References
Ajayi O. O., Johnson S. A., Faison T., Azer N., Cullinan J. L.,
Dement-Brown J., Lute S. C. (2022). An updated analysis of viral
clearance unit operations for biotechnology manufacturing. Current
Research in Biotechnology, 4, 190-202.
https://doi.org/10.1016/j.crbiot.2022.03.002.
Arnold L., Lee K., Rucker-Pezzini J., Lee J. H. (2019). Implementation
of fully integrated continuous antibody processing: Effects on
productivity and COGm. Biotechnology Journal, 14(2), 1800061,
https://doi.org/10.1002/biot.201800061.
Bohonak D. M., Mehta U., Weiss E. R., Voyta G. (2021). Adapting virus
filtration to enable intensified and continuous monoclonal antibody
processing. Biotechnology Progress, 37, e3088.
https://doi.org/10.1002/btpr.3088.
Bourcier D., Féraud J. P., Colson D., Mandrick K., Ode D., Brackx E.,
Puel F. (2016). Influence of particle size and shape properties on cake
resistance and compressibility during pressure filtration. Chemical
Engineering Science, 144, 176–187.
http://dx.doi.org/10.1016/j.ces.2016.01.023
Cataldo A.L., Burgstaller D., Hribar G., Jungbauer A., Satzer P. (2020).
Economics and ecology: Modelling of continuous primary recovery and
capture scenarios for recombinant antibody production. Journal of
Biotechnology, 308, 87–95.
https://doi.org/10.1016/j.jbiotec.2019.12.001.
Coffman J., Brower M., Connell‐Crowley L., Deldari S., Farid S. S.,
Horowski B., Patil U., Pollard D., Qadan M., Rose S., Schaefer E.,
Shultz J. (2021). A common framework for integrated and continuous
biomanufacturing. Biotechnology
and Bioengineering, 118, 1735–1749.
https://doi.org/10.1002/bit.27690.
Coffman J., Bibbo K., Brower M., Forbes R., Guros N., Horowski B., Lu
R., Mahajan R., Patil U., Rose S., Shultz J. (2021). The design basis
for the integrated and continuous biomanufacturing framework.
Biotechnology and Bioengineering, 118, 3323–3333.
https://doi.org/10.1002/bit.27697
Coolbaugh M.J., Varner C.T., Vetter T.A., Davenport E.K., Bouchard B.,
Fiadeiro M., Tugcu N., Walther J., Patil R., Brower K. (2021).
Pilot‐scale demonstration of an end‐to‐end integrated and continuous
biomanufacturing process. Biotechnology and Bioengineering, 118,
3287-3301. https://doi.org/10.1002/bit.27670.
David L., Niklas J., Budde B., Lobedann M., Schembecker G. (2019).
Continuous viral filtration for the production of monoclonal antibodies.
Chemical Engineering Research and Design, 152, 336–347,
https://doi.org/10.1016/j.cherd.2019.09.040.
David L., Schwan P., Lobedann M., et al. (2020). Side‐by‐side
comparability of batch and continuous downstream for the production of
monoclonal antibodies. Biotechnology and Bioengineering, 117,
1024–1036. https://doi.org/10.1002/bit.27267.
Fan R., Namila F., Sansongko D., Wickramasinghe S.R., Jin M., Kanani D.,
Qian X. (2021). The effects of flux on the clearance of minute virus of
mice during constant flux virus filtration. Biotechnology and
Bioengineering, 118, 3511–3521.
https://doi.org/10.1002/bit.27778.
Ferreira K.B., Benlegrimet A., Diane G., Pasquier V., Guillot R., Poli
M.D., Chappuis L., Vishwanathan N., Souquet J., Broly H., Bielser J-M.
(2022). Transfer of continuous manufacturing process principles for mAb
production in a GMP environment: A step in the transition from batch to
continuous. Biotechnology Progress, e3259.
https://doi.org/10.1002/btpr.3259.
Gefroh E., Dehghani H., McClure M., Connell‐Crowley L., Vedantham G.
(2014). Use of MVM as a single worst‐case model virus in viral filter
validation studies. PDA Journal of Pharmaceutical Science and
Technology, 68(3), 297–311.
https://doi.org/10.5731/pdajpst.2014.00978.
Gerstweiler L., Bi J., Middelberg A.P.J. (2021). Continuous downstream
bioprocessing for intensified manufacture of biopharmaceuticals and
antibodies. Chemical Engineering Science, 231, 116272.
https://doi.org/10.1016/j.ces.2020.116272.
Hummel J., Pagkaliwangan M., Gjoka X., Davidovits T., Stock R.,
Ransohoff T., Gantier R., Schofield M. (2019). Modeling the downstream
processing of monoclonal antibodies reveals cost advantages for
continuous methods for a broad range of manufacturing scales.
Biotechnology Journal, 14(2), 1700665.
https://doi.org/10.1002/biot.201700665.
International Council for Harmonization of Technical Requirement for
Pharmaceuticals for Human Use: Continuous Manufacturing of Drug
Substances and Drug Products Q13 (Draft version, currently under public
consultation), (2021). ICH.
Ichihara T., Ito T., Gillespie C. (2019). Polishing approach with fully
connected flow-through purification for therapeutic monoclonal antibody.
Engineering in Life Science, 19, 31–36.
https://doi.org/10.1002/elsc.201800123.
Isu S., Qian X., Zydney A.L., Wickramasinghe S.R. (2022). Process- and
product-related foulants in virus filtration. Bioengineering, 9, 155.
https://doi.org/10.3390/bioengineering9040155.
Johnson S.A., Chen S., Bolton G., Chen Q., Lute S., Fisher J., Brorson
K. (2022). Virus filtration: A review of current and future practices in
bioprocessing. Biotechnology and Bioengineering, 119, 743–761.
https://doi.org/10.1002/bit.28017
Kikuchi S., Ishihara T., Yamamoto K., Hosono M. (2022). Virus clearance
by activated carbon for therapeutic monoclonal antibody purification.
Journal of Chromatography B, 1195, 123163.
https://doi.org/10.1016/j.jchromb.2022.123163.
Konstantinov, K. B., & Cooney, C. L. (2015). White paper on continuous
bioprocessing May 20-21 2014 Continuous Manufacturing Symposium. Journal
of Pharmaceutical Sciences, 104(3), 813–820.
https://doi.org/10.1002/jps.24268
Kumar A., Udugama I.A., Gargalo C.L., Gernaey K.V. (2020). Why is batch
processing still dominating the biologics landscape? Towards an
integrated continuous bioprocessing alternative. Processes, 8(12), 1641.
https://doi.org/10.3390/pr8121641.
Lali N., Jungbauer A., Satzer P. (2021). Traceability of products and
guide for batch definition in integrated continuous biomanufacturing.
Journal of Chemical Technology and Biotechnology, 97, 2386-2392.
https://doi.org/10.1002/jctb.6953.
Lutz H., Chang W., Blandl T., Ramsey G., Parella J., Fisher J., Gefroh,
E. (2011). Qualification of a novel inline spiking method for virus
filter validation. Biotechnology Progress, 27(1), 121–128.
https://doi.org/10.1002/btpr.500.
Lute S., Kozaili J., Johnson S., Kobayashi K., Strauss D. (2020).
Development of small-scale models to understand the impact of continuous
downstream bioprocessing on integrated virus filtration. Biotechnology
Progress, 36, e2962. https://doi.org/10.1002/btpr.2962.
Malakian A., Jung S.Y., Afzal M.A., Carbrello, C., Giglia S., Johnson
M., Miller C., Rayfield W., Boenitz D., Cetlin D., Zydney A.L. (2022).
Development of a transient inline spiking system for evaluating virus
clearance in continuous bioprocessing - Proof of concept for virus
filtration. Biotechnology and Bioengineering, 119, 2134-2141.
https://doi.org/10.1002/bit.28119.
Pabst T.M., Thai J., Hunter A.H. (2018). Evaluation of recent Protein A
stationary phase innovations for capture of biotherapeutics. Journal of
Chromatography A, 1554(15), 45-60.
https://doi.org/10.1016/j.chroma.2018.03.060
Peles J., Fallahianbijan F., Cacace B., Carbrello C., Giglia S., Zydney
A.L. (2022). Effect of operating pressure on protein fouling during
constant-pressure virus removal filtration. Journal of Membrane Science,
648, 120351. https://doi.org/10.1016/j.memsci.2022.120351.
Pollard P., Brower M., Abe Y., Lopes A.G., Sinclair A. (2016).
Standardized economic cost modeling for next-generation MAb production.
BioProcess International, 14(8), 14–23.
Rathore A.S., Nikita S., Thakur G., Deore N. (2021). Challenges in
process control for continuous processing for production of monoclonal
antibody products. Current Opinion in Chemical Engineering, 31, 100671.
https://doi.org/10.1016/j.coche.2021.100671.
Shirataki H., Yokoyama Y., Taniguchi H., Azeyanagi M. (2021a). Analysis
of filtration behavior using integrated column chromatography followed
by virus filtration. Biotechnology and Bioengineering, 118, 3569–3580.
https://doi.org/10.1002/bit.27840.
Shirataki H., Yokoyama Y., Oguri R. (2021b). Effect of mixed-mode and
surface-modified column chromatography on virus filtration performance.
Biochemical Engineering Journal, 172 108034.
https://doi.org/10.1016/j.bej.2021.108034.
Shirataki H. (2022). Analysis of filtration with virus removal filters
using the characteristic form of blocking model. Biochemical Engineering
Journal, 183, 108460. https://doi.org/10.1016/j.bej.2022.108460.
Sommer R., Tscheliessnig A., Satzer P., Schulz H., Helk B., Jungbauer A.
(2015). Capture and intermediate purification of recombinant antibodies
with combined precipitation methods. Biochemical Engineering Journal,
93, 200–211. http://dx.doi.org/10.1016/j.bej.2014.10.008
Zydney A.L. (2021). New developments in membranes for bioprocessing – A
review. Journal of Membrane Science, 620, 118804.
https://doi.org/10.1016/j.memsci.2020.118804