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Abstract 28 

1) The environment experienced during development, and its impact on intrinsic condition, can 29 

have lasting outcomes for adult phenotypes and could contribute to the individual variation 30 

in senescence trajectories.  31 

2) However, the nature of this relationship in wild populations remains uncertain, owing to the 32 

difficulties in summarizing environmental complexity and long-term monitoring of individuals 33 

from free-roaming long-lived species.  34 

3) In this study, we determine whether juvenile condition (derived from measures of body mass 35 

and size) is associated with senescence-related traits of a closely monitored population of 36 

Seychelles warblers (Acrocephalus sechellensis).  37 

4) Juveniles with a higher condition index were more likely to survive to adulthood – suggesting 38 

these juveniles experienced better developmental conditions. Furthermore, these juveniles 39 

as adults were in better condition and had higher rates of annual survival, independently of 40 

age. In contrast, there was no association between juvenile condition and declines in adult 41 

telomere length (a measure of somatic stress) nor annual reproduction.  42 

5) These results indicate that juvenile condition, while not associated with senescence 43 

trajectories, can influence the likelihood of surviving to old age due to silver-spoon effects. 44 

This study shows that measures of intrinsic condition in juveniles can provide important 45 

insights into long-term fitness of individuals in wild populations. 46 

Introduction 47 

Senescence – defined as the decline in fitness-related traits with advancing age - is widespread across 48 

the tree of life (Jones et al, 2014). However, longitudinal studies have demonstrated that, even within 49 

the same species, individuals can show considerable variation in their onset and rate of senescence in 50 

natural environments (Williams et al., 2006; Nussey et al., 2013). Identifying drivers of this individual 51 

variation is vital for understanding the causes and evolution of senescence. Environmental factors can 52 

play a crucial role in shaping individual senescence (Monaghan et al., 2008). For example, elderly 53 

individuals have been shown to be more vulnerable to harsh environments than prime-aged 54 

individuals (Reichert et al., 2010; Oro et al., 2014). Furthermore, the onset and rate of senescence can 55 

be affected by the environment experienced during early-life. The developmental period – the time 56 

from conception to sexual maturity – is of particular importance in modulating the adult phenotype 57 

(Lindström, 1999; Taborsky, 2006; Vaiserman, Koliada and Lushchak, 2018). However, there remains 58 

uncertainty on how the developmental environment affects senescence.  59 



There is abundant evidence that beneficial (or benign) environmental conditions during development, 60 

such as a high nutrition diet, have positive effects on multiple aspects of individual fitness (Lindström, 61 

1999; Cooper and Kruuk, 2018a); a phenomenon referred to as the “silver-spoon effect” (Monaghan, 62 

2008a). The silver-spoon effect may result in  delayed (or reduced rate of) senescence when the fitness 63 

benefits of beneficial conditions during development persist into late-life (Nussey et al., 2007; Pigeon, 64 

Festa-Bianchet and Pelletier, 2017; Cooper and Kruuk, 2018). However, silver-spoon effects may also 65 

lead to earlier and accelerated senescence (e.g. Hunt et al., 2004; Spagopoulou et al., 2020), for 66 

example when a greater allocation of resources into growth and reproduction during early-life - as a 67 

result of beneficial early-life conditions - negatively affects somatic maintenance and, consequently, 68 

later-life fitness (Hammers et al., 2013; Lemaitre et al., 2014, Kirkwood, 1977). A recent meta-analysis 69 

found that good developmental environments are more often associated with slower rates of 70 

reproductive (but not survival) senescence in wild populations; suggesting persistent silver-spoon 71 

effects are more prevalent (or detectable) than early- versus late-life fitness trade-offs (Cooper and 72 

Kruuk, 2018).  73 

While development environments clearly act as a constraining force on an individual’s age-specific 74 

fitness (and hence senescence), this may also interact with the responses of juveniles to those 75 

environments. For example, harsh developmental environments can generate more resilient adult 76 

phenotypes (‘thrifty phenotype hypothesis’; Hales and Barker 2001) or remove individuals with less-77 

resilient phenotypes at younger ages (selection hypothesis; Nol and Smith, 1987), resulting in 78 

individuals that are more resistant to fitness declines in late-life (Marshall et al., 2017). Additionally, 79 

the developmental environment, whether good or bad, may be less important for senescence than 80 

whether or not the same environment persists into adulthood, with environmental mismatches 81 

resulting in poorly-adapted, faster senescing individuals (Gluckman, Hanson and Spencer, 2005; 82 

Monaghan, 2008). Thus, while there is agreement that developmental environments can explain 83 

between-individual variation in senescence, there is yet little consensus on the reason for, or direction 84 

of, the effect.  85 

Determining the relationship between a developmental environment and senescence is not 86 

straightforward, not least because of the multi-faceted nature of environment. Most previous studies 87 

have measured characteristics of the environment directly, with proxies of food availability or closely 88 

related factors e.g. population density and weather (Cooper and Kruuk, 2018a). However, such 89 

measures often lack the resolution to determine local individual-level environments, nor do they 90 

reflect the developmental decisions occurring within juveniles in response to environmental stimuli. 91 

This difficulty can be addressed by measuring metrics of intrinsic condition that reflect the 92 

developmental environment.  93 



Body mass and derived indices (e.g. size-adjusted mass) are commonly used measures of individual 94 

condition in ecological studies. Body mass is strongly positively correlated with body fat content – the 95 

main component of energy storage – and the structural size of individuals (Schulte-Hostedde et al., 96 

2005; Hayes and Shonkwiler, 2010; Labocha and Hayes, 2012a). In juveniles, being heavier or larger 97 

often reduces vulnerability to predation (at least in non-flying organisms – see below), food-shortages 98 

and cold-weather events, and can provide a competitive advantage over peers (Arendt, 1997). As a 99 

result, juvenile body mass is generally positively associated with survival to adulthood in birds and 100 

mammals (Tinbergen and Boerlijst, 1990; Ronget et al., 2018a). However, there has been extensive 101 

debate concerning the quantification of condition (Green, 2001; Speakman, 2001; Stevenson and 102 

Woods, 2006; Labocha and Hayes, 2012b; Labocha, Schutz and Hayes, 2014; Wilder, Raubenheimer 103 

and Simpson, 2016; Frauendorf et al., 2021), which agree that simple positive correlations between 104 

body mass, condition and fitness cannot be assumed without validation. For example, excessive fat 105 

deposition (i.e. high body mass relative to size) can reduce an individual’s ability to evade predators, 106 

especially for flying organisms (Gosler, Greenwood and Perrins, 1995; Covas et al., 2002). Therefore, 107 

the optimal body mass is  expected to be less than the maximum achievable body mass (Barnett et al., 108 

2015). 109 

Juvenile body mass and derived condition indices may also have lasting associations with fitness-110 

related traits (e.g. Merilä and Svensson, 1997). The growth and fat deposition of juveniles can be 111 

constrained or delayed by poor (e.g. nutrient-limited) environments, with long-lasting consequences 112 

for physiological development and fitness (Metcalfe and Monaghan, 2001; Hsu, Dijkstra and 113 

Groothuis, 2017; Seress et al., 2020). For example, in captive zebra finches (Taeniopygia guttata) 114 

juveniles reared on poor-quality diets had lower body mass, but also lower reproductive success 115 

(Haywood and Perrins, 1992; Blount et al., 2006) and shorter adult life-spans (Birkhead, Fletcher and 116 

Pellatt, 1999). Therefore, juvenile body mass can reflect a silver-spoon effect of early-life environment 117 

on adult fitness. Conversely, due to trade-offs between early and late-life fitness, individuals which 118 

are larger (and thus heavier) or grow at faster rates can have reduced fitness in late-life (Miller et al., 119 

2002; Metcalfe and Monaghan, 2003; Kraus, Pavard and Promislow, 2013; Vaiserman, Koliada and 120 

Lushchak, 2018). Achieving larger absolute size, or attaining adult size earlier, reflects a greater 121 

investment in growth, which may incur costs in terms of late-life fitness i.e. a ‘live-fast-die-young’ 122 

phenotype. Likewise, individuals reared in poor-nutrition environments may prioritize energy 123 

retention (i.e. fat content) over growth and size i.e. a ‘thrifty’ phenotype. Therefore, the initial benefits 124 

of high body mass, large size or a beneficial early-life environment (e.g. high food abundance) can 125 

result in accelerated senescence.  126 



Our current understanding of the relationships between juvenile body mass, size and senescence is 127 

mainly restricted to studies that have manipulated body mass or growth rates of laboratory and 128 

captive populations (but see Spagopoulou et al., 2020). In wild populations, body mass and derived 129 

condition indices are more often related to immediate fitness (i.e. annual measures of survival and 130 

reproductive success) rather than lifetime or late-life fitness; owing to the difficulty of monitoring 131 

individuals across their entire life course in many wild populations (but see Lewin et al., 2017). 132 

Therefore, it is not certain whether natural variation in juvenile body mass and size can explain 133 

variation in senescence trajectories observed in wild populations. In this study, we determine whether 134 

the body mass of juveniles predicts fitness-related traits in adult Seychelles warblers, Acrocephalus 135 

sechellensis – a small insectivorous passerine endemic to the Seychelles. The closely monitored 136 

population on Cousin Island is uniquely suited for this study; each individual has annual measures of 137 

survival and reproduction, and repeated measures of condition starting from juvenile age. This study 138 

will contribute to our understanding of the role that early-life condition plays on variable senescing 139 

phenotypes in wild populations. 140 

Methods 141 

Study species and data collection 142 

The Seychelles warbler is a small insectivorous passerine endemic to the Seychelles. The population 143 

on Cousin Island (29 ha; 4°20’ S, 55°40’ E) – containing ca. 320 adult individuals at any given point 144 

(Brouwer et al 2009) – has been extensively monitored since 1985 (Komdeur, 1992; Hammers et al., 145 

2015; Sparks et al., 2020a). Since 1997, nearly all individuals (>96%) have been ringed with a unique 146 

combination of a British Trust for Ornithology (BTO) metal ring and three colour rings for easy 147 

identification (Richardson et al., 2001; Raj Pant et al., 2020a). Individuals are usually first caught as 148 

nestlings, or as dependent juveniles (<5 months old) in their natal territory using mist nets (see Kingma 149 

et al., 2016 for details). Juveniles are aged as fledglings (1–3 months), old fledglings (3–5 months) or 150 

sub-adults (5–12 months) based on behaviour and eye colour (Komdeur, 1992). In addition to 151 

capturing unringed juveniles, as much of the ringed adult population as possible (normally ca. 35%) is 152 

re-captured and sampled during the major breeding season (June–September) each year.  153 

The population is structured into ca. 115 clearly defined territories (Kingma et al., 2016), each 154 

containing a socially monogamous dominant pair. However, the Seychelles warbler is a facultative 155 

cooperative breeder; thus, ca. 50% of territories contain 1-5 sexually mature subordinates (usually, 156 

but not always, past offspring of the dominant pair), of which ca. 20% of males and ca. 42% of females 157 

engage in helping behaviour and cobreeding (Richardson, Burke and Komdeur, 2002; Hammers et al., 158 

2019). Each year, during the major breeding season, each territory is visited at least every two weeks 159 



to identify all individuals present and determine their status through behavioural observations 160 

(Richardson, Burke and Komdeur, 2003). During visits, the dominant female is followed for  ≥ 15 161 

minutes to assess breeding activity (Richardson, Burke and Komdeur, 2007). The majority of breeding 162 

activity (94% of territories) occurs from June to August, but a minor breeding season also occurs from 163 

January to March (Komdeur and Daan, 2005). Most breeding attempts involve one-egg clutches 164 

(Komdeur, 1994a) but clutches of two or three eggs occur (Richardson et al., 2001). The extensive 165 

duration of parental care (ca. three months post fledging), relative to the length of breeding seasons, 166 

limits the opportunity for multiple successful breeding attempts (Komdeur, 1996b). As a result, the 167 

vast majority of successful territories produce just one offspring per breeding season.  168 

In both males and females, annual reproductive success follows a bell-shaped relationship with age; 169 

increasing until 7–8 years-of-age before declining in older age (Hammers et al., 2012; Raj Pant et al., 170 

2020a). The resighting probability of adults during the major breeding season is close to one (0.98 ± 171 

0.01 SE; Brouwer et al., 2010) and dispersal from the island is virtually absent (Komdeur et al., 2004). 172 

Therefore, individuals that are not observed during the major breeding season can be confidently 173 

assumed dead. First year survival is 0.61 ± 0.09 SE, increasing to a relatively stable 0.84 ± 0.04 SE 174 

annual survival in adults (Brouwer et al., 2006), before declining from ca. 7 years of age i.e. the onset 175 

of survival senescence (Hammers et al., 2013; 2015). In elderly females, reproductive success is also 176 

lower in the last year of life (“Terminal year effect”), suggesting that elderly females are in poorer 177 

physiological condition prior to death (Hammers et al., 2012).  178 

During capture events, body mass is measured using either a Pesola or electronic scale (± 0.1g) and 179 

structural size is measured using sliding callipers (± 0.1mm) as the length of the right tarsus. Ca 25 ul 180 

of blood is taken from the brachial vein and stored in 100% ethanol (Richardson et al., 2001). DNA 181 

extracted from blood samples (following Richardson et al., 2001) is used to confirm sex, using up to 182 

three sexing markers, and assign parentage using MasterBayes 2.52 (Hadfield et al 2006) based on 183 

genotypes derived from 30 microsatellite loci (for details see Sparks et al., 2020). Relative Telomere 184 

Length (RTL; the concentration of amplified telomeric DNA relative to that amplified at GAPDH – a 185 

single copy gene) has also been measured as part of a previous study (for details see Spurgin et al., 186 

2017). In many species, including the Seychelles warbler, telomere length declines with age and with 187 

increased exposure to various stressors (Barrett et al., 2013; Spurgin et al., 2017; Young, 2018). Thus, 188 

telomere length has been advocated as a marker of accumulated somatic stress and survival prospects 189 

(Wilbourn et al., 2018).  190 



Statistical analysis 191 

All analyses were performed in Rstudio (version 1.2.5033 and R version 4.0.3, Rstudio Team, 2020). 192 

We selected all individuals with biometric data at post-fledging juvenile age (3 weeks to 5 months 193 

after hatching). This is just after the developmental period when skeletal growth is complete 194 

(Komdeur, 1991), when juveniles are still dependent on the adults from the natal territory, and before 195 

sexual maturity (ca. 8 months; Komdeur, 1997). The Seychelles warbler is sexually dimorphic, with 196 

males being larger than females (Richardson 2013). Body mass, as well as being higher in males than 197 

females, is also positively correlated with structural size (tarsus length) and the time of day of capture 198 

(Fig. S1, Table S1,Kingma et al., 2016). Using linear mixed effect models, which predicted the mass of 199 

an individual for a given tarsus length, measured at a given time of day, we calculated residual mass 200 

(i.e. the difference between observed and predicted mass) separately for males and females. Observer 201 

was included as a random effect to control for possible observer bias in measurements. This approach 202 

eliminates the dependency of body mass on other predictors, namely tarsus length and sex, in multiple 203 

regression models; thus, giving the “true” effect of body mass on the response variable beyond that 204 

caused by size- or sex- related differences in body mass (e.g. Ross et al., 2021). Residual mass 205 

(hereafter, “condition”) is a widely used condition index that is highly correlated with fat content in 206 

other species (Schulte-Hostedde et al., 2005; Labocha and Hayes, 2012a). However, condition can also 207 

reflect differences in bodily components other than fat content, such as muscle and organ mass 208 

(Labocha and Hayes, 2012b; Frauendorf et al., 2021). For a subset of juveniles (N = 364), we had visual 209 

estimates of abdominal fat (hereafter, “fat scores”) which, although positively correlated (β = 0.105 ± 210 

0.050, t = 2.088, P = 0.038; Fig. S1), explained a negligible amount of variation in condition (adjusted 211 

R2 = 0.009). Since we lack the data to test the degree to which condition and/or fat scores correlate 212 

with actual fat content in this species, condition is more broadly defined as the mass of an individual 213 

that is independent of structural size, sex and capture time. All analyses were repeated with raw body 214 

mass instead of condition, which produced qualitatively similar results (not shown).  215 

We first determined whether juvenile condition influenced survival to adulthood (>1 year of age). 216 

Survival to adulthood (yes/no) was fitted as a binomial response with log link function in a generalized 217 

linear mixed model (GLMM) using lme4 1.1-25 (Bates et al., 2015). Condition was entered as main 218 

effect and as a quadratic (i.e. squared) function (see Barnett et al., 2015). To confirm the fit suggested 219 

by the quadratic function, we repeated the analyses using a Generalized Additive Mixed Model 220 

(GAMM) using gamm4 (v0.2-6; Wood, 2017) with a non-parametric smoothing spline for juvenile 221 

condition. Additional predictors included sex, age (months) of measurement and tarsus length (mean-222 

centered by sex) - to determine whether skeletal size influences survival independently of condition. 223 

Year was included as a random factor to account for annual differences in juvenile survival.  224 



In subsequent juvenile survival models, we included information on the individual’s overall and 225 

immunological genetic diversity (for which we had a reduced dataset). Heterozygosity, MHC diversity 226 

(log transformed) and the presence of TLR3A and MHC Ase-ua4 alleles (yes/no) have been positively 227 

associated with juvenile survival in earlier studies on this species (Richardson, Komdeur and Burke, 228 

2004; Brouwer et al., 2010; Davies et al., 2021). Therefore, by including these additional predictors 229 

into our model, we determined whether the juvenile survival-condition relationship occurred 230 

independently of these genetic effects. 231 

Secondly, for juveniles that survived to adulthood, we tested whether juvenile condition was 232 

associated with two measures of adult condition – body mass and RTL – to assess physiological 233 

senescence. Both traits were fitted as responses in two Linear Mixed Models (LMM). Juvenile 234 

condition, adult tarsus length and sex were included as main effects. In the body mass model, capture 235 

time was included as an additional predictor. We opted to use raw body mass as a measure of adult 236 

condition, rather than the residual condition index used in juveniles, since these measures are 237 

equivalent in a model controlling for the effects of sex, tarsus length and capture time on adult body 238 

mass in a LMM (Freckleton 2002). In the RTL model, we included technician as a two-level factor to 239 

account for technician-related differences in RTL (Sparks et al., 2020b). We used within-subject 240 

centering (van de Pol and Wright, 2009) to separate the role of between- versus within-individual 241 

variation with age, i.e. cross-sectional from longitudinal effects. In this way, the individual’s age (at 242 

measurement of body mass/telomere length) was split into two predictors, (i) mean age across all 243 

sampling events for a given individual (mean age), and (ii) within-individual deviation from mean age 244 

(∆ age). An interaction term between juvenile condition and ∆age tested whether juvenile condition 245 

alters the within-individual slope of adult body mass/telomere length. Since individuals often had 246 

multiple measures of adult body mass and telomere length, individual identity was included as a 247 

random effect. In the body mass model, observer was also included as a random effect to control for 248 

possible observer bias in measurements. In the telomere length model, PCR plate identity was 249 

included as a random effect to control for possible inter-plate variation in telomere length (Sparks et 250 

al., 2020b). 251 

Thirdly, we tested whether juvenile condition was associated with two fitness components shown to 252 

senesce in later adult life in the Seychelles warbler; annual survival and annual reproduction 253 

(Hammers et al., 2012, 2013, 2015; Raj Pant et al., 2020a). For this analysis, we excluded individuals 254 

that had not died by the end of the study period (2019). Furthermore, we excluded the first year of 255 

the individual’s life, since first year survival was covered in our survival to adulthood analysis (see 256 

above) and individuals rarely reproduce before one year of age (Komdeur, 1991, 1992). Annual 257 

survival was defined as whether or not the individual died before the subsequent main breeding 258 



season. Annual reproduction indicated whether the individual produced at least one independent 259 

offspring (i.e. surviving to at least 5 months of age) during that year. These fitness traits were fitted as 260 

binomial responses (yes versus no) with a log link function in GLMMs. Juvenile condition was entered 261 

as a main effect and as an interaction term with age. A significant main effect would indicate that 262 

juvenile condition influences the fitness component overall, independently of age, while a significant 263 

interaction would indicate that juvenile condition modifies the age-dependent change in the fitness 264 

component. Age (at the end of the main breeding season) was included as a linear and squared term, 265 

(Hammers et al., 2012,Raj Pant et al., 2020a). To confirm the presence of late-life declines in survival 266 

and reproduction, we repeated analyses including only data above the age of onset of declines; 267 

determined visually from non-standardized squared functions of age (Fig. 3a and 4a). Sex and tarsus 268 

length were included as additional predictors. Since individuals had multiple measures of fitness, 269 

individual identity was included as a random factor. Year was also included as a random factor to 270 

control for annual differences in fitness (Brouwer et al., 2006).  271 

In the annual reproduction model, additional predictors where included due to their previously 272 

reported associations with annual reproduction and fledging success in this system. An interaction 273 

term between sex and age was included due sex-specific differences in the onset of reproductive 274 

senescence (Hammers et al., 2012; Raj Pant et al., 2020b). Year quality (i.e. island-wide mean insect 275 

abundance during the years main breeding season) and territory quality (i.e. the difference between 276 

year quality and insect abundance within the individual’s territory) data were available for some years 277 

(all except 2000 – 2002 and 2005) and were included due to positive associations with fledging success 278 

(Hammers et al., 2012). Whether or not the year in question was the last year of an individual’s life 279 

(terminal year, yes/no) was included, since  fledging success was found to be lower in the terminal 280 

year of old (≥ 6 years) females (Hammers et al., 2012). We also included age-at-death, to quantify the 281 

within-individual effect of age on reproductive success while controlling for selective disappearance 282 

(van de Pol and Verhulst, 2006, Hammers et al. 2012).  283 

In all models, non-significant interaction terms were removed sequentially (in order of least 284 

significance), so that the first order effects could be interpreted, and were only reported if of specific 285 

interest. All fixed effects remained in final models (regardless of significance) except for squared 286 

functions of continuous variables, which were removed when non-significant (see Whittingham et al., 287 

2006). Parameter estimates and significance of removed effects were determined by re-entering them 288 

into final models. Continuous fixed effects involved in squared effects and interactions were mean 289 

centered to reduce collinearity and aid interpretation (Schielzeth, 2010). Where model singularity 290 

errors occurred, we applied maximum a posteriori estimation using blme (v1.0-5; Dorie, 2013). To aid 291 



model convergence of GLMMs, we used the “BOBYQA” nonlinear optimization (Powell, 2009). Model 292 

fit was calculated as conditional R2 using MuMin (v1.43.17; Bartoń, 2019).  293 

Results 294 

Juvenile survival 295 

 Of the 711 juveniles included in our analysis, 545 survived to adulthood (>1 year-of-age). Juveniles 296 

with a higher condition index were more likely to survive to adulthood (Table 1; Fig. 1). The squared 297 

condition term revealed a ‘ceiling effect’; juvenile survival increased with condition at values < 0, 298 

above which juveniles shared the highest survival prospects (ca. 80%; Fig. 1). The non-parametric 299 

smoothing function for condition from the GAMM showed a very similar pattern compared to the 300 

quadratic condition term shown in Fig.1 (df = 2.618, F = 5.38, P = 0.001; Fig. S3). Juvenile survival also 301 

increased with tarsus length, but was not associated with age or sex (Table 1). Complete data for 302 

genetic factors (heterozygosity, MHC diversity, TLR3A and MHC Ase-ua4 allele presence), previously 303 

shown to influence juvenile survival, were available for 240 juveniles. In our model, none of these 304 

genetic factors were associated with survival (Table S2) and the observed juvenile survival-condition 305 

relationship remained significant while controlling for these genetic factors (Table S2). 306 

Adult Body mass 307 

As expected, adult body mass was higher in males and, in both sexes, increased with tarsus length and 308 

time of capture; in a similar manner to that observed with juvenile body mass (Table S1). While 309 

controlling for these factors, adult body mass was positively correlated with juvenile condition (Table 310 

2a; Fig. 2). This indicated that relatively heavier or lighter juveniles tended to remain relatively heavier 311 

or lighter, respectively, as adults. Adult body mass increased with age between individuals (i.e. cross-312 

sectional) and not within-individuals (longitudinal), but these slopes did not significantly differ (t = 313 

1.776, P = 0.076), indicating that the between-individual rate of increase was not greater than the 314 

within-individual lack of change. (Table 2a).  315 

Telomere length 316 

RTL tended to decreased both within and between individuals with increasing age (Table 2b). The 317 

within- and between individual rate of change in RTL did not significantly differ (t = -1.770, P = 0.078). 318 

Juvenile condition was not associated with overall adult RTL (Table 2b) nor the within-individual 319 

decline in RTL (Table 2b; ∆ age × Juvenile condition). Telomere length was not associated with sex or 320 

tarsus length (Table 2b). 321 

Annual adult survival 322 

Annual survival remained relatively stable at ca. 80% from one to seven years-of-age, beyond which 323 

annual survival declined with age (Fig. 3a). This decline in annual survival was confirmed by re-running 324 



the analysis with data ≥ 7 years-of-age (β = -0.2523 ± 0.086, z = -2.954, P = 0.003). Juvenile condition 325 

was positively associated with annual survival, independent of age (Table 3a; Age × Juvenile condition, 326 

Fig. 3b). Therefore, individuals with higher condition index as juveniles had higher annual survival 327 

throughout adult life. Annual survival was not influenced by sex or tarsus length (Table 3a) 328 

Annual reproductive success 329 

Neither year quality nor territory quality were associated with annual reproduction and so were 330 

removed as predictors to maximize sample size (N = 1034 versus N = 1242). Annual reproduction 331 

exhibited a humped relationship with age; increasing in early-life before peaking and declining from 332 

mid- to late-life (Fig. 4a). The age of the peak in annual reproduction (and thus the onset of 333 

reproductive senescence) differed between sexes (Fig. 4a), with female and male annual reproduction 334 

peaking at ca. 6 and 8 years-of-age. Annual reproduction was also lower in the terminal year (Table 335 

3b). Re-running the analysis on ages from the onset of reproductive senescence (≥ 6 years for females, 336 

≥ 8 years in males) confirmed that annual reproduction declined with advanced age, and that the slope 337 

of the decline was greatest in the terminal year (Age × Terminal year:  β = 0.442 ± 0.180, z = 2.459, P 338 

= 0.014, Fig. 4b). Juvenile condition was not associated with annual reproduction, nor with the age-339 

dependent change in annual reproduction (Table 3b; Age × Juvenile condition). Annual reproduction 340 

was not influenced by tarsus length (Table 3b).  341 

Discussion 342 

Juvenile condition (size-, sex- and time- corrected mass) was positively associated with survival to 343 

adulthood, independently of specific genetic factors. For individuals that survived to adulthood, 344 

juvenile condition was positively associated with adult body mass - indicating that individual 345 

differences in condition are maintained from the juvenile period to throughout adulthood. More 346 

importantly, the survival benefit of high juvenile condition persisted throughout adult-life. Therefore, 347 

juveniles that reached adulthood despite a low condition index still had poorer survival in a given year 348 

compared to adults that had a high juvenile condition index. The effect of juvenile condition on annual 349 

survival was constant with age, i.e. the age-dependent decline in survival from 7 years-of-age observed 350 

in this species did not change in respect to juvenile condition. So while juveniles in better condition 351 

are more likely to reach older ages (i.e. have greater longevity), they still exhibit the same pattern of 352 

survival senescence as those individuals that had poor condition as juveniles. There was no effect of 353 

juvenile condition on annual reproductive success, nor the maintenance of adult telomere length.  354 

That condition is positively associated with a juvenile’s likelihood of surviving to adulthood in the 355 

Seychelles warbler is consistent with findings across birds and mammals (reviewed in Ronget et al., 356 

2018). It is likely that a high condition index is indicative of a good natal environment, which 357 



subsequently leads to higher survival. Indeed, juvenile Seychelles warblers receiving cooperative nest 358 

care have higher provisioning rates and, consequently, higher mass than juveniles without helpers 359 

(Komdeur, 1994b; van Boheemen et al., 2019). Furthermore, the presence of helpers and higher food 360 

abundance have been associated with higher juvenile survival (Komdeur, 1992; Brouwer et al., 2006; 361 

Hammers et al., 2021). While these findings are correlative, experimental studies demonstrate that 362 

manipulations of natal/early-life environments have similar outcomes for juvenile mass/condition and 363 

survival in other species (e.g. Le Galliard, Ferrière and Clobert, 2005; Grace et al., 2017). Direct benefits 364 

of high condition also occur where this reflects more abundant energy stores (i.e. fat and protein), 365 

since newly independent juveniles lacking experience can be more vulnerable to starvation and 366 

exposure (e.g. Jones et al., 2017). In other systems, the benefits of energy storage may be traded 367 

against increased predation risk, resulting in a condition-survival relationship that becomes negative 368 

with increasing condition (Adriaensen et al., 1998; Blums et al., 2005). In contrast to these systems, 369 

we found a condition-survival relationship did not become negative, which was expected given that 370 

post-fledging predation does not occur in this population (Komdeur, 1996a). In fact, previous work in 371 

this species suggests that individual condition (size-adjusted mass) is primarily constrained by food 372 

availability and population density (Brouwer et al., 2009). Therefore, mass-derived condition is 373 

indicative of intrinsic condition in juveniles of this system.  374 

Juvenile condition was positively correlated with adulthood body mass in the Seychelles warbler, 375 

independently of permanent mass constraints such as sex and structural size. This indicates that 376 

between-individual differences in the variable component of juvenile mass (e.g. fat, muscle) is partially 377 

maintained across an individual’s lifetime. Similar within-individual consistencies between juvenile 378 

and adult condition have been observed in other bird species (Merilä and Svensson, 1997; Guillemain 379 

et al., 2013). Previous studies on adult Seychelles warblers have shown that mass is lost during energy-380 

demanding reproductive behaviors (Komdeur, 2001; van de Crommenacker, Komdeur and 381 

Richardson, 2011; Bebbington et al., 2017). Therefore, heavier juveniles may be better able to 382 

maintain or recover lost energy reserves (i.e. mass) in adult-life, perhaps contributing to heavier 383 

juveniles also having higher rates of annual survival observed in this study. Conversely, achieving high 384 

juvenile condition at the expense of other physiological components could have negative 385 

consequences for adult condition. One potential trade-off a is greater rate of telomere shortening in 386 

early-life, resulting in shorter telomere lengths in adulthood (Monaghan and Ozanne, 2018). In many 387 

systems, including the Seychelles warbler, short telomeres and/or greater telomere shorting in 388 

adulthood also reflects more stressful life-histories and reduced survival prospects (Barrett et al., 389 

2013; Monaghan and Ozanne, 2018; Wilbourn et al., 2018; Hammers et al., 2019). However, we found 390 

no association between juvenile condition and adult telomere length, which suggests that the initial 391 



benefit of high juvenile condition does not have long-term physiological costs, at least when measured 392 

with telomere length. 393 

We found that the survival benefits associated with high juvenile condition were not limited to the 394 

first year of life in the Seychelles warbler, with heavier juveniles also having higher annual survival 395 

throughout adulthood. This is consistent with our adult body mass analysis, which showed that 396 

individuals in better condition survived to older ages. Silver-spoon effects of early-life environment on 397 

adult survival have been observed in many wild populations (Reid et al., 2003; Van De Pol et al., 2006; 398 

Cartwright et al., 2014; Alberts, 2019). Such effects may occur because juveniles that are heavier 399 

and/or reared in better natal environments have a competitive advantage that leads to them 400 

occupying better quality habitat as adults (Verhulst, Perrins and Riddington, 1997; Both, Visser and 401 

Verboven, 1999; Van De Pol et al., 2006). Similarly, juveniles that survive to adulthood despite poor-402 

natal environments, and hence poor condition, may have required compensatory physiological 403 

mechanisms that have delayed survival costs (Metcalfe and Monaghan, 2001; Briga et al., 2017).  404 

The silver-spoon effect of juvenile condition also contributes to lifetime reproductive success, since 405 

this is strongly correlated with longevity in this species (Davies et al. 2021). However, juvenile 406 

condition did not affect the probability of producing offspring in a given year (after controlling for age-407 

effects), which is in contrast to studies that have measured the effect of the natal-environment on 408 

reproductive success (e.g. Nussey et al., 2007; Douhard et al., 2014). In this system, individual breeding 409 

attempts are strongly constrained by population density (i.e. limited availability of breeding positions) 410 

and seasonal food availability (Komdeur, 1992, 1996c). Additionally, the success of breeding attempts 411 

is likely to depend on fine-scale environmental variation, which was not accounted for in this study. 412 

Therefore, ecological constraints and confounds may limit the detectable influence of juvenile 413 

condition on annual reproductive success. Furthermore, the strong decline of annual reproduction in 414 

the terminal year likely means that poor-condition and/or illness in the current year outweighs the 415 

effect of past condition (Hammers et al., 2012).  416 

The effect on juvenile condition on annual survival was constant with age, and did not affect the onset 417 

or rate of survival senescence. This is consistent with a recent meta-analysis that found that the quality 418 

of early-life environments was not associated with survival senescence across 18 wild populations 419 

(Cooper and Kruuk, 2018). One explanation is that the majority of individuals that experience poor 420 

early-life conditions, or are themselves in poor condition, die before reaching senescent age (the age 421 

at which a population exhibits reduced survival), while the few individuals that reach old age share 422 

traits that mask the effects of early-life factors (“selection hypothesis”; Nol and Smith, 1987; Dugdale 423 

et al., 2011). Another possibility is that the silver-spoon effect of juvenile condition is not associated 424 



with early-life investments (e.g. growth, reproductive effort) that have delayed costs for late-life 425 

performance (Hunt et al., 2004; Spagopoulou et al., 2020). For example, Hammers et al. 2013 426 

identified in this species a trade-off between early-life reproductive effort and late-life survival; 427 

individuals that start breeding at earlier ages had an earlier onset of survival senescence. In contrast, 428 

our findings suggest that investments in early adult-life (in terms of age-specific annual reproduction) 429 

are not associated with juvenile condition. Therefore, juvenile condition may fail to generate such 430 

resource allocation trade-offs (i.e. between early-life reproductive effort and somatic maintenance) 431 

that influence senescence patterns.  432 

Our study shows that a juvenile’s mass-derived condition can be a marker of persistent individual 433 

differences in adult condition and performance. This finding reinforces the hypothesis that natal-434 

environmental factors that influence juvenile mass can have individual fitness consequences beyond 435 

juvenile survival. While juvenile mass was not found to predict individual differences in senescence 436 

rates, either directly or via associations with early-life investments, juvenile condition is positively 437 

associated with longevity, and thus the likelihood of reaching the age at which senescence occurs in 438 

the population.   439 
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Juvenile survival; conditional R2 = 0.061   

   

Predictor Estimate SE z P 

(Intercept) 1.159 0.307 3.769 <0.001 

Condition 0.243 0.093 2.613 0.009 

Condition2 -0.115 0.058 -1.989 0.047 

Age (months) 0.996 1.077 0.925 0.355 

Sex (female) -0.086 0.184 -0.469 0.639 

Tarsus length 0.208 0.095 2.195 0.028 

Random 699 individuals Variance     

Catch year 22 years 0.048     

a) Adult body mass; conditional R2 = 0.612  
        

Predictor Estimate SE t P 

(Intercept) 7.107 1.288 5.520 <0.001 

Juvenile condition 0.199 0.036 5.573 <0.001 

Sex (female) -0.848 0.102 -8.315 <0.001 

Tarsus length 0.338 0.050 6.800 <0.001 

Time of capture 0.001 0.000 4.769 <0.001 

Mean age 0.041 0.018 2.264 0.024 

∆ age -0.003 0.016 -0.191 0.848 

∆ age × Juvenile condition -0.002 0.016 -0.105 0.917 

Table 1: General linear mixed effects exploring predictors of juvenile survival to 

adulthood in Seychelles warblers. Significant effects are in bold. 

Table 2: Linear mixed effects models explaining variation in a) Adult body mass, and b) 

Relative telomere length in the Seychelles warbler. Significant effects are in bold. 
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a) Annual survival; conditional R2 = 0.245 
       

Predictor Estimate SE z P 

(Intercept) 1.176 0.252 4.674 0.000 

Age 0.148 0.117 1.260 0.208 

Age2 -0.132 0.059 -2.239 0.025 

Juvenile condition 0.175 0.080 2.185 0.029 

Sex (female) 0.066 0.147 0.449 0.653 

Tarsus length 0.112 0.076 1.477 0.140 

Age × juvenile condition 0.079 0.103 0.763 0.445 

Age2 × Juvenile condition -0.077 0.065 -1.186 0.236 

Random 1242 observations Variance     

Bird Identity 306 individuals 0.110     

Year 21 years 0.897     

          

b) Annual Reproductive success; conditional R2 = 0.287 
      

Predictor Estimate SE z P 

(Intercept) -1.136 0.261 -4.350 0.000 

Age 0.855 0.173 4.935 <0.001 

Random 704 observations Variance     

Bird Identity 311 individuals 0.114     

Observer 41 observers 0.040   

Residual   0.490      

     
b) Relative telomere length; conditional R2 = 0.178 

  
      

Predictor Estimate SE t P 

(Intercept) 0.933 0.025 37.666 <0.001 

Juvenile condition 0.009 0.010 0.933 0.353 

Sex (female) <0.001 0.019 0.000 1.000 

Tarsus length -0.002 0.010 -0.185 0.854 

∆ age -0.011 0.006 -1.770 0.078 

Mean age -0.009 0.005 -1.987 0.049 

Technician 0.081 0.022 3.709 <0.001 

∆ age × Juvenile condition 0.007 0.006 1.163 0.246 

Random 427 observations Variance     

Bird Identity 207 individuals 0.001     

qPCR plate 70 PCR plates 0.004     

Residual  0.032   

Table 3: General linear mixed effects models explaining variation in a) annual survival and 

b) annual reproductive success in adult Seychelles warblers. Significant effects are in bold. 



Age2 -0.417 0.093 -4.501 <0.001 

Juvenile condition 0.114 0.095 1.197 0.231 

Sex (female) -0.143 0.210 -0.680 0.496 

Tarsus length -0.026 0.090 -0.289 0.773 

Terminal year (no) 0.718 0.210 3.415 0.001 

Age at death 0.052 0.131 0.398 0.691 

Age × Sex (female) -0.597 0.205 -2.913 0.004 

Age2 × Sex (female) 0.070 0.134 0.523 0.601 

Age × Juvenile residual mass 0.094 0.113 0.828 0.408 

Age2 × Juvenile residual mass -0.129 0.072 -1.794 0.073 

Random 1242 observations Variance     

Bird Identity 306 individuals 0.485     

Year 21 years 0.359     
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Figure 1: The probability of juvenile Seychelles warblers surviving to adulthood (>1 year of age) relative 

to their juvenile condition index. The solid line is a binomial regression between survival (Y/N) and 

condition with 95% confidence limits. Raw data points depict the distribution of jittered observed 

survival counts (1 = survived, 0 = deceased).  
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Figure 2: The relationship between juvenile condition and adult (>1 year of age) body mass in the 

Seychelles warbler. The fit-line is a linear regression with 95% confidence limits. Points depict raw 

data. 

Figure 3: The probability of adult Seychelles warblers surviving to the next year relative to (a) age 

and (b) juvenile condition. The fit-lines are model-predicted survival curves with 95% confidence 

limits. Points with error bars are mean survival and binomial 95% confidence intervals of raw data, 

grouped by (a) age and (b) percentiles of juvenile condition; note that the x-axis position of points 

corresponds to the percentile distribution of juvenile condition. In text numbers in panel (a) refer 

to sample sizes per age. 
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  803 Figure 4: The probability of adult Seychelles warblers producing an independent offspring in 

a year relative to age and (a) sex and (b) terminal year (yes/no). The fit-lines are model-

predicted probability curves with 95% confidence limits. Points with error bars are mean 

offspring and binomial 95% confidence intervals of raw data, grouped by age per sex (a) and 

age per terminal year (b). In text numbers refer to the sample sizes per age per grouping 

variable. Males and females had differing onsets of decline in annual reproduction (a), and 

the rate of decline was greatest in the terminal year (b). 


