 17 (3),
237-247.
Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., .
. . Nel, A. E. (2009). Polyethyleneimine Coating Enhances the Cellular
Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of
siRNA and DNA Constructs. ACS Nano, 3 (10), 3273-3286.
doi:10.1021/nn900918w
Yang, C., Chan, K. K., Lin, W.-J., Soehartono, A. M., Lin, G., Toh, H.,
. . . Yong, K.-T. (2017). Biodegradable nanocarriers for small
interfering ribonucleic acid (siRNA) co-delivery strategy increase the
chemosensitivity of pancreatic cancer cells to gemcitabine. Nano
Research, 10 (9), 3049-3067. doi:10.1007/s12274-017-1521-7
Yang, J., Zhang, X., Zhang, Y., Zhu, D., Zhang, L., Li, Y., . . . Zhou,
J. (2016). HIF-2alpha promotes epithelial-mesenchymal transition through
regulating Twist2 binding to the promoter of E-cadherin in pancreatic
cancer. J Exp Clin Cancer Res, 35 , 26.
doi:10.1186/s13046-016-0298-y
Yin, F., Hu, K., Chen, Y., Yu, M., Wang, D., Wang, Q., . . . Li, Z.
(2017). SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for
Combined Photothermal and Genetherapy for Pancreatic Cancer.Theranostics, 7 (5), 1133-1148. doi:10.7150/thno.17841
Yin, F., Yang, C., Wang, Q., Zeng, S., Hu, R., Lin, G., . . . Yong,
K.-T. (2015). A Light-Driven Therapy of Pancreatic Adenocarcinoma Using
Gold Nanorods-Based Nanocarriers for Co-Delivery of Doxorubicin and
siRNA. Theranostics, 5 (8), 818-833. doi:10.7150/thno.11335
Yu, S., Bi, X., Yang, L., Wu, S., Yu, Y., Jiang, B., . . . Duan, S.
(2019). Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using
Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast
Cancer Effects In Vivo. Journal of Biomedical Nanotechnology,
15 (6), 1135-1148. doi:10.1166/jbn.2019.2751
Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin,
V. P., & Jain, R. K. (1995). Vascular Permeability in a Human Tumor
Xenograft: Molecular Size Dependence and Cutoff Size. Cancer
Research, 55 (17), 3752.
Zahednezhad, F., Saadat, M., Valizadeh, H., Zakeri-Milani, P., &
Baradaran, B. (2019). Liposome and immune system interplay: Challenges
and potentials. J Control Release, 305 , 194-209.
doi:10.1016/j.jconrel.2019.05.030
Zeng, L., Li, J., Wang, Y., Qian, C., Chen, Y., Zhang, Q., . . . Huang,
K. (2014). Combination of siRNA-directed Kras oncogene silencing and
arsenic-induced apoptosis using a nanomedicine strategy for the
effective treatment of pancreatic cancer. Nanomedicine:
Nanotechnology, Biology and Medicine, 10 (2), 463-472.
doi:https://doi.org/10.1016/j.nano.2013.08.007
Zhang, L., Chan, J. M., Gu, F. X., Rhee, J.-W., Wang, A. Z.,
Radovic-Moreno, A. F., . . . Farokhzad, O. C. (2008). Self-Assembled
Lipid−Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform.ACS Nano, 2 (8), 1696-1702. doi:10.1021/nn800275r
Zhang, P., An, K., Duan, X., Xu, H., Li, F., & Xu, F. (2018). Recent
advances in siRNA delivery for cancer therapy using smart nanocarriers.Drug Discovery Today, 23 (4), 900-911.
doi:https://doi.org/10.1016/j.drudis.2018.01.042
Zhao, J., & Stenzel, M. H. (2018). Entry of nanoparticles into cells:
the importance of nanoparticle properties. Polymer Chemistry,
9 (3), 259-272. doi:10.1039/C7PY01603D
Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., . . . Hao, J.
(2015). Co-delivery of HIF1α siRNA and gemcitabine via biocompatible
lipid-polymer hybrid nanoparticles for effective treatment of pancreatic
cancer. Biomaterials, 46 , 13-25.
doi:https://doi.org/10.1016/j.biomaterials.2014.12.028
Zheng, Y., Lai, L., Liu, W., Jiang, H., & Wang, X. (2017). Recent
advances in biomedical applications of fluorescent gold nanoclusters.Advances in Colloid and Interface Science, 242 , 1-16.
doi:https://doi.org/10.1016/j.cis.2017.02.005
Zhi, D., Bai, Y., Yang, J., Cui, S., Zhao, Y., Chen, H., & Zhang, S.
(2018). A review on cationic lipids with different linkers for gene
delivery. Advances in Colloid and Interface Science, 253 ,
117-140. doi:https://doi.org/10.1016/j.cis.2017.12.006
Zhu, W., Shan, X., Wang, T., Shu, Y., & Liu, P. (2010). miR-181b
modulates multidrug resistance by targeting BCL2 in human cancer cell
lines. International Journal of Cancer, 127 (11), 2520-2529.
doi:10.1002/ijc.25260
Zhu, Y., Meng, Y., Zhao, Y., Zhu, J., Xu, H., Zhang, E., . . . Zhang, S.
(2019). Toxicological exploration of peptide-based cationic liposomes in
siRNA delivery. Colloids and Surfaces B: Biointerfaces, 179 ,
66-76. doi:https://doi.org/10.1016/j.colsurfb.2019.03.052
Zhu, Z., Kleeff, J., Kayed, H., Wang, L., Korc, M., Büchler, M. W., &
Friess, H. (2002). Nerve growth factor and enhancement of proliferation,
invasion, and tumorigenicity of pancreatic cancer cells. 35 (3),
138-147. doi:10.1002/mc.10083
Zuckerman, J. E., Choi, C. H. J., Han, H., & Davis, M. E. (2012).
Polycation-siRNA nanoparticles can disassemble at the kidney glomerular
basement membrane. Proceedings of the National Academy of
Sciences, 109 (8), 3137. doi:10.1073/pnas.1200718109
Figure 1. Instances of nanocarriers for pancreatic cancer
therapy.
Figure 2. Schematic illustration of extracellular barriers in
pancreatic cancer siRNA delivery.
Figure 3. Schematic illustration of intracellular barriers in
pancreatic cancer siRNA delivery.
Figure 4. Schematic illustration of pump resistance and
PLK1-mediated nom-pump resistance mechanism.
Figure 5. A new potential therapeutic avenue for pancreatic
cancer including both pump and non-pump resistance genes targeting, via
co-delivery of siRNAs and chemotherapy agents, and imaging.