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Abstract

A regional coupled approach to water cycle prediction is demonstrated for the 4-month 

period from November 2013 to February 2014 through analysis of precipitation, soil 

moisture, river flow and coastal ocean simulations produced by a km-scale atmosphere-land-

ocean coupled system focussed on the United Kingdom (UK), running with horizontal grid 

spacing of around 1.5 km across all components. The Unified Model atmosphere component, 

in which convection is explicitly simulated, reproduces the observed UK rainfall 

accumulation (r2 of 0.62 for daily accumulation), but there is a notable bias in its distribution 

– too dry over western upland areas and too wet further east. The JULES land surface model 

soil moisture state is shown to be in broad agreement with a limited number of cosmic-ray 

neutron probe observations. A comparison of observed and simulated river flow shows the 

coupled system is useful for predicting broad scale features, such as distinguishing high and 

low flow regions and times during the period of interest but are shown to be less accurate 

than optimised hydrological models. The impact of simulated river discharge on NEMO 

model simulations of coastal ocean state is explored in the coupled system, with comparisons 

provided relative to experiments using climatological river input and no river input around 

the UK coasts. Results show that the freshwater flux around the UK contributes of order 0.2 

psu to the mean surface salinity, and comparisons to profile observations give evidence of an 

improved vertical structure when applying simulated flows. This study represents a baseline 

assessment of the coupled system performance, with priorities for future model developments

discussed.

Keywords: (please provide 3-6 keywords).  coupled modelling, water cycle prediction, 

coastal regions of freshwater influence.
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1. INTRODUCTION

Winter 2013/14 in the United Kingdom (UK) was notable for the cumulative impacts of a 

series of successive damaging storms crossing north-west Europe (Kendon et al., 2015; Lewis

et al., 2015). Different regions of the UK were substantially impacted by flooding from 

coastal inundation (Sibley et al., 2015; Wadey et al., 2015), fluvial (Huntingford et al, 2014; 

Neumann et al., 2015) and groundwater sources (Muchan et al., 2015). Such events provide 

strong motivation for adopting a more holistic approach to understanding and quantifying the 

risks to populations and infrastructure from compound flooding from multiple sources and 

from concurrent hazards (Ciurean et al., 2018; Pilling et al., 2016).

The coupling or linking of different environmental models has long been considered a 

necessary approach to achieving this more holistic view. This vision was well expressed by 

Beven (2007; quote below reproduced with kind permission of the author), who invited 

readers to:

“Consider, for flood prediction purposes, the possibility of modelling the subtle (and 

interdisciplinary) coupling between atmospheric forcing, catchment response, river 

runoff and coastal interaction with tidally dominated sea levels; capturing these 

subtleties will require the dynamical coupling of many processes and components 

from different institutes and different computing systems. Components would be a 

representation of the coastal seas, the regional atmosphere and the terrestrial surface

and subsurface hydrology that would interact through different boundary conditions.”

(reproduced from Beven, 2007).

For typical hydrological and risk assessment applications, any coupling of models and data 

has been achieved by defining linear model chains whereby outputs from one system (e.g. 

point or distributed observation, numerical weather prediction or climate simulation based 

data) are fed into a hydrological and/or hydraulic model in order to simulate the land surface 

response and risk of flood hazard (e.g. Ming et al., 2020; Coxon et al., 2019; Flack et al., 

2020). For coastal flood hazards, for example, Couasnon et al. (2020) recently illustrated the 

need to consider both fluvial and coastal flood drivers in the estimation of compound flood 

risk at coastal locations at a global scale, with river and coastal surge data obtained from two 

independent sources, although with both driven by the same ERA-Interim reanalysis of the 

meteorological forcing.
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The vision for the dynamical coupling between atmosphere, catchment, rivers and coastal 

components as set out by Beven (2007) is more closely achieved by adopting a fully coupled 

approach whereby model components exchange information at run-time via a coupler so that 

interactions and feedbacks are explicitly simulated. This is well established and illustrated 

through the evolution of Earth System Models to assess the drivers, sensitivities and impacts 

of environmental change on global scales (e.g. Sellar et al., 2019). The key challenges for 

improving how hydrological processes are represented in these systems were discussed by 

Clark et al. (2015), while Ward et al. (2020) recently addressed the importance of and 

priorities for better representing the land-ocean interface in Earth System Models.

On regional scales, the development of analogous dynamically coupled Regional 

Environmental Prediction systems is helping to underpin more whole-system simulations at 

more catchment and coastal-relevant scales. This is driven by needs to improve short-term 

hazard prediction (e.g. Rainaud et al., 2017; Zhang et al., 2019) and provision of more 

integrated longer-timescale assessments of environmental change (e.g. Giorgi et al., 2018). 

To date, regional coupled systems have tended to be developed with a view to improving 

either the integration of meteorological and hydrological predictions (e.g. Fersch et al., 2019),

or with a focus on better representing the impacts of air-sea interactions on the system 

through coupling atmosphere and ocean (and occasionally wave) model components (e.g. 

Thomson et al., 2019; Strajnar et al., 2019). Senatore et al. (2020) bridged these perspectives 

to some extent in assessing the impact of different sea surface temperature (SST) forecasts 

used as the lower boundary condition on the hydrological performance of a km-scale regional

atmosphere-land simulations focussed on southern Italy. While based on results from only 

two relatively short case studies, they highlighted differences in precipitation and streamflow 

simulations when different SST were used. It should also be noted however that a stronger 

sensitivity was found to the choice of driving model providing lateral atmospheric boundary 

conditions and many other uncertainties in the water cycle modelling chain were not 

explored. 

Durnford et al. (2018) arguably provide the closest realisation to a fully coupled water cycle 

prediction system on regional scales. The development led by Environment Canada couples 

interacting regional atmosphere, land surface, river routing and 3-d lake models and provides 

operational hydrological forecasts on short-to-medium range timescales for the Great Lakes-
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St. Lawrence Seaway region of North America. This builds on a detailed analysis of the 

sensitivity of net basin supply to meteorological forcing and land surface model 

parameterization conducted by Deacu et al. (2012). Based on an 8-day summer period and 

longer 4-month evaluation simulations, Durnford et al. (2018) assessed the hydrological 

performance of the system in terms of simulated precipitation, river flows, lake inflows and 

water levels, along with more oceanic variables of lake surface currents and temperature. 

Lake ice forecasts were also illustrated for a winter period. The system was shown to produce

reliable results for a 3.5-day forecast, with atmosphere and lake water results considered to be

more mature and reliable than those from the river routing model. Critically, it was found that

assimilation of observed river flow was required to limit the propagation of precipitation 

errors into the predicted river flows and downstream to lake quantities. 

This paper provides a UK-focussed example of progress towards a more whole-system 

regional water cycle prediction approach. Results from km-scale fully coupled regional 

atmosphere-land-ocean model simulations during UK winter 2013/14 are assessed, focussing 

on its hydrological performance. The following questions are considered:

a) Are km-scale regional simulations of precipitation and soil moisture sufficiently accurate 

to provide useful forcing for distributed modelling of river flows across UK catchments?

b) How sensitive are regional ocean simulations of the near-coastal region around the UK to 

the representation and accuracy of input river flows?

c) What do these results imply for future component model development? 

The model system and its components are introduced in Section 2. Results are presented in 

Section 3, with a focus both on broad-scale model performance metrics and the near-coastal 

impacts of coupling the atmosphere-land system to the regional ocean. The implications of 

this work are discussed in Section 4 and conclusions briefly drawn in Section 5.
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2. DATA AND METHODS 

This study assesses the performance of a km-scale regional atmosphere-land-ocean coupled 

prediction system focussed on the UK for simulations during the 4-month period covering 

winter 2013/14 between 30 October 2013 and 28 February 2014. Simulations use the UK 

coupled system and model grids detailed by Lewis et al. (2018) and Lewis et al. (2019). 

Hourly mean variables are exchanged between model components using the OASIS3-MCT 

coupling libraries (Valcke et al., 2017) each hour through the simulation. All simulations are 

free running with no data assimilation applied to any component. Relevant aspects of each 

model component are briefly summarised below.

2.1 Atmosphere model component

The atmosphere component of the coupled system uses the Unified Model (UM; version 

11.1) code, implicitly coupled to the JULES (Joint UK Land Environment Simulator; Best et 

al., 2011; version 5.2) land surface model. Both components use the RAL1 science 

configuration documented by Bush et al. (2020). The variable resolution model grid is 

defined in rotated polar coordinates, with regular 1.5 km horizontal grid spacing in a central 

region focussed on the UK and stretching to 4 km spacing towards the outer domain edge 

(Figure 1). At this resolution, atmospheric convection is represented explicitly by the model 

dynamics rather than being parameterized. Lateral boundary conditions are applied hourly. 

These are provided by the first 24 h of operational global-scale Met Office numerical weather

prediction (NWP) simulations archived from the time of the experiment, available then at a 

resolution of order 25 km. Simulations are initialised by interpolating the operational global 

analysis valid for 00Z on 30 October 2013 to the regional grid.

[Insert Figure 1]

2.2 Land surface and river flow model component

The RAL1 configuration of JULES has 4 soil layers to a depth of 3 m and surface land use 

heterogeneity is accounted for by defining the fractions of 9 possible tiles of vegetation 

(broadleaf trees, needle-leaved trees, temperate C3 grass, tropical C4 grass and shrubs) and 

non-vegetated land-use (urban areas, inland water, bare soil and land ice) types for each grid 

cell (Lewis et al., 2018). The Brooks and Corey formulation for soil hydraulic conductivity 

(Cosby et al., 1994) is used, based on the mapped soil sand, silt and clay fractions used in the 

operational regional NWP configuration (Bush et al., 2020). Sub-grid-scale heterogeneity of 
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soil moisture is computed using the Probability Distributed Model (PDM; Moore, 2007). The 

configuration used in this study adopts the PDM optimisations recommended by Martinez-de 

la Torre et al. (2019), developed from assessments of JULES simulations focussed on 13 UK 

catchments at 1 km resolution driven by 30-years of an observation-based meteorological 

forcing. The main difference relative to the use of PDM in the RAL1 land surface model 

configuration used for operational NWP (Bush et al., 2020) is the introduction of a terrain 

slope-dependent formulation for the ratio between S0, the minimum storage below which 

there is no surface saturation, and Smax, the maximum allowed storage in a grid cell. This ratio

is illustrated in Figure 1a) for the 1.5 km variable resolution grid used in this study. This 

parameterization constrains the surface runoff production to wetter periods over flatter 

regions and enhances it over steeper regions relative to the standard and non-spatially varying

PDM parameters used in RAL1. Saturation excess generates surface runoff (Clark and 

Gedney, 2007) while free drainage from the base of the soil column is treated as sub-surface 

runoff.

Accumulated surface and sub-surface runoff can be routed in JULES using the River Flow 

Model (RFM) implementation the kinematic wave equation solution (Bell et al., 2007; 

Dadson et al., 2011). Water storages in each grid cell are computed and outflows routed to 

the downstream grid cell defined by a pre-calculated flow direction map linking adjacent 

points in the domain. Appendix B of Lewis et al. (2018) provides further details. Note that no

optimisation or calibration of the river routing wave speed parameters has been attempted in 

this study, with values listed in Table C3 of Lewis et al. (2018) used for this initial 

assessment. A river routing timestep of 30 min is used, while the atmosphere and land models

have a timestep of 1 min. River routing is performed for the UK and Ireland only, with no 

flow directions defined for other land areas in the model domain to avoid the variable grid 

resolution of the land (and thereby river network) grid in these regions.  

2.3 Ocean model component

The UK coupled system uses NEMO (Nucleus for European Modelling of the Ocean; version

3.6; Madec et al., 2020) to simulate the 3-d ocean state across the North-West European shelf

with tidal and meteorological forcing. The AMM15 science configuration (Graham et al., 

2018; Tonani et al., 2019) is used. The NEMO ocean grid has the same domain as the 

atmosphere, with regular 1.5 km horizontal spacing throughout (Lewis et al., 2019). The 

model bathymetry is based on European Marine Observation and Data Network 
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(EMODNET), with a minimum possible ocean depth of 10 m set in the absence of coastal 

wetting and drying. Daily lateral boundary conditions from a 1/12 ° operational ocean 

forecasting system for the North Atlantic are applied, and initial conditions for 30 October 

2013 are provided by the long-term AMM15 hindcast simulation described by Graham et al., 

(2018).

For the first time, the sensitivity of the ocean component to the use of coupled river flow 

simulations is assessed. Typically, for example in operational application of AMM15 and UK

regional coupled research published to date, a climatological river discharge is used (Tonani 

et al., 2019). Figure 1a) shows 232 locations within the model domain where a daily 

climatology of river flows has been defined. For UK coastal points, these are based on 

National River Flow Archive gauge observations over the period 1980-2014 while around 

other coastlines data are based on a pre-existing climatology averaged across 1950-2005. 

There is a clear imbalance between the number of discharge points around the UK relative to 

other areas in the model domain. For each discharge location, a river depth is specified, and a 

freshwater flux is applied to all ocean model levels above that depth. The climatology 

therefore represents some typical freshwater flux for a given day of the year, aiming to 

capture the main discharge locations and magnitude to establish representative near-coastal 

salinity and density structures.

In contrast the coupled system enables simulated river flows, representative of current 

conditions, to discharge into the ocean and explicitly link land to ocean processes. As the 

ocean and atmosphere/land grids have their own defined land-sea masks, a one-dimensional 

coupling approach has been defined using OASIS whereby JULES coastal outflow locations 

are identified, numbered, and paired with the nearest NEMO inflow points on the ocean grid. 

Figure 1b) shows 842 connection points between the UK and Ireland river routing grid and 

discharge points on the ocean grid. Given that coupled river flows are only computed for UK 

and Ireland rivers in this implementation, the NEMO code was modified to use a runoff 

coupling mask to distinguish between regions where the coupled rivers should be used while 

continuing to use the daily climatology elsewhere in the model domain.

2.4 Experimental design

This study focuses on an assessment of the performance on the UK coupled system during 

winter 2013/14 for simulating precipitation and its impact through the land surface and 
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hydrological system. Three different approaches to representing river discharge into the 

ocean component of the coupled system are then considered, summarised in Table 1. In the 

fully coupled approach (CPLriv), hourly mean JULES simulated river discharge at coastal 

points around the UK and Ireland are mapped to the nearest NEMO ocean grid points, with 

climatological discharge applied elsewhere. CPLclim uses the same atmosphere-land-ocean 

coupled configuration but applying the climatological river discharge everywhere. In 

CPLnoriv, discharges around UK and Ireland are set to zero through the simulations, with 

climatological discharge still applied elsewhere, providing an upper bound on the magnitude 

of the impact of river flow quality on ocean simulations. 

[Insert Table 1]

3. RESULTS 

3.1 Precipitation

The spatial and temporal evolution of monthly accumulated precipitation across the UK 

between November 2013 and February 2014 is shown in Figure 2. The HadUK-Grid 1 km 

gridded rainfall product based on gauge observations (Perry and Hollis, 2005) indicates a 

relatively dry November but notably and increasingly wet conditions relative to climatology 

across much of the UK from December onwards (see Figure 3, Kendon et al., 2015 for 

anomaly maps). Qualitatively, the broad spatial distribution and monthly evolution of the 

CPLriv precipitation in Figure 2e)-h) is in good agreement with observations. That CPLriv 

can reproduce observed climatological features is encouraging given that the system has no 

data assimilation for any component.

[Insert Figure 2]

Differences between HadUK-Grid and CPLriv in Figure 2i)-l) highlight the tendency for the 

convective-scale Unified Model simulation to underestimate precipitation over upland areas 

across western UK while overestimating rainfall in the drier regions further east. Smith et al. 

(2012) described the considerable benefit of simulations at these resolutions for improving 

the representation of orographic precipitation enhancement relative to coarser-scale model 

grids in which local terrain gradients are smoothed out and convection is explicitly 
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parameterized. However, these results are consistent with errors in the precipitation over 

orography highlighted more recently by Chen et al. (2019) for long-duration Unified Model 

simulation using a similar configuration to that used in this study.

Time series in Figure 2(m) compare water-day mean HadUK-Grid precipitation for England, 

Scotland and Wales land areas with the equivalent simulated quantity from CPLriv. This 

shows good agreement through winter 2013/14 with a correlation coefficient of 0.62. This 

provides confidence that the UK coupled system provides a robust simulation of winter 

precipitation, though noting spatial errors in the representation of orographic effects, which 

will be important in the context of hydrological simulation. 

3.2 Land surface hydrological response

The partitioning of precipitation falling on the surface through winter 2013/14 between 

evaporation and runoff components is shown in Figures 3 and 4.  Surface runoff represents 

the largest flux and responds directly to precipitation as expected. December was notably wet

in western Scotland and February was wettest in south-western England and Wales. The sub-

surface response is more complex. Mean results for November (Figure 3e) are particularly 

dry over much of the UK and Ireland, but excessive runoff is apparent in some areas of 

Scotland and persist through the winter. As discussed by Gomez et al. (2020), the 

anomalously wet regions are potentially a feature of the initial soil moisture conditions 

interpolated from the global model analysis available for the valid time of these simulations. 

Mean sub-surface runoff features in November are particularly smooth, indicative of an 

extended period of spin-up to more convective-scale forced conditions on the 1.5 km 

resolution model grid. Hydrological results for November should therefore be treated with 

caution. Later in winter, the sub-surface runoff increases, particularly on western slopes of 

upland regions.  This spatial distribution is driven by the slope-dependent PDM configuration

introduced by Martinez-de la Torre et al. (2019).

 

[Insert Figure 3]

[Insert Figure 4]

The mean simulated volumetric water content (VWC) fraction in the upper (0 - 10 cm below 

surface) and lowest (1 – 3 m below surface) JULES soil layers is shown in Figure 4. There is 

9

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296



a clear contrast in timescales between the upper layer being driven by instantaneous 

precipitation, also reflected in the surface runoff, and the lower layer driven by the 

accumulated precipitation over time, reflected in the sub-surface runoff evolution. The initial 

condition and spin-up issues highlighted in Figure 3 are not apparent in the spatial averages 

shown in Figure 4. By the end of February 2014, the lowest soil level holds as much water as 

the upper layer, and the magnitude of surface and sub-surface runoff components are more 

similar.

One of the challenges inherent in any assessment of the simulated land surface response to 

precipitation has been the limited observations of components of the terrestrial water cycle at 

scales relevant to the model grid. The COSMOS-UK cosmic ray soil moisture observing ‐

system (Evans et al., 2016) was first established in 2013 and has since expanded to 52 sites 

across the UK. During winter 2013/14 an initial 4 sites were active across a small part of 

southern England (Figure 1b). Cosmic-rays are used to derive an estimate of soil moisture 

representative of a horizontal area of about 0.12 km2 (order 20-times smaller than the model 

grid area of 2.25 km2) and a nominal observation depth of order 20 cm, but which varies in 

time by order 5-10 cm. 

[Insert Figure 5]

Quantitative comparison of simulated and observation-derived VWC in Figure 5 should be 

treated with some caution given that the model and COSMOS-UK represent different vertical

and horizontal scales, and that grid box mean diagnostics represent considerable surface 

heterogeneity within each model grid, even at 1.5 km resolution. The variability of model 

data within a 5 x 5 neighbourhood of grid points surrounding each location is considered, 

highlighting the regions surrounding Chimney Meadows (Figure 5b) and Wytham Woods 

(Figure 5c) to be considerably more heterogenous than those surrounding Sheepdrove (Figure

5a) and Waddesdon (Figure 5d). Comparing more qualitatively to the COSMOS-UK 

observations, CPLriv simulations are in relatively close alignment to observed VWC and well

capture a gradual decrease in VWC during November followed by a relatively abrupt 

increase during mid-December. There is lower variability in VWC in both model and 

observations during January and February. The model timeseries show less day-to-day 

variability than COSMOS-UK and lower VWC than observed at 3 of the 4 locations. Yang et

al. (2020) and Yang et al. (2014) reported systematic under-estimation of VWC in 
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observation-forced JULES simulations during southern hemisphere winter and attributed this 

to the lack of lateral soil water flow in the JULES model. Blyth et al., (2019) found that 

JULES simulated evaporation tended to be excessive compared with flux tower observations,

also consistent with these results. A third process deficiency consistent with this bias is a 

tendency for there to be insufficient infiltration of precipitation into the JULES soil column 

(e.g. Mueller-Quintino et al., 2016; Largeron et al., 2018; Martinez-de la Torre, 2019). 

There is remarkably good qualitative agreement between CPLriv and COSMOS-UK at 

Sheepdrove (Figure 5a). The lack of variability in VWC between adjacent model grid points 

in the 5 x 5 neighbourhood may indicate this to be a less hydrologically complex location 

(Cooper et al., 2020), and given the site is at 170 m altitude in the Chiltern Hills, there may 

be a more limited role for lateral flows here. It is also possible that the authors were simply 

fortunate with compensating errors in both model and observation at this location! 

The comparison to COSMOS-UK provide reassurance that the JULES land surface model 

configuration in CPLriv provides representative simulations of soil moisture through this 

period. This analysis indicates that a more extensive assessment of the simulated JULES soil 

moisture state at km-scales for more recent periods would be of considerable value, making 

use of the more extensive and multi-annual COSMOS-UK observations available today in 

order to better characterise, understand and improve the representation of soil moisture 

processes. This analysis could usefully form the basis for further optimisation of land surface 

parameters, and assessment of the variability and accuracy of VWC on each land surface tile 

within a land model grids. 

3.3 River flow

Relative to diagnostics of soil moisture processes, river discharge is a well observed part of 

the terrestrial water cycle. Figure 6 shows a first-order check on the typical magnitude of 

simulated and observed flows through the study period across parts of the river routing 

network, indicating generally good distinction between higher and lower flow regions in 

CPLriv. Daily mean river flow gauge observations are provided by the UK National River 

Flow Archive (NRFA). Summary bias and Nash-Sutcliffe efficiency (NSE) metrics for the 

simulated river flow in CPLriv between December 2013 and February 2014 are compared 

with observations at 154 gauges in Figure 7. This set of gauges includes the 146 UK 

Benchmark Network sites (UKBN2; Harrigan et al., 2018), selected to favour relatively 
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natural flow regimes and good hydrometric data quality, together with those of the 13 

catchments assessed by Martinez-de la Torre et al. (2019) not included in UKBN2.

[Insert Figure 6]

[Insert Figure 7]

Given that the system is driven by simulated precipitation, most land surface parameters have

been optimised for NWP applications, and no tuning has been applied for river flow 

parameters, Figure 7a) is encouraging in that the simulated flows have small biases relative to

most gauge locations (104 locations where the bias is within 10 m3s-1). More substantial 

biases can be seen in south-eastern England where CPLriv flows are overestimated relative to

observations. This is characterised as a groundwater dominated region – a process not 

represented in the free drainage approach of the JULES configuration used in these 

simulations. Batelis et al. (2020) described the application of a new groundwater flow 

boundary parameterization in JULES which may improve flow simulations in such regions. 

CPLriv can also be seen to overestimate flows in central Scotland, which are likely 

attributable to excessive sub-surface runoff and a poorly initialized soil moisture state.  

While a NSE value of 1 represents a perfect simulation of the observed time series, a NSE 

value of zero indicates that the simulation provides no better prediction of the observed time 

series than the observed mean, and might be considered a minimal requirement of a useful 

river flow simulation. This target is only met for 69 (order 45%) of the 154 gauges 

considered, with 13 locations having a summary NSE value greater than 0.5. Figure 7b) 

shows that the locations with best NSE values tend to be where observed flows are largest, 

and therefore typically of most interest from the perspective of the broad scale hydrological 

response in CPLriv. 

Figure 8 provides a more direct illustration of the simulated and observed daily mean flows 

through winter 2013/14 for four of the gauges considered by Martinez-de la Torre et al. 

(2019). The Tamar, Tay and Severn gauges are among the locations where CPLriv has largest

low bias relative to observations (Figure 7a) while CPLriv is biased high at Thames, 

attributable in part to missing groundwater storage. For reference, results from observation-

driven hydrological model simulations of Grid-to-Grid (G2G; Bell et al., 2018; Bell et al., 

12

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398



2007) and DECIPHeR (Coxon et al., 2019) are shown. These indicate plausible best 

simulated results. DECIPHeR is a 100-member ensemble, illustrating the potential range of 

hydrological model solutions for a given observed input. Both G2G and DECIPHeR are 

driven by 1 km2 gridded daily precipitation fields derived from rain gauge observations. G2G 

was driven by a corrected monthly potential evaporation derived from 5 km2 gridded 

temperature observations (Rudd et al., 2017), while as described by Coxon et al. (2019), the 

DECIPHeR ensemble was driven by daily potential evapotranspiration data derived at 1 km2 

by Robinson et al. (2017). The G2G model underpins operational flood forecasting in the UK

and has therefore been optimised to represent peak flow conditions across a wide range of 

UK hydrological regimes (Pilling et al., 2016). Unlike JULES or G2G grid-based routing, 

DECIPHeR represents a different model architecture that uses hydrological response units to 

represent land heterogeneity and a semi-distributed approach to flow routing (Coxon et al., 

2019).

The CPLriv flows vary too slowly with time compared to observations and G2G or 

DECIPHeR, although the variability on weekly to monthly timescales is consistent. For 3 of 

the 4 locations presented in Fig. 8, the slower variability of CPLriv simulated flows 

contributes to an under-prediction of peak flows. Results are often but not always within the 

range of possible solutions provided by the DECIPHeR observation-driven ensemble. Further

tuning and improvement of the CPLriv flow results is outside the scope of this study, but this 

initial analysis of the coupled system flows gives some confidence that there are 

opportunities for improvement through more careful assessment of the appropriate land 

surface and flow parameters required for simulations driven by UM meteorology. For 

example, Largeron et al. (2018) found that changes to the JULES infiltration could lead to 

much more responsive river flow simulations. This research should assess the impact of 

future system changes across temporal scales of interest (e.g. Weedon et al., 2015). 

3.4 Discharge to ocean

Coupled modelling approaches enable terrestrial hydrological simulations to directly impact 

the near coastal ocean. The time series of accumulated river discharge into the ocean around 

UK and Ireland coastlines in CPLriv (Figure 9) is consistent with previous results for 

precipitation, soil moisture and river flow variables of the system, declining through 

November and early December 2013 before reaching maxima over a period of around 3 

weeks in late December to mid-January 2014 and again in February. This is consistent with 
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the evolution of the UK National Runoff Series (UKNRS), an observation-derived estimate 

of the discharge from England, Scotland and Wales coastlines. This is calculated as described

by Marsh et al. (2015) by accumulating the total observed runoff from NRFA gauged 

catchments and using simulations of the G2G model to account for flows from remaining 

ungauged catchments. G2G data accounts for around 37% of the England-Wales-Scotland 

outflow product. CPLriv results are up to 50% lower than UKNRS during the 

December/January peak and, consistent with Figure 8, show less day-to-day variability than 

the UKNRS reference.  Figure 9 also shows the equivalent discharge in the climatological 

river flows used to force the ocean in CPLclim simulations. CPLriv total values only begin to

exceed CPLclim during February whereas the relatively stationary winter climatology is 

likely an overestimate of the observed coastal discharge during the first part and an 

underestimate during the later part of winter 2013/14. In the context of a first evaluation of a 

more coupled approach to the UK water cycle however, Figure 9 provides further reassurance

that the order of magnitude of discharge from CPLriv and its temporal variability are broadly 

representative.

[Insert Figure 9]

3.5 Coastal ocean response

The sensitivity of the coupled NEMO ocean surface salinity to the freshwater flux imposed at

the coastline is summarised in Figure 10. Monthly mean salinity difference maps show the 

extent of regions of freshwater influence around the UK and Ireland. CPLriv is generally less 

fresh than CPLclim, consistent with the relatively reduced discharge (Figure 9). Largest 

differences, exceeding 2 psu, due to lower flows in CPLriv are apparent for outflow regions 

from the Thames (consistent with Figure 7b), Bristol Channel (associated with lower flows 

from the river Severn; Figure 7c) and Humber Estuary (fed by the rivers Ouse and Trent; 

Figure 6b). Timeseries of region mean surface salinity in Figure 10e) show that the CPLnoriv

ocean surface becomes increasingly saline with time, reaching a mean difference of nearly 

0.2 psu over the 4-month simulation period. This exceeds the CPLriv and CPLclim variability

during the period. CPLnoriv becomes well mixed through the ocean depth, resulting in 

considerably less temporal variability due to tidal and meteorological forcing than CPLriv or 

CPLclim. By default, river discharge is applied in NEMO with zero salinity (i.e. fresh water).

This is a simplifying assumption and additional source of uncertainty. Sensitivity to input 

salinity and parameterizations of estuarine mixing processes should be explored in future.
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[Insert Figure 10]

The mean SST response (Figure 11) is typically within 0.1 K around the UK coastline, with 

more complex and less coherent spatial patterns of SST differences due to the river forcing 

than for salinity. Figure 11e) indicates that the SST sensitivity (even for CPLnoriv results) is 

considerably smaller than the magnitude near-coastal SST simulation errors. Those errors can

be mainly attributed to missing ocean model processes such as coastline wetting and drying 

or meteorological or tidal forcing errors (Tonani et al., 2019). Analysis of SST results at some

coastal buoys around the UK (not shown) does indicate more localised responses to 

differences in river forcing associated with the representation of specific storms in CPLriv 

and their absence in CPLclim. While outside the scope of this paper, and noting sensitivities 

are within the observational error, this provides some encouragement that near-coastal 

simulations can be improved through further optimisation of the river flows in CPLriv.

[Insert 11]

The sensitivity of simulated vertical profiles of ocean salinity and temperature through winter

2013/14 at the L4 buoy location off the south-west England coast (Figure 1) is shown in 

Figure 12 and 13 respectively. Vertical ocean profile observations are provided by CTD 

sensor measurements operated weekly by Plymouth Marine Laboratory (Smyth et al., 2009).

[Insert Figure 12]

[Insert Figure 13]

Results for 9 December (Figure 12a and 13a) show some indications of the ocean state at 

depth spinning up from a common initial condition with climatological river inputs. The 

CPLclim profile matches the observed inversion relatively well, but is overall too fresh by 

around 0.25 psu, consistent with a relatively high river discharge relative to observations 

through November and December. The CPLriv and CPLnoriv results by contrast are well 

mixed throughout and more closely match observed salinity in the upper 20 m. The CPLnoriv

salinity remains relatively constant through this period and tends to be too saline (and too 
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cool) even at 50 m depth and completely misses the observed near-surface freshwater 

induced inversion. CPLriv and CPLclim have more similar profiles, but there are encouraging

signals that the shape of CPLriv salinity profiles better match observations than CPLclim and 

have closer agreement to observed near-surface values. Such differences may be particularly 

important when assimilating profile information for example (King et al., 2019), and merits a 

more rigorous assessment of the impact of simulated river inputs in a full ocean assimilation 

experiment in near future. The temperature profiles in Figure 13 also show clear structural 

differences between simulations, consistent with the differences in salinity, although the 

magnitude of differences between CPLriv and CPLclim is typically within 0.1 K to 0.2 K. 

4. DISCUSSION 

This study provides a first assessment of the hydrological performance of a whole system 

simulation of the water cycle using a UK-focussed regional coupled system at km-scale. In 

common with the evidence provided by Durnford et al. (2018), the vision for a more 

integrated approach to water cycle prediction is a technical reality. A free-running km-scale 

coupled simulation of the UK water cycle across atmosphere, land and ocean components has

been demonstrated and run successfully, producing broadly representative results across 

those components for winter 2013/14. 

These results highlight that many limitations and scientific challenges remain to be overcome

before the system could be applied with confidence for hazard prediction applications across 

timescales. This study is therefore considered to provide a baseline of system performance 

from which to build through future enhancements. As demonstrated by Deacu et al. (2012) in 

the Canadian context, and advocated by Flack et al. (2019) in the context of UK predictions, 

system improvements should be realised with an end-to-end assessment to avoid building 

dependence on either compensating errors or necessary bias or calibration corrections 

through a modelling chain. These CPLriv simulations will need to be revisited to demonstrate

the impact of future developments. Further evaluation experiments will also be required to 

cover a broader range of climatological conditions, including those associated with 

convectively dominated intense summer rainfall and prolonged dry periods.  

 

While the simulated precipitation in CPLriv is representative of observations at national 

scale, there are clear biases in its distribution even on monthly timescales with relatively low 

accumulation over steeper terrain across western UK and too much rainfall propagating 
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further east. While the benefit of km-scale resolution atmosphere modelling for improving 

the representation of orographic rainfall has been well established (e.g. Roberts et al., 2008; 

Smith et al., 2015), this study shows lower skill for precipitation over steep terrain than 

indicated for operational regional NWP results for the UK at 1.5 km resolution by Smith et al.

(2015). The west-east bias pattern is however consistent with the results for winter 

precipitation of a regional climate (i.e. non-assimilating) application of the UM over Scotland

at this scale by Chan et al. (2018). This merits further investigation and improvement, both to

identify the role of data assimilation in the better operational NWP performance and to assess

whether there are additional influences such as changes to model physics, domain extent or 

global boundary conditions which impact precipitation biases. An experiment is proposed to 

assess the land surface response to parallel free-running and assimilative NWP meteorology 

driving JULES over a prolonged period, to better understand the extent to which simulated 

river flows are degraded by the absence of assimilation in CPLriv at present.

The CPLriv hydrological configuration effectively translates the recommendations of 

Martinez-de la Torre et al. (2019), obtained from an assessment of observation-driven JULES

simulations (1991-2000) at 13 gauges of interest, to a national-scale system driven by a 

regional atmosphere model, and set on a different model grid with different soil ancillary 

information to match the configurations used in regional NWP for the UK. Martinez-de la 

Torre et al. (2019) presented river flow simulations biased low relative to observations 

(typically between -30% and -10% bias) with NSE metrics in the range 0.59 to 0.85. In 

common with Martinez-de la Torre et al. (2019), key land surface processes for improvement 

remain a balance between:

 Reducing excessive evaporation (Blyth et al., 2019),

 Enhancing infiltration of precipitation into the soil column (Largeron et al., 2018),

 Addition of lateral and sub-surface flows in the land model (e.g. Batelis et al., 2020).

A number of these enhancements are being currently delivered and coordinated through the 

Hydro-JULES programme (https://hydro-jules.org/). Hydro-JULES research is also deriving 

improved land surface parameters through a data assimilation framework using the COSMOS

observations (Cooper et al., 2020; Pinnington et al., 2020). Enhancements to be delivered 

from Hydro-JULES can now be readily applied and demonstrated in the UK coupled system 

and CPLriv experiments should be repeated to assess their impact within an integrated 

system. 
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The recent development of a UK regional soil moisture analysis for NWP by Gomez et al. 

(2020) provides opportunities to explore the impact of improved soil moisture updating on 

system performance. Several authors have highlighted the value of river flow assimilation for

improving both river flow and soil moisture (e.g. Warrach-Sagi and Wulfmeyer, 2010; 

McMillan et al., 2013; Sun et al. 2016; Tian et al., 2019). This will be of benefit in the UK 

context, but there are first order model biases that are worth addressing as a more immediate 

development priority. As advocated by Clark et al. (2015), there also remain opportunities to 

improve the river flow parameterization, for example by implementing a 1-D diffusive wave 

solution.

There is also a strong requirement to move to the assessment of land surface and river flow 

simulations in probabilistic terms. Work is in progress to run the UK coupled system in 

ensemble mode, with the atmosphere component driven by the MOGREPS-UK operational 

NWP ensemble (Porson et al., 2020). Driving regional river flow predictions with an 

ensemble of precipitation input, and introducing stochastic and parameter perturbations in the

land surface and river routing components offers many opportunities to better understand the 

propagation of uncertainty through the system, as well as consider appropriate design of 

regional coupled ensemble systems when coupling a range of potential flow solutions with 

ensemble ocean model components.

The impact of modifying the river discharge from the land into the coastal ocean around the 

UK has been quantified for winter 2013/14. While differences between CPLriv and CPLclim 

ocean results demonstrate some sensitivity, this analysis also highlights that the exact details 

of the river flow simulation are of second order importance to other coastal ocean processes. 

It will be interesting to revisit this analysis when the CPLriv discharges are not biased low 

relative to observations, and to undertake more detailed analysis of the impacts for specific 

case studies of coastal flooding and tidal locking in a multi-hazard context. Assessing the 

sensitivity of the near-coastal ocean to river discharge is also hampered by the limited 

availability of in-situ salinity observations around the UK coast, with the L4 profile 

observations presented here being a very rare and valuable resource. A brief comparison 

between CPLriv salinity results with SMOS satellite derived salinity products derived by 

Olmedo et al. (2020) proved inconclusive due to limited data availability in the near-coastal 

regions where river discharges were impacting ocean simulations.
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Finally, it is worth revisiting the vision for more dynamical coupling of the water cycle in the 

context of Earth System processes at regional scales. These extend beyond physical couplings

between components into provision of capabilities to deliver forecasts and assessments of 

environmental changes on biogeochemical processes, and ultimately to include the role of 

anthropogenic influence on these. The modelling framework presented here provides a good 

basis from which to advance coupling to marine and terrestrial biogeochemistry models and 

inform questions of water quality and marine health. This vision was well characterised again

by Beven (2007), as follows:

Built on the fluxes within those models, air and water pollutant transport models and 

biogeochemical models could, additionally, be implemented locally within the 

regional scale domain. Each component should be able to assimilate data transmitted

from field sites and to assess the uncertainty in the predictions. Such an integrated 

system should operate both in real time, assimilating data and boundary conditions 

from larger scale models and displaying the ‘current state of the environment’, as 

well as providing the potential to update model predictions into the future under 

different scenarios.”

5. CONCLUSIONS

A km-scale regional coupled simulation system has been presented with results showing 

broadly representative predictions of precipitation, soil moisture, river flow and coastal ocean

state for free-running simulations focussed on the UK for winter 2013/14. Four specific 

questions were set out in Section 1.

a) Are km-scale regional simulations of precipitation and soil moisture sufficiently accurate 

to provide useful forcing for distributed modelling of river flows across UK catchments?

For winter 2013/14, a west-east bias in accumulated precipitation simulations has been 

identified, with rainfall too low over upland areas of western UK and too much rainfall 

advected further east. This assessment has been unable to determine how limiting these biases

are for modelling of river flows across the UK – in practice there are too many processes 

within the coupled hydro-meteorological modelling chain. For the time of interest in this 

study, there were relatively few in-situ observations of soil moisture state, although the direct 

comparison presented shows moderately good agreement between simulations and 
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observations where available. There are opportunities to further improve the simulated river 

flow results presented, and this study provides a necessary baseline of the hydrological 

performance of the UK km-scale regional coupled system. 

b) How sensitive are regional ocean simulations of the near-coastal region around the UK to 

the representation and accuracy of input river flows?

Dynamically coupled prediction systems enable new insight to be gained on the ‘hydrological

response’ of the near-coastal ocean to hydro-meteorological processes. For winter 2013/14, 

the near coastal salinity can be modified by more than 2 psu in regions impacted by river 

discharge around the UK coast. On average, the impact on temperature is considerably 

smaller, and the sensitivity to river flows shown to be of second-order importance relative to 

other sources of near-coastal ocean errors.

c) What do these results imply for future component model development? 

This study demonstrates the feasibility of a vision for more dynamically coupled systems to 

provide useful predictions at scales relevant to catchment and coastal processes. Development

priorities have been identified for further improving the quality of these predictions. These 

remain a balance between model physics enhancements across components – e.g. reducing 

precipitation biases, improving land surface model representation of evaporation and 

infiltration processes; addition of missing processes, notably of lateral and sub-surface water 

flows in the land surface model; and a move to more assimilative and probabilistic modelling 

frameworks. These developments will provide a strong basis for further exploration to more 

biogeochemical aspects of the Earth System at regional scales in future. 
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TABLES

Run Name UK + Ireland river discharge Rest of domain river discharge

CPLriv JULES simulation, OASIS coupled AMM15 climatology

CPLclim AMM15 climatology AMM15 climatology

CPLnoriv Zero flows AMM15 climatology

Table 1: Summary of coupled simulations assessed
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FIGURE LEGENDS 

Figure 1: (a) Map of coupled model domain extent (black surrounding box). Shaded colours 

illustrate the S0/Smax slope-dependent PDM parameter for each land grid point. Line contours 

show the ocean model bathymetry, with solid contours drawn every 50 m in locations where 

the ocean depth is shallower than 250 m and dashed contours every 500 m where the ocean is

deeper. Red circles indicate the location of climatological river outflow points in the ocean 

model. (b) Zoom of the UK and Ireland region of the model domain (red box in (a)) with 

shading illustrating the upstream number of grid cells of the river routing grid. The locations 

of gauge observations on the rivers Tay, Severn [Sev], Thames [Thm] and Tamar [Tam] are 

shown by black open circles. The location of the L4 ocean buoy off the south-west England 

coast is shown as a pink cross. The location of Sheepdrove [1], Chimney Meadows [2], 

Wytham Woods [3] and Waddesdon [4] COSMOS-UK soil moisture cosmic probe 

observation sites are indicated by green crosses. Red circles show the location of 

climatological outflow points in the ocean model (as in (a)). Blue diamonds indicate the 

location of ocean model river outflow points in the coupled system. Other sub-regions 

considered in the study are highlighted for reference.

Figure 2: Maps of (a-d) observed and (e-h) CPLriv simulated monthly accumulated 

precipitation for November and December 2013, and January and February 2014. Figures a)-

d) show the HadUK-Grid 1 km x 1 km gridded gauge observed precipitation product (Perry 

and Hollis, 2005). Figures e)-h) show the accumulated precipitation computed from the 

CPLriv hourly mean rainfall rate. (i-l) Monthly accumulation differences between CPLriv 

and HadUK-Grid precipitation computed on the HadUK-Grid grid. (m) Time series 

comparing the CPLriv simulated and HadUK-Grid observed daily mean (water day 0900-

0900) precipitation across England, Scotland and Wales land points through the period.

Figure 3: Maps of monthly mean (a-d) surface evaporation, (e-h) surface runoff and (i-l) sub-

surface runoff rate simulated by CPLriv for November and December 2013, and January and 

February 2014 respectively. Note colour bar scales are different for each variable.

Figure 4: Timeseries of spatially averaged simulated (a) soil evaporation, (b) surface runoff, 

(c) volumetric soil moisture content of the upper (0 - 0.1 m depth) soil level (solid) and 

lowest (1 - 3 m depth below surface) soil level (dashed), (d) sub-surface runoff across 
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England, Scotland and Wales land points in the CPLriv coupled system during winter 

2013/14. 

Figure 5: Timeseries showing CPLriv simulated total volumetric water content in the top 2 

soil levels (to depth 35 cm below surface) through November 2013 to February 2014. Plots 

(a) – (d) are for points marked 1 – 4 in Figure 1 respectively. The mean value in a 5 x 5 

neighbourhood of grid points nearest each location is shown as a solid line, with 1 standard 

deviation about that value shaded. The minimum and maximum model values in the 

neighbourhood are shown as dashed line time series. Also plotted are available daily mean 

COSMOS-UK cosmic-ray derived volumetric water content estimations for each location 

(Stanley et al., 2020). The mean typical depth for which these observations are considered 

appropriate through the period for each site is listed in each figure legend.

Figure 6: Maps of mean simulated river flow speeds between November 2013 and February 

2014 for selected sub-regions of the UK (see Figure 1). Mean observed flows for the same 

period at gauges in the National River Flow Archive (NRFA) UK Benchmark (UKBN2) 

dataset are plotted using the same colour scale as shaded square symbols. 

Figure 7: Summary of (a) Bias [MODEL-OBS] and (b) Nash-Sutcliffe Efficiency (NSE) 

metrics comparing observed and simulated river flow at selected National River Flow 

Archive (NRFA) locations. Only data from December 2013, January 2014 and February 2014

are included here to avoid any spin up impacts at the start of the simulation period. The size 

of circles is representative of the maximum observed flow during the period. In (b), green 

shaded circles show where NSE >= 0, with shading indicated by the colour scale. Yellow 

filled circles show where -1 <= NSE < 0, orange unfilled circles where -10 < NSE < -1 and 

red unfilled circles where NSE values less than -10 are computed for the evaluation period. 

Figure 8: Timeseries of observed (black dashed) and simulated (red) daily mean (0900-0900)

river flow at selected gauge locations from those assessed by Martinez-de la Torre et al. 

(2019) between November 2013 and February 2014. Mean bias (model – obs) and Nash-

Sutcliffe Efficiency metrics, computed from 1 December 2013, are listed. River flows from 

the G2G in dark blue (Bell et al., 2018) and DECIPHeR in grey (Coxon et al., 2019) 

hydrological models driven by the same observed precipitation and observation-based 

potential evaporation are also shown as a reference. As DECIPHeR is a 100-member 
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ensemble dataset, the ensemble mean is plotted along with maxima and minima simulated 

daily flows.

Figure 9: Timeseries of accumulated discharge from land to ocean around England, Scotland

and Wales coastlines during winter 2013/14 in the CPL simulations (red), as assumed in the 

AMM15 ocean model climatology (blue) and a UK National Runoff Series estimated from 

gauge observations by the National River Flow Archive (black dashed line; Marsh et al., 

2015). 

Figure 10: Monthly mean differences of (a-d) sea surface salinity simulated by CPLriv and 

CPLclim through winter 2013/14. (e) Timeseries of average sea surface salinity in the region 

with bathymetry shallower than 250 m around UK and Ireland coasts simulated by CPLriv, 

CPLclim and CPLnoriv configurations.

Figure 11: Monthly mean differences of (a-d) sea surface temperature simulated by CPLriv 

and CPLclim through winter 2013/14. (e) Timeseries of average bias [model – observation] 

between simulations and observed SST by near-coastal buoys in the region with bathymetry 

shallower than 250 m around UK and Ireland coasts for CPLriv, CPLclim and CPLnoriv 

configurations during January and February 2014.

Figure 12: Vertical profiles of observed and simulated ocean salinity at the L4 ocean buoy 

location (see Figure 1) on (a) 9 December, (b) 17 December 2013, (c) 14 January, (d) 20 

January, (e) 29 January, (f) 10 February 2014. Daily mean profiles are computed from 5x5 

grid points nearest to the observation point, with 1 standard deviation indicated by error bars.

Figure 13: Vertical profiles of observed and simulated ocean temperature at the L4 ocean 

buoy location (see Figure 1) on (a) 9 December, (b) 17 December 2013, (c) 14 January, (d) 

20 January, (e) 29 January, (f) 10 February 2014.
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