References
Andersen, M. R., Lehmann, L., & Nielsen, J. (2009). Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biology , 10 (5), R47.
Bekers, K. M., Heijnen, J. J., & Van Gulik, W. M. (2015). Determination of the in vivo NAD: NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.Yeast , 32 (8), 541–557.
Benjaphokee, S., Hasegawa, D., Yokota, D., Asvarak, T., Auesukaree, C., Sugiyama, M., … Harashima, S. (2012). Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnology , 29 (3), 379–386. https://doi.org/10.1016/j.nbt.2011.07.002
Blank, L. M., & Sauer, U. (2004). TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology , 150 (4), 1085–1093. https://doi.org/10.1099/mic.0.26845-0
Çalik, P., & Ileri, N. (2007). pH influences intracellular reaction network of β-lactamase producing Bacillus licheniformis. Chemical Engineering Science , 62 (18–20), 5206–5211. https://doi.org/10.1016/j.ces.2007.01.081
Chidi, B. S., Rossouw, D., & Bauer, F. F. (2016). Identifying and assessing the impact of wine acid-related genes in yeast. Current Genetics , 62 (1), 149–164. https://doi.org/10.1007/s00294-015-0498-6
Contador, C. A., Shene, C., Olivera, A., Yoshikuni, Y., Buschmann, A., Andrews, B. A., & Asenjo, J. A. (2015). Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock. Metabolic Engineering Communications , 2 , 76–84. https://doi.org/10.1016/j.meteno.2015.06.004
Daran-Lapujade, P., Jansen, M. L. A., Daran, J. M., Van Gulik, W., De Winde, J. H., & Pronk, J. T. (2004). Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae: A chemostat culture study. Journal of Biological Chemistry , 279 (10), 9125–9138. https://doi.org/10.1074/jbc.M309578200
Dong, Y., Hu, J., Fan, L., & Chen, Q. (2017). RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Scientific Reports , 7 , 42659.
Edwards, J. S., Covert, M., & Palsson, B. (2002). Metabolic modelling of microbes: The flux-balance approach. Environmental Microbiology , 4 (3), 133–140. https://doi.org/10.1046/j.1462-2920.2002.00282.x
Gerosa, L., Haverkorn Van Rijsewijk, B. R. B., Christodoulou, D., Kochanowski, K., Schmidt, T. S. B., Noor, E., & Sauer, U. (2015). Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data. Cell Systems ,1 (4), 270–282. https://doi.org/10.1016/j.cels.2015.09.008
Jo, J. H., Lee, D. S., & Park, J. M. (2008). The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology , 99 (17), 8485–8491. https://doi.org/10.1016/j.biortech.2008.03.060
Jones, C. W., & Doelle, H. W. (1991). Kinetic control of ethanol production by Zymomonas mobilis. Applied Microbiology and Biotechnology , 35 (1), 4–9. https://doi.org/10.1007/BF00180626
Joshi, B., Joshi, J., Bhattarai, T., & Sreerama, L. (2019).Currently Used Microbes and Advantages of Using Genetically Modified Microbes for Ethanol . Bioethanol Production from Food Crops . Elsevier Inc. https://doi.org/10.1016/B978-0-12-813766-6/00015-1
Kalnenieks, U. Z., Pankova, L. M., & Shvinka, Y. (1987). Proton motive force in the bacterium Zymomonas mobilis. Biogeochemistry ,52 (5), 617–620.
Krulwich, T. A., Sachs, G., & Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology , 9 (5), 330–343. https://doi.org/10.1038/nrmicro2549
Kuroda, K., Hammer, S. K., Watanabe, Y., Montaño López, J., Fink, G. R., Stephanopoulos, G., … Avalos, J. L. (2019). Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Systems , 9 (6), 534–547.e5. https://doi.org/10.1016/j.cels.2019.10.006
Martinez, K. A., Kitko, R. D., Mershon, J. P., Adcox, H. E., Malek, K. A., Berkmen, M. B., & Slonczewski, J. L. (2012). Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.Applied and Environmental Microbiology , 78 (10), 3706–3714. https://doi.org/10.1128/AEM.00354-12
Mo, M. L., Palsson, B. Ø., & Herrgård, M. J. (2009). Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Systems Biology , 3 (1), 37.
Monk, J. M., Koza, A., Campodonico, M. A., Machado, D., Seoane, J. M., Palsson, B. O., … Feist, A. M. (2016). Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Systems , 3 (3), 238–251.e12. https://doi.org/10.1016/j.cels.2016.08.013
Motamedian, E., Saeidi, M., & Shojaosadati, S. A. (2016). Reconstruction of a charge balanced genome-scale metabolic model to study the energy-uncoupled growth of Zymomonas mobilis ZM1.Molecular BioSystems , 12 (4), 1241–1249.
Motamedian, E., Sarmadi, M., & Derakhshan, E. (2019). Development of a regulatory defined medium using a system-oriented strategy to reduce the intracellular constraints. Process Biochemistry .
Naghshbandi, M. P., Tabatabaei, M., Aghbashlo, M., Gupta, V. K., Sulaiman, A., Karimi, K., … Maleki, M. (2019). Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renewable and Sustainable Energy Reviews ,115 (August), 109353. https://doi.org/10.1016/j.rser.2019.109353
Narendranath, N. V, & Power, R. (2005). Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production.Appl. Environ. Microbiol. , 71 (5), 2239–2243.
Orij, R., Brul, S., & Smits, G. J. (2011). Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta - General Subjects , 1810 (10), 933–944. https://doi.org/10.1016/j.bbagen.2011.03.011
Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., & Palsson, B. Ø. (2011). A comprehensive genome‐scale reconstruction of Escherichia coli metabolism—2011. Molecular Systems Biology , 7 (1).
Pagliardini, J., Hubmann, G., Alfenore, S., Nevoigt, E., Bideaux, C., & Guillouet, S. E. (2013). The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microbial Cell Factories , 12 (1), 1–14. https://doi.org/10.1186/1475-2859-12-29
Papapetridis, I., Van Dijk, M., Dobbe, A. P. A., Metz, B., Pronk, J. T., & Maris, A. J. A. (2016). Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microbial Cell Factories ,15 (1), 1–16. https://doi.org/10.1186/s12934-016-0465-z
Park, J. M., Kim, T. Y., & Lee, S. Y. (2011). Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Systems Biology , 5 (1), 101.
Reed, J. L., Vo, T. D., Schilling, C. H., & Palsson, B. O. (2003). An expanded genome-scale model of Escherichia coli K-12 (i JR904 GSM/GPR).Genome Biology , 4 (9), R54.
Scalcinati, G., Otero, J. M., Van Vleet, J. R. H., Jeffries, T. W., Olsson, L., & Nielsen, J. (2012). Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.FEMS Yeast Research , 12 (5), 582–597. https://doi.org/10.1111/j.1567-1364.2012.00808.x
Shioi, J. I., Matsuura, S., & Imae, Y. (1980). Quantitative measurements of proton motive force and motility in Bacillus subtilis.Journal of Bacteriology , 144 (3), 891–897. https://doi.org/10.1128/jb.144.3.891-897.1980
Slonczewski, J. L., Fujisawa, M., Dopson, M., & Krulwich, T. A. (2009).Cytoplasmic pH Measurement and Homeostasis in Bacteria and Archaea . Advances in Microbial Physiology (Vol. 55). Elsevier. https://doi.org/10.1016/S0065-2911(09)05501-5
Slonczewski, J. L., Rosen, B. P., Alger, J. R., & Macnab, R. M. (1981). pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proceedings of the National Academy of Sciences of the United States of America ,78 (10 I), 6271–6275. https://doi.org/10.1073/pnas.78.10.6271
Swayambhu, G., Moscatello, N., Atilla-Gokcumen, G. E., & Pfeifer, B. A. (2020). Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous Siderophore Production. IScience ,23 (4), 101016. https://doi.org/10.1016/j.isci.2020.101016
Valgepea, K., Adamberg, K., Seiman, A., & Vilu, R. (2013). Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Molecular BioSystems , 9 (9), 2344–2358. https://doi.org/10.1039/c3mb70119k
Valgepea, K., de Souza Pinto Lemgruber, R., Meaghan, K., Palfreyman, R. W., Abdalla, T., Heijstra, B. D., … Marcellin, E. (2017). Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Systems , 4 (5), 505–515.e5. https://doi.org/10.1016/j.cels.2017.04.008
Valli, M., Sauer, M., Branduardi, P., Borth, N., Porro, D., & Mattanovich, D. (2005). Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl. Environ. Microbiol. , 71 (3), 1515–1521.
Vojinović, V., & Von Stockar, U. (2009). Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnology and Bioengineering , 103 (4), 780–795. https://doi.org/10.1002/bit.22309
Williams-Rhaesa, A. M., Rubinstein, G. M., Scott, I. M., Lipscomb, G. L., Poole, F. L., Kelly, R. M., & Adams, M. W. W. (2018). Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metabolic Engineering Communications , 7 . https://doi.org/10.1016/j.mec.2018.e00073
Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A., Lu, T. Y. S., Martin, S. L., … Brown, S. D. (2010). Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America , 107 (23), 10395–10400. https://doi.org/10.1073/pnas.0914506107