ORCID
Arielle Locke https://orcid.org/0000-0002-9169-011X
Lisa Hung https://orcid.org/0000-0002-4590-1895
Julia Upton https://orcid.org/0000-0001-5320-4232
Liam O’Mahony https://orcid.org/0000-0003-4705-3583
Jennifer Hoang https://orcid.org/0000-0001-9264-1881
Thomas Eiwegger https://orcid.org/0000-0002-2914-7829

References

1. Eiwegger T, Hung L, San Diego KE, O’Mahony L, Upton J. Recent developments and highlights in food allergy. Allergy . 2019;74(12):2355-2367. doi:10.1111/ALL.14082
2. Moran TP. The external exposome and food allergy. Curr Allergy Asthma Rep . 2020;20(8):1-9. doi:10.1007/s11882-020-00936-2
3. Ashley SE, Tan HTT, Vuillermin P, et al. The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants. Allergy . 2017;72(9):1356-1364. doi:10.1111/all.13143
4. Tham EH, Leung DYM. Mechanisms by which atopic dermatitis predisposes to food allergy and the atopic March. Allergy, Asthma Immunol Res . 2019;11(1):4-15. doi:10.4168/aair.2019.11.1.4
5. Bergmann S, von Buenau B, Vidal-y-Sy S, et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep . 2020;10(1):1-12. doi:10.1038/s41598-020-58718-9
6. Tan HTT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice.Allergy . 2019;74(2):294-307. doi:10.1111/all.13619
7. Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med . 2019;11(480):2685. doi:10.1126/scitranslmed.aav2685
8. Goleva E, Berdyshev E, Leung DYM. Epithelial barrier repair and prevention of allergy. J Clin Invest . 2019;129(4):1463-1474. doi:10.1172/JCI124608
9. Hoyer A, Rehbinder EM, Färdig M, et al. Filaggrin mutations in relation to skin barrier and atopic dermatitis in early infancy.Br J Dermatol . 2022;186(3):544-552. doi:https://doi.org/10.1111/bjd.20831
10. Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of paediatric food allergy: A systematic review. Allergy . 2019;74(9):1631-1648. doi:10.1111/all.13767
11. Sicherer SH, Wood RA, Vickery BP, et al. The natural history of egg allergy in an observational cohort. J Allergy Clin Immunol . 2014;133(2):492-499.e8. doi:10.1016/j.jaci.2013.12.1041
12. Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int J Mol Sci . 2020;21(8). doi:10.3390/ijms21082867
13. Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy . 2022;77(5):1418-1449. doi:https://doi.org/10.1111/all.15240
14. Suprun M, Bahnson HT, du Toit G, Lack G, Suarez-Farinas M, Sampson HA. In children with eczema, expansion of epitope-specific IgE is associated with peanut allergy at 5 years of age. Allergy . 2023;78(2):586-589. doi:10.1111/all.15572
15. Brough HA, Nadeau KC, Sindher SB, et al. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy . 2020;75(9):2185-2205. doi:10.1111/all.14304
16. Tran MM, Lefebvre DL, Dharma C, et al. Predicting the atopic march: Results from the Canadian Healthy Infant Longitudinal Development Study.J Allergy Clin Immunol . 2018;141(2):601-607.e8. doi:10.1016/j.jaci.2017.08.024
17. Alexander H, Paller AS, Traidl-Hoffmann C, et al. The role of bacterial skin infections in atopic dermatitis: expert statement and review from the International Eczema Council Skin Infection Group.Br J Dermatol . 2020;182(6):1331-1342. doi:10.1111/bjd.18643
18. Reiger M, Schwierzeck V, Traidl-Hoffmann C. Atopic eczema and microbiome. Hautarzt . 2019;70(6):407-415. doi:10.1007/s00105-019-4424-6
19. Neumann A, Reiger M, Bhattacharyya M, Rao N, Denis L, Zammit D. Microbiome correlates of success of treatment of atopic dermatitis with the JAK/SYK inhibitor ASN002. Allergy . 2019;74(106):12.
20. Sindher S, Alkotob SS, Shojinaga MN, et al. Increases in plasma IgG4/IgE with trilipid vs paraffin/petrolatum‐based emollients for dry skin/eczema. Ebisawa M, ed. Pediatr Allergy Immunol . 2020;31(6):699-703. doi:10.1111/pai.13253
21. Sindher S, Alkotob SS, Shojinaga MN, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin‐based emollient. Allergy . March 2020:all.14275. doi:10.1111/all.14275
22. Imran S, Neeland MR, Shepherd R, et al. A potential role for epigenetically mediated trained immunity in food allergy.iScience . 2020;23(6):101171. doi:10.1016/j.isci.2020.101171
23. Kelleher MM, Tran L, Boyle RJ. Prevention of food allergy – skin barrier interventions. Allergol Int . 2020;69(1):3-10. doi:10.1016/j.alit.2019.10.005
24. Elias PM, Wakefield JS, Man MQ. Moisturizers versus current and next-generation barrier repair therapy for the management of atopic dermatitis. Skin Pharmacol Physiol . 2018;32(1):1-7. doi:10.1159/000493641
25. Lowe A, Su J, Tang M, et al. PEBBLES study protocol: A randomised controlled trial to prevent atopic dermatitis, food allergy and sensitisation in infants with a family history of allergic disease using a skin barrier improvement strategy. BMJ Open . 2019;9(3):1-9. doi:10.1136/bmjopen-2018-024594
26. Chalmers JR, Haines RH, Bradshaw LE, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial.Lancet . 2020;395(10228):962-972. doi:10.1016/S0140-6736(19)32984-8
27. Skjerven HO, Rehbinder EM, Vettukattil R, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial.Lancet . 2020;395(10228):951-961. doi:10.1016/S0140-6736(19)32983-6
28. Wärnberg Gerdin S, Lie A, Asarnoj A, et al. Impaired skin barrier and allergic sensitization in early infancy. Allergy . 2022;77(5):1464-1476. doi:10.1111/all.15170
29. Eichner B, Michaels LAC, Branca K, et al. A Community-based Assessment of Skin Care, Allergies, and Eczema (CASCADE): An atopic dermatitis primary prevention study using emollients - Protocol for a randomized controlled trial. Trials . 2020;21(1). doi:10.1186/s13063-020-4150-5
30. Kelleher MM, Cro S, Cornelius V, et al. Skincare interventions in infants for preventing eczema and food allergy. Cochrane Database Syst Rev . 2020;2020(2). doi:10.1002/14651858.CD013534
31. Chaoimh CN, Lad D, Nico C, et al. Early initiation of short-term emollient use for the prevention of atopic dermatitis in high-risk infants—The STOP-AD randomised controlled trial. Allergy . August 2022. doi:10.1111/all.15491
32. Shade KTC, Platzer B, Washburn N, et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med . 2015;212(4):457-467. doi:10.1084/jem.20142182
33. Shade KTC, Conroy ME, Washburn N, et al. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity.Nature . 2020;582(7811):265-270. doi:10.1038/s41586-020-2311-z
34. Xie MM, Bertozzi CR, Wang TT. Immunoglobulin E sialylation regulates allergic responses. Immunol Cell Biol . 2020;98(8):617-619. doi:10.1111/imcb.12368
35. Jennewein MF, Goldfarb I, Dolatshahi S, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell . 2019;178(1):202-215.e14. doi:10.1016/j.cell.2019.05.044
36. Sodemann EB, Dähling S, Klopfleisch R, et al. Maternal asthma is associated with persistent changes in allergic offspring antibody glycosylation. Clin Exp Allergy . 2020;50(4):520-531. doi:10.1111/cea.13559
37. Cheng HD, Tirosh I, de Haan N, et al. IgG Fc glycosylation as an axis of humoral immunity in childhood. J Allergy Clin Immunol . 2020;145(2):710-713.e9. doi:10.1016/j.jaci.2019.10.012
38. Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, van de Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy.Allergy Eur J Allergy Clin Immunol . 2021;76(6):1707-1717. doi:10.1111/all.14684
39. Gowthaman U, Chen JS, Zhang B, et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE.Science (80- ) . 2019;365(6456):eaaw6433. doi:10.1126/science.aaw6433
40. Dang TD, Peters RL, Koplin JJ, et al. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy . 2019;74(2):318-326. doi:10.1111/all.13572
41. Breiteneder H. Mapping of conformational IgE epitopes of food allergens. Allergy . 2018;73(11):2107-2109. doi:10.1111/all.13592
42. Hofer G, Wieser S, Bogdos MK, et al. Three‐dimensional structure of the wheat β‐amylase Tri a 17, a clinically relevant food allergen.Allergy . 2019;74(5):1009-1013. doi:10.1111/all.13696
43. Santos AF, Barbosa‐Morais NL, Hurlburt BK, et al. IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2‐specific IgE.Allergy . 2020;75(9):2309-2318. doi:10.1111/all.14301
44. Duan L, Celik A, Hoang JA, et al. Basophil activation test shows high accuracy in the diagnosis of peanut and tree nut allergy: The Markers of Nut Allergy Study. Allergy . 2021;76(6):1800-1812. doi:10.1111/all.14695
45. Keet C, Plesa M, Szelag D, et al. Ara h 2–specific IgE is superior to whole peanut extract–based serology or skin prick test for diagnosis of peanut allergy in infancy. J Allergy Clin Immunol . 2021:1-9. doi:10.1016/j.jaci.2020.11.034
46. Hemmings O, Du Toit G, Radulovic S, Lack G, Santos AF. Ara h 2 is the dominant peanut allergen despite similarities with Ara h 6. J Allergy Clin Immunol . April 2020. doi:10.1016/j.jaci.2020.03.026
47. Suárez-Fariñas M, Suprun M, Kearney P, et al. Accurate and reproducible diagnosis of peanut allergy using epitope mapping.Allergy . 2021;76(12):3789-3797. doi:10.1111/all.14905
48. Suprun M, Sicherer SH, Wood RA, et al. Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol . 2020;146(5):1080-1088. doi:10.1016/j.jaci.2020.08.005
49. Suprun M, Getts R, Grishina G, Tsuang A, Suárez-Fariñas M, Sampson HA. Ovomucoid epitope-specific repertoire of IgE, IgG4, IgG1, IgA1, and IgD antibodies in egg-allergic children. Allergy Eur J Allergy Clin Immunol . 2020;75(10):2633-2643. doi:10.1111/all.14357
50. Suprun M, Getts R, Raghunathan R, et al. Novel Bead-Based Epitope Assay is a sensitive and reliable tool for profiling epitope-specific antibody repertoire in food allergy. Sci Rep . 2019;9(1):1-14. doi:10.1038/s41598-019-54868-7
51. Hoh RA, Joshi SA, Lee JY, et al. Origins and clonal convergence of gastrointestinal IgE+ B cells in human peanut allergy. Sci Immunol . 2020;5(45):eaay4209. doi:10.1126/sciimmunol.aay4209
52. Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy . 2020;76(6):1693-1706. doi:10.1111/all.14662
53. Kashiwakura J-I, Ando T, Karasuyama H, et al. The basophil-IL-4-mast cell axis is required for food allergy. Allergy . 2019;74(10):1992-1996. doi:10.1111/all.13834
54. Iype J, Odermatt A, Bachmann S, Coeudevez M, Fux M. IL‐1β promotes immunoregulatory responses in human blood basophils. Allergy . 2021;76(7):2017-2029. doi:10.1111/all.14760
55. Marwaha AK, Laxer R, Liang M, et al. A chromosomal duplication encompassing interleukin-33 causes a novel hyper IgE phenotype characterized by eosinophilic esophagitis and generalized autoimmunity.Gastroenterology . 2022;163(2):510-513. doi:10.1053/j.gastro.2022.04.026
56. Benede S, Tordesillas L, Berin C. Demonstration of distinct pathways of mast cell-dependent inhibition of Treg generation using murine bone marrow-derived mast cells. Allergy . 2020;75(8):2088-2091. doi:10.1111/all.14267
57. Uchida S, Izawa K, Ando T, et al. CD300f is a potential therapeutic target for the treatment of food allergy. Allergy . 2020;75(2):471-474. doi:https://doi.org/10.1111/all.14034
58. Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti–IL-33 in peanut allergy. JCI Insight . 2019;4(22). doi:10.1172/jci.insight.131347
59. Msallam R, Balla J, Rathore APS, et al. Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE. Science (80- ) . 2020;370(6519):941. doi:10.1126/science.aba0864
60. Kothari A, Hirschmugl B, Lee J-S, et al. The impact of maternal-fetal omalizumab transfer on peanut-specific responses in an ex vivo placental perfusion model. Allergy . 2022;77(12):3684-3686. doi:10.1111/all.15468
61. Krempski JW, Kobayashi T, Iijima K, McKenzie AN, Kita H. Group 2 innate lymphoid cells promote development of T follicular helper cells and initiate allergic sensitization to peanuts. J Immunol . 2020;204(12):3086-3096. doi:10.4049/jimmunol.2000029
62. Leyva-Castillo JM, Galand C, Kam C, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion.Immunity . 2019;50(5):1262-1275.e4. doi:10.1016/j.immuni.2019.03.023
63. Liu X, Song W, Wong BY, et al. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol . 2019;20(1):297. doi:10.1186/s13059-019-1917-7
64. Morita H, Kubo T, Rückert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol . 2019;143(6):2190-2201.e9. doi:10.1016/j.jaci.2018.12.1018
65. Palomares F, Gómez F, Bogas G, et al. Innate lymphoid cells type 2 in LTP-allergic patients and their modulation during sublingual immunotherapy. Allergy . 2021;76(7):2253-2256. doi:10.1111/all.14745
66. Looman KIM, van Meel ER, Grosserichter-Wagener C, et al. Associations of Th2, Th17, Treg cells, and IgA+ memory B cells with atopic disease in children: The Generation R Study. Allergy . 2020;75(1):178-187. doi:10.1111/all.14010
67. Ruiter B, Smith NP, Monian B, et al. Expansion of the CD4+ effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. J Allergy Clin Immunol . 2020;145(1):270-282. doi:10.1016/j.jaci.2019.09.033
68. Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med . 2017;9(401):eaam9171. doi:10.1126/scitranslmed.aam9171
69. Monian B, Tu AA, Ruiter B, et al. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells.J Clin Invest . 2022;132(2):e150634. doi:10.1172/JCI150634
70. Luce S, Chinthrajah S, Lyu SC, Nadeau KC, Mascarell L. Th2A and Th17 cell frequencies and regulatory markers as follow-up biomarker candidates for successful multifood oral immunotherapy. Allergy . 2020;75(6):1513-1516. doi:10.1111/all.14180
71. Yao Y, Chen C-L, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy.Allergy . 2021;76(2):456-470. doi:10.1111/all.14639
72. Bertolini TB, Biswas M, Terhorst C, Daniell H, Herzog RW, Piñeros AR. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol . 2021;359:104251. doi:10.1016/j.cellimm.2020.104251
73. Collier F, Ponsonby A, O’Hely M, et al. Naïve regulatory T cells in infancy: Associations with perinatal factors and development of food allergy. Allergy . 2019;74(9):1760-1768. doi:10.1111/all.13822
74. Černý V, Petrásková P, Novotná O, et al. Value of cord blood Treg population properties and function-associated characteristics for predicting allergy development in childhood. Cent J Immunol . 2020;45(4):393-402. doi:10.5114/ceji.2020.103413
75. Bergerson JR, Erickson K, Singh AM. Tr1 cell identification and phenotype in children with and without food allergy. J Allergy Clin Immunol . 2017;139(2):AB70. doi:10.1016/j.jaci.2016.12.276
76. Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med . 2019;25(3):448-453. doi:10.1038/s41591-018-0324-z
77. Mauras A, Wopereis H, Yeop I, et al. Gut microbiota from infant with cow’s milk allergy promotes clinical and immune features of atopy in a murine model. Allergy . 2019;74(9):1790-1793. doi:10.1111/all.13787
78. Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy.Allergy . 2019;74(4):799-809. doi:10.1111/all.13660
79. Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol . 2021;14(2):317-330. doi:10.1038/s41385-020-0312-8
80. Folkerts J, Redegeld F, Folkerts G, et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy . 2020;75(8):1966-1978. doi:10.1111/all.14254
81. O’Mahony L. Short-chain fatty acids modulate mast cell activation.Allergy . 2020;75(8):1848-1849. doi:10.1111/all.14313
82. Paparo L, Nocerino R, Ciaglia E, et al. Butyrate as a bioactive human milk protective component against food allergy. Allergy . 2021;76(5):1398-1415. doi:10.1111/all.14625
83. Pan L-L, Ren Z, Tu X, et al. GPR109A deficiency promotes IL-33 overproduction and type 2 immune response in food allergy in mice.Allergy . 2021;76(8):2613-2616. doi:10.1111/all.14849
84. Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O’Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango.Allergy . 2022;77(12):3513-3526. doi:10.1111/ALL.15455
85. Zhou L, Chu C, Teng F, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2.Nature . 2019;568(7752):405-409. doi:10.1038/s41586-019-1082-x
86. Zhang B, Liu E, Gertie JA, et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci Immunol . 2020;5(47):eaay2754. doi:10.1126/sciimmunol.aay2754
87. Smeekens JM, Johnson-Weaver BT, Hinton AL, et al. Fecal IgA, antigen absorption, and gut microbiome composition are associated with food antigen sensitization in genetically susceptible mice. Front Immunol . 2021;11:599637. doi:10.3389/fimmu.2020.599637
88. Gertie JA, Zhang B, Liu EG, et al. Oral anaphylaxis to peanut in a mouse model is associated with gut permeability but not with Tlr4 or Dock8 mutations. J Allergy Clin Immunol . 2021;149(1):262-274. doi:10.1016/j.jaci.2021.05.015
89. Wang Y, Matsushita K, Jackson J, et al. Transcriptome programming of IL-3-dependent bone marrow-derived cultured mast cells by stem cell factor (SCF). Allergy . 2021;76(7):2288-2291. doi:10.1111/all.14808
90. Paranjape A, Tsai M, Mukai K, et al. Oral immunotherapy and basophil and mast cell reactivity in food allergy. Front Immunol . 2020;11:602660. doi:10.3389/fimmu.2020.602660
91. Andorf S, Bunning B, Tupa D, et al. Trends in egg specific immunoglobulin levels during natural tolerance and oral immunotherapy.Allergy . 2020;75(6):1454-1456. doi:10.1111/all.14107
92. Wang W, Lyu S-C, Ji X, et al. Transcriptional changes in peanut-specific CD4+ T cells over the course of oral immunotherapy.Clin Immunol . 2020;219:108568. doi:https://doi.org/10.1016/j.clim.2020.108568
93. Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. J Allergy Clin Immunol . 2020;145(3):885-896.e6. doi:10.1016/j.jaci.2019.10.038
94. Wright BL, Fernandez-Becker NQ, Kambham N, et al. Gastrointestinal eosinophil responses in a longitudinal, randomized trial of peanut oral immunotherapy. Clin Gastroenterol Hepatol . 2021;19(6):1151-1159.e14. doi:10.1016/j.cgh.2020.05.019
95. Barshow SM, Kulis MD, Burks AW, Kim EH. Mechanisms of oral immunotherapy. Clin Exp Allergy . 2021;51(4):527-535. doi:10.1111/cea.13824
96. Palosuo K, Karisola P, Savinko T, Fyhrquist N, Alenius H, Mäkelä MJ. A randomized, open-label trial of hen’s egg oral immunotherapy: Efficacy and humoral immune responses in 50 children. J Allergy Clin Immunol Pract . 2021;9(6):1892-1901.e1. doi:10.1016/j.jaip.2021.01.020
97. Liu EG, Zhang B, Martin V, et al. Food-specific immunoglobulin A does not correlate with natural tolerance to peanut or egg allergens.Sci Transl Med . 2022;14(671):eabq0599. doi:10.1126/scitranslmed.abq0599
98. Jones SM, Kim EH, Nadeau KC, et al. Efficacy and safety of oral immunotherapy in children aged 1-3 years with peanut allergy (the Immune Tolerance Network IMPACT trial): a randomised placebo-controlled study.Lancet . 2022;399(10322):359-371. doi:10.1016/S0140-6736(21)02390-4
99. Zhang W, Dhondalay G, Hoh R, et al. RNA-seq of gastrointestinal biopsies during oral immunotherapy reveals changes in IgA pathway.J Allergy Clin Immunol . 2020;145(2):AB132. doi:10.1016/J.JACI.2019.12.524
100. Hung L, Celik A, Yin X, et al. Precision cut intestinal slices, a novel model of acute food allergic reactions. Allergy . 2023;78(2):500-511. doi:10.1111/all.15579
101. Nowak-Wegrzyn A, Sato S, Fiocchi A, Ebisawa M. Oral and sublingual immunotherapy for food allergy. Curr Opin Allergy Clin Immunol . 2019;19(6):606-613. doi:10.1097/ACI.0000000000000587
102. Smeekens JM, Kulis MD. Evolution of immune responses in food immunotherapy. Immunol Allergy Clin North Am . 2020;40(1):87-95. doi:10.1016/j.iac.2019.09.006
103. Tanaka Y, Nagashima H, Bando K, et al. Oral CD103 - CD11b + classical dendritic cells present sublingual antigen and induce Foxp3 + regulatory T cells in draining lymph nodes. Mucosal Immunol . 2017;10(1):79-90. doi:10.1038/mi.2016.46
104. Głobińska A, Boonpiyathad T, Satitsuksanoa P, et al. Mechanisms of allergen-specific immunotherapy: Diverse mechanisms of immune tolerance to allergens. Ann Allergy, Asthma Immunol . 2018;121(3):306-312. doi:10.1016/j.anai.2018.06.026
105. Hoof I, Schulten V, Layhadi JA, et al. Allergen-specific IgG+ memory B cells are temporally linked to IgE memory responses. J Allergy Clin Immunol . 2020;146(1):180-191. doi:10.1016/j.jaci.2019.11.046
106. Kitzmüller C, Jahn-Schmid B, Kinaciyan T, Bohle B. Sublingual immunotherapy with recombinant Mal d 1 downregulates the allergen-specific Th2 response. Allergy Eur J Allergy Clin Immunol . 2019;74(8):1579-1581. doi:10.1111/all.13779
107. Sánchez Acosta G, Kinaciyan T, Kitzmüller C, Möbs C, Pfützner W, Bohle B. IgE-blocking antibodies following SLIT with recombinant Mal d 1 accord with improved apple allergy. J Allergy Clin Immunol . 2020;146(4):894-900.e2. doi:10.1016/j.jaci.2020.03.015
108. Kulis M, Saba K, Kim EH, et al. Increased peanut-specific IgA levels in saliva correlate with food challenge outcomes after peanut sublingual immunotherapy. J Allergy Clin Immunol . 2012;129(4):1159-1162. doi:10.1016/j.jaci.2011.11.045
109. Kim EH, Yang L, Ye P, et al. Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. J Allergy Clin Immunol . 2019;144(5):1320-1326.e1. doi:10.1016/j.jaci.2019.07.030
110. Kim EH, Burks AW. Food allergy immunotherapy: Oral immunotherapy and epicutaneous immunotherapy. Allergy . 2020;75(6):1337-1346. doi:10.1111/all.14220
111. Langlois A, Graham F, Bégin P. Epicutaneous peanut patch device for the treatment of peanut allergy. Expert Rev Clin Immunol . 2019;15(5):449-460. doi:10.1080/1744666X.2019.1593138
112. Tordesillas L, Mondoulet L, Blazquez AB, Benhamou PH, Sampson HA, Berin MC. Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol . 2017;139(1):189-201.e4. doi:10.1016/j.jaci.2016.03.057
113. Fleischer DM, Greenhawt M, Sussman G, et al. Effect of epicutaneous immunotherapy vs placebo on reaction to peanut protein Ingestion among children with peanut allergy: the PEPITES randomized clinical trial.J Am Med Assoc . 2019;321(10):946-955. doi:10.1001/jama.2019.1113
114. Fleischer DM, Shreffler WG, Campbell DE, et al. Long-term, open-label extension study of the efficacy and safety of epicutaneous immunotherapy for peanut allergy in children: PEOPLE 3-year results.J Allergy Clin Immunol . 2020;146(4):863-874. doi:10.1016/j.jaci.2020.06.028
115. Pelletier B, Perrin A, Assoun N, et al. Epicutaneous immunotherapy protects cashew-sensitized mice from anaphylaxis. Allergy . 2021;76(4):1213-1222. doi:10.1111/all.14605
116. Barni S, Giovannini M, Sarti L, et al. Managing food allergy immunotherapy in children during the COVID-19 pandemic. Allergol Immunopathol (Madr) . 2021;49(1):150-152. doi:10.15586/aei.v49i1.37
117. Pfaar O, Klimek L, Jutel M, et al. COVID-19 pandemic: Practical considerations on the organization of an allergy clinic—An EAACI/ARIA Position Paper. Allergy . 2021;76(3):648-676. doi:10.1111/all.14453
118. Riggioni C, Comberiati P, Giovannini M, et al. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy . 2020;75(10):2503-2541. doi:10.1111/all.14449
119. Mack DP, Chan ES, Shaker M, et al. Novel approaches to food allergy management during COVID-19 inspire long-term change. J allergy Clin Immunol Pract . 2020;8(9):2851-2857. doi:10.1016/j.jaip.2020.07.020
120. Pajno GB, Passanisi S, Valenzise M, Messina MF, Lombardo F. The evolution of allergen-specific immunotherapy: The near and far future.Pediatr Allergy Immunol . 2020;31(S26):11-13. doi:10.1111/pai.13351
121. Pepper AN, Assa’ad A, Blaiss M, et al. Consensus report from the Food Allergy Research Education (FARE) 2019 oral immunotherapy for food allergy summit. J Allergy Clin Immunol . 2020;146(2):244-249. doi:10.1016/j.jaci.2020.05.027
122. Sampath V, Abrams EM, Adlou B, et al. Food allergy across the globe. J Allergy Clin Immunol . 2021;148(6):1347-1364. doi:10.1016/j.jaci.2021.10.018
123. Rodríguez del Río P, Alvarez-Perea A, Blumchen K, et al. Food immunotherapy practice: Nation differences across Europe, The FIND project. Allergy . 2022;77(3):920-932. doi:10.1111/all.15016
124. Remington BC, Baumert JL. Risk reduction in peanut immunotherapy.Immunol Allergy Clin North Am . 2020;40(1):187-200. doi:10.1016/j.iac.2019.09.012
125. Remington BC, Krone T, Kim EH, et al. Estimated risk reduction to packaged food reactions by epicutaneous immunotherapy (EPIT) for peanut allergy. Ann Allergy, Asthma Immunol . 2019;123(5):488-493.e2. doi:10.1016/j.anai.2019.08.007
126. de Silva D, Rodríguez del Río P, de Jong NW, et al. Allergen immunotherapy and/or biologicals for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy . 2022;77(6):1852-1862. doi:10.1111/all.15211
127. Chinthrajah RS, Purington N, Andorf S, et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study.Lancet . 2019;394(10207):1437-1449. doi:10.1016/S0140-6736(19)31793-3
128. Davis CM, Anagnostou A, Devaraj S, et al. Maximum dose food challenges reveal transient sustained unresponsiveness in peanut oral immunotherapy (POIMD study). J Allergy Clin Immunol Pract . 2022;10(2):566-576. doi:10.1016/j.jaip.2021.10.074
129. Patrawala M, Shih J, Lee G, Vickery B. Peanut oral immunotherapy: a current perspective. Curr Allergy Asthma Rep . 2020;20(5):14. doi:10.1007/s11882-020-00908-6
130. Elizur A, Appel MY, Nachshon L, et al. Cashew oral immunotherapy for desensitizing cashew-pistachio allergy (NUT CRACKER study).Allergy . 2022;77(6):1863-1872. doi:10.1111/all.15212
131. Miura Y, Nagakura K, Nishino M, et al. Long-term follow-up of fixed low-dose oral immunotherapy for children with severe cow’s milk allergy.Pediatr Allergy Immunol . 2021;32(4):734-741. doi:10.1111/pai.13442
132. Smith HG, Kim EH. Increasing diversity in peanut oral immunotherapy research and accessibility. J Allergy Clin Immunol Pract . 2021;9(5):2132-2133. doi:10.1016/j.jaip.2021.02.010
133. Shamji MH, Palmer E, Layhadi JA, Moraes TJ, Eiwegger T. Biological treatment in allergic disease. Allergy . 2021;76(9):2934-2937. doi:10.1111/all.14954
134. Tanno LK, Demoly P. Biologicals for the prevention of anaphylaxis.Curr Opin Allergy Clin Immunol . 2021;21(3):303-308. doi:10.1097/ACI.0000000000000737
135. Nicolaides RE, Parrish CP, Bird JA. Food allergy immunotherapy with adjuvants. Immunol Allergy Clin North Am . 2020;40(1):149-173. doi:10.1016/j.iac.2019.09.004
136. Loke P, Orsini F, Lozinsky AC, et al. Probiotic peanut oral immunotherapy versus oral immunotherapy and placebo in children with peanut allergy in Australia (PPOIT-003): a multicentre, randomised, phase 2b trial. Lancet Child Adolesc Heal . 2022;6(3):171-184. doi:10.1016/S2352-4642(22)00006-2
137. Schworer SA, Kim EH. Sublingual immunotherapy for food allergy and its future directions. Immunotherapy . 2020;12(12):921-931. doi:10.2217/imt-2020-0123
138. Sampson HA, Berin MC, Plaut M, et al. The Consortium for Food Allergy Research (CoFAR): The first generation. J Allergy Clin Immunol . 2019;143(2):486-493. doi:10.1016/j.jaci.2018.12.989
139. Pongracic JA, Gagnon R, Sussman G, et al. Safety of epicutaneous immunotherapy in peanut-allergic children: REALISE randomized clinical trial results. J Allergy Clin Immunol Pract . 2021;7(10):1864-1873.e10. doi:10.1016/j.jaip.2021.11.017
140. Scurlock AM, Burks AW, Sicherer SH, et al. Epicutaneous immunotherapy for treatment of peanut allergy: Follow-up from the Consortium for Food Allergy Research. J Allergy Clin Immunol . 2021;147(3):992-1003.e5. doi:10.1016/j.jaci.2020.11.027
141. Ebisawa M, Ito K, Fujisawa T, et al. Japanese guidelines for food allergy 2020. Allergol Int . 2020;69(3):370-386. doi:10.1016/j.alit.2020.03.004
142. Sicherer SH, Abrams EM, Nowak-Wegrzyn A, Hourihane JO. Managing Food Allergy When the Patient Is Not Highly Allergic. J Allergy Clin Immunol Pract . 2022;10(1):46-55. doi:10.1016/j.jaip.2021.05.021
143. Turner PJ, d’Art YM, Duca B, et al. Single-dose oral challenges to validate eliciting doses in children with cow’s milk allergy.Pediatr Allergy Immunol . 2021;32(5):1056-1065. doi:https://doi.org/10.1111/pai.13482
144. Zuberbier T, Dörr T, Aberer W, et al. Proposal of 0.5 mg of protein/100 g of processed food as threshold for voluntary declaration of food allergen traces in processed food—A first step in an initiative to better inform patients and avoid fatal allergic reactions: A GA2LEN position paper. Allergy . 2021;77(6):1736-1750. doi:https://doi.org/10.1111/all.15167
145. Graham F, Caubet J-C, Eigenmann PA. Can my child with IgE-mediated peanut allergy introduce foods labeled with “may contain traces”?Pediatr Allergy Immunol . 2020;31(6):601-607. doi:https://doi.org/10.1111/pai.13244
146. Houben GF, Baumert JL, Blom WM, et al. Full range of population Eliciting Dose values for 14 priority allergenic foods and recommendations for use in risk characterization. Food Chem Toxicol . 2020;146:111831. doi:10.1016/j.fct.2020.111831
147. Gruzelle V, Juchet A, Martin-Blondel A, Michelet M, Chabbert-Broue A, Didier A. Benefits of baked milk oral immunotherapy in French children with cow’s milk allergy. Pediatr Allergy Immunol . 2020;31(4):364-370. doi:https://doi.org/10.1111/pai.13216
148. Kim EH, Perry TT, Wood RA, et al. Induction of sustained unresponsiveness after egg oral immunotherapy compared to baked egg therapy in children with egg allergy. J Allergy Clin Immunol . 2020;146(4):851-862.e10. doi:10.1016/j.jaci.2020.05.040
149. Arasi S, Nurmatov U, Turner PJ, et al. Consensus on DEfinition of Food Allergy SEverity (DEFASE): Protocol for a systematic review.World Allergy Organ J . 2020;13(12):100493. doi:10.1016/j.waojou.2020.100493
150. Graham F, Mack DP, Bégin P. Practical challenges in oral immunotherapy resolved through patient-centered care. Allergy, Asthma Clin Immunol . 2021;17(1):31. doi:10.1186/s13223-021-00533-6
151. Greenhawt M. Shared decision-making in the care of a patient with food allergy. Ann Allergy, Asthma Immunol . 2020;125(3):262-267. doi:10.1016/j.anai.2020.05.031
152. Herbert L, Marchisotto MJ, Vickery B. Patients’ Perspectives and Needs on Novel Food Allergy Treatments in the United States. Curr Treat options allergy . January 2021:1-12. doi:10.1007/s40521-020-00274-8
153. Le Blanc V, Samaan K, Paradis L, et al. Treatment expectations in food-allergic patients referred for oral immunotherapy. J Allergy Clin Immunol Pract . 2021;9(5):2087-2089. doi:10.1016/j.jaip.2020.11.027
154. Abrams EM, Chan ES, Sicherer S. Peanut allergy: New advances and ongoing controversies. Pediatrics . 2020;145(5):e20192102. doi:10.1542/peds.2019-2102
155. Mori F, Giovannini M, Barni S, et al. Oral immunotherapy for food-allergic children: A pro-con debate. Front Immunol . 2021;12:636612. doi:10.3389/fimmu.2021.636612
156. Suprun M, Kearney P, Hayward C, et al. Predicting probability of tolerating discrete amounts of peanut protein in allergic children using epitope-specific IgE antibody profiling. Allergy . 2022;77(10):3061-3069. doi:10.1111/all.15477
157. Upton JEM, Hoang JA, Leon-Ponte M, et al. Platelet-activating factor acetylhydrolase is a biomarker of severe anaphylaxis in children.Allergy . 2022;77(9):2665-2676. doi:10.1111/ALL.15308
158. Sindher SB, Long A, Chin AR, et al. Food allergy, mechanisms, diagnosis and treatment: Innovation through a multi-targeted approach.Allergy . 2022;77(10):2937-2948. doi:10.1111/ALL.15418
159. Hardy LKC, Smeekens JM, Kulis MD. Biomarkers in food allergy immunotherapy. Curr Allergy Asthma Rep . 2019;19(12):61. doi:10.1007/s11882-019-0894-y
160. Nothegger B, Reider N, Covaciu CE, et al. Oral birch pollen immunotherapy with apples: Results of a phase II clinical pilot study.Immunity, Inflamm Dis . 2021;9(2):503-511. doi:10.1002/iid3.410
161. Fleischer DM, Spergel JM, Kim EH, et al. Evaluation of daily patch application duration for epicutaneous immunotherapy for peanut allergy.Allergy asthma Proc . 2020;41(4):278-284. doi:10.2500/AAP.2020.41.200045
162. Kim EH, Yang L, Ye P, et al. Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. J Allergy Clin Immunol . 2019;144(5):1320-1326.e1. doi:10.1016/j.jaci.2019.07.030
163. Jones SM, Sicherer SH, Burks AW, et al. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults.J Allergy Clin Immunol . 2017;139(4):1242-1252.e9. doi:10.1016/j.jaci.2016.08.017
164. Green TD, Anvari S, Assa A, et al. Long-term, open-label extension study of the efficacy and safety of epicutaneous immunotherapy for peanut allergy in children: PEOPLE 3-year results. J Allergy Clin Immunol . 2020. doi:10.1016/j.jaci.2020.06.028
165. Sampson HA, Shreffler WG, Yang WH, et al. Effect of varying doses of epicutaneous immunotherapy vs placebo on reaction to peanut protein exposure among patients with peanut sensitivity: A randomized clinical trial. J Am Med Assoc . 2017;318(18):1798-1809. doi:10.1001/jama.2017.16591
166. Bird JA, Spergel JM, Jones SM, et al. Efficacy and safety of AR101 in oral immunotherapy for peanut allergy: results of ARC001, a randomized, double-blind, placebo-controlled phase 2 clinical trial.J Allergy Clin Immunol Pract . 2018;6(2):476-485.e3. doi:10.1016/j.jaip.2017.09.016
167. Vickery BP, Vereda A, Nilsson C, et al. Continuous and daily oral immunotherapy for peanut allergy: results from a 2-year open-Label follow-on study. J Allergy Clin Immunol Pract . 2021;9(5):1879-1889.e14. doi:10.1016/J.JAIP.2020.12.029
168. Soller L, Abrams EM, Carr S, et al. First real-world safety analysis of preschool peanut oral immunotherapy. J Allergy Clin Immunol Pract . 2019;7(8):2759-2767.e5. doi:10.1016/J.JAIP.2019.04.010
169. Shamji MH, Layhadi JA, Scadding GW, et al. Basophil expression of diamine oxidase: A novel biomarker of allergen immunotherapy response.J Allergy Clin Immunol . 2015;135(4):913-921.e9. doi:10.1016/j.jaci.2014.09.049
170. Orgel K, Burk C, Smeekens J, et al. Blocking antibodies induced by peanut oral and sublingual immunotherapy suppress basophil activation and are associated with sustained unresponsiveness. Clin Exp Allergy . 2019;49(4):461-470. doi:10.1111/CEA.13305
171. Elizur A, Appel MY, Nachshon L, et al. NUT Co Reactivity - ACquiring Knowledge for Elimination Recommendations (NUT CRACKER) study.Allergy . 2018;73(3):593-601. doi:10.1111/all.13353
172. Frischmeyer-Guerrerio PA, Masilamani M, Gu W, et al. Mechanistic correlates of clinical responses to omalizumab in the setting of oral immunotherapy for milk allergy. J Allergy Clin Immunol . 2017;140(4):1043-1053.e8. doi:10.1016/j.jaci.2017.03.028
173. Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol . 2018;142(2):485-496.e16. doi:10.1016/j.jaci.2018.01.043
174. Santos AF, Couto-Francisco N, Bécares N, Kwok M, Bahnson HT, Lack G. A novel human mast cell activation test for peanut allergy. J Allergy Clin Immunol . 2018;142(2):689-691.e9. doi:10.1016/j.jaci.2018.03.011
175. Larsen LF, Juel-Berg N, Hansen KS, et al. A comparative study on basophil activation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy. Allergy . 2018;73(1):137-144. doi:10.1111/ALL.13243
176. Varshney P, Jones SM, Scurlock AM, et al. A randomized controlled study of peanut oral immunotherapy: Clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol . 2011;127(3):654-660. doi:10.1016/j.jaci.2010.12.1111
177. Zhang Y, Li L, Genest G, et al. Successful milk oral immunotherapy promotes generation of casein-specific CD137 + FOXP3 + regulatory T cells detectable in peripheral blood. Front Immunol . 2021;12. doi:10.3389/FIMMU.2021.705615
178. Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol . 2017;140(6):1485-1498. doi:10.1016/j.jaci.2017.10.010
179. Wambre E, Delong JH, James EA, et al. Specific immunotherapy modifies allergen-specific CD4+ T-cell responses in an epitope-dependent manner. J Allergy Clin Immunol . 2014;133(3):872-9.e7. doi:10.1016/j.jaci.2013.10.054
180. Wambre E. Effect of allergen-specific immunotherapy on CD4+ T cells. Curr Opin Allergy Clin Immunol . 2015;15(6):581-587. doi:10.1097/ACI.0000000000000216
181. Calise J, Garabatos N, Bajzik V, et al. Optimal human pathogenic T H 2 cell effector function requires local epithelial cytokine signaling.J Allergy Clin Immunol . 2021;148(3):867-875.e4. doi:10.1016/J.JACI.2021.02.019
182. O’Mahony L, Akdis CA, Eiwegger T. Innate mechanisms can predict successful allergy immunotherapy. J Allergy Clin Immunol . 2016;137(2):559-561. doi:10.1016/j.jaci.2015.10.047
183. Gueguen C, Bouley J, Moussu H, et al. Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy. J Allergy Clin Immunol . 2016;137(2):545-558. doi:10.1016/j.jaci.2015.09.015
184. Palomares F, Gomez F, Bogas G, et al. Immunological Changes Induced in Peach Allergy Patients with Systemic Reactions by Pru p 3 Sublingual Immunotherapy. Mol Nutr Food Res . 2018;62(3):1700669. doi:10.1002/mnfr.201700669
185. Van De Veen W, Stanic B, Yaman G, et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol . 2013;131(4):1204-1212. doi:10.1016/j.jaci.2013.01.014
186. van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond.J Allergy Clin Immunol . 2016;138(3):654-665. doi:10.1016/j.jaci.2016.07.006
187. Hoh RA, Joshi SA, Liu Y, et al. Single B-cell deconvolution of peanut-specific antibody responses in allergic patients. J Allergy Clin Immunol . 2016;137(1):157-167. doi:10.1016/j.jaci.2015.05.029
188. Golebski K, Layhadi JA, Sahiner U, et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity . 2021;54(2):291-307. doi:10.1016/j.immuni.2020.12.013
189. Neeland MR, Andorf S, Manohar M, et al. Mass cytometry reveals cellular fingerprint associated with IgE+ peanut tolerance and allergy in early life. Nat Commun . 2020;11(1):1091. doi:10.1038/s41467-020-14919-4
190. Schulten V, Tripple V, Seumois G, et al. Allergen-specific immunotherapy modulates the balance of circulating Tfh and Tfr cells.J Allergy Clin Immunol . 2018;141(2):775-777.e6. doi:10.1016/J.JACI.2017.04.032
191. Jones SM, Sicherer SH, Burks AW, et al. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults.J Allergy Clin Immunol . 2017;139(4):1242-1252.e9. doi:10.1016/j.jaci.2016.08.017
192. Dreskin SC, Germinaro M, Reinhold D, et al. IgE binding to linear epitopes of Ara h 2 in peanut allergic preschool children undergoing oral Immunotherapy. Pediatr Allergy Immunol . 2019;30(8):817-823. doi:10.1111/pai.13117
193. Suárez-Fariñas M, Suprun M, Chang HL, et al. Predicting development of sustained unresponsiveness to milk oral immunotherapy using epitope-specific antibody binding profiles. J Allergy Clin Immunol . 2019;143(3):1038-1046. doi:10.1016/j.jaci.2018.10.028
194. Sugimoto M, Kamemura N, Nagao M, et al. Differential response in allergen-specific IgE, IgGs, and IgA levels for predicting outcome of oral immunotherapy. Pediatr Allergy Immunol . 2016;27(3):276-282. doi:10.1111/pai.12535
195. Vickery BP, Vereda A, Casale TB, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med . 2018;379(21):1991-2001. doi:10.1056/NEJMoa1812856
196. Vickery BP, Berglund JP, Burk CM, et al. Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective.J Allergy Clin Immunol . 2017;139(1):173-181.e8. doi:10.1016/j.jaci.2016.05.027
197. Koppelman SJ, Peillon A, Agbotounou W, Sampson HA, Martin L. Epicutaneous immunotherapy for peanut allergy modifies IgG 4 responses to major peanut allergens. J Allergy Clin Immunol . 2019;143(3):1218-1221.e4. doi:10.1016/j.jaci.2018.10.025
198. Gomez F, Bogas G, Gonzalez M, et al. The clinical and immunological effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy in patients with systemic reactions. Clin Exp Allergy . 2017;47(3):339-350. doi:10.1111/cea.12901
199. Wright BL, Kulis M, Orgel KA, et al. Component-resolved analysis of IgA, IgE, and IgG4 during egg OIT identifies markers associated with sustained unresponsiveness. Allergy . 2016;71(11):1552-1560. doi:10.1111/all.12895
200. Maeta A, Matsushima M, Muraki N, et al. Low-dose oral immunotherapy using low-egg-allergen cookies for severe egg-allergic children reduces allergy severity and affects allergen-specific antibodies in serum.Int Arch Allergy Immunol . 2018;175(1-2):70-76. doi:10.1159/000485891
Table 1: Main food allergy immunotherapy biomarkers reported in humans 159