Literature Cited
1.
Abraham, J.O., Hempson, G.P. & Staver, A.C. (2019). Drought‐response
strategies of savanna herbivores. Ecology and evolution , 9,
7047-7056.
2.
Albani, M., Moorcroft, P.R., Ellison, A.M., Orwig, D.A. & Foster, D.R.
(2010). Predicting the impact of hemlock woolly adelgid on carbon
dynamics of eastern United States forests. Canadian Journal of
Forest Research , 40, 119-133.
3.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M. et al. (2010). A global overview of drought and
heat-induced tree mortality reveals emerging climate change risks for
forests. Forest ecology and management , 259, 660-684.
4.
Anastasio, O.E. (2020). Impacts of invasive ant-hemipteran interaction,
edge effects and habitat complexities on the spatial distribution of
ants. Clark University.
5.
Beardsley, J.W., Su, T.H., McEwen, F. & Gerling, D. (1982). Field
investigations on the interrelationships of the big-headed ant, the gray
pineapple mealybug, and pineapple mealybug wilt disease in Hawaii.
6.
Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. (2017). Recent
human history governs global ant invasion dynamics. Nature Ecology
& Evolution , 1, 0184.
7.
Biggs, R. & Jacobs, O. (2002). The impact of the African elephant on
marula trees in the Kruger National Park. South African Journal of
Wildlife Research-24-month delayed open access , 32, 13-22.
8.
Bradshaw, C.J., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier,
A. et al. (2016). Massive yet grossly underestimated global costs
of invasive insects. Nature communications , 7, 1-8.
9.
Caylor, K.K., Gitonga, J. & Martins, D.J. (2020). Mpala Research Centre
Meteorological and Hydrological Dataset. Summary Weather data 2018-2020,
Laikipia, Kenya. Mpala Research Centre.
10.
Chamberlain, S.A. & Holland, J.N. (2009). Quantitative synthesis of
context dependency in ant–plant protection mutualisms. Ecology ,
90, 2384-2392.
11.
Clark, K.L., Skowronski, N. & Hom, J. (2010). Invasive insects impact
forest carbon dynamics. Global Change Biology , 16, 88-101.
12.
Cockfield, S.D., Potter, D.A. & Houtz, R.L. (1987). Chlorosis and
reduced photosynthetic CO2 assimilation of Euonymus fortunei infested
with euonymus scale (Homoptera: Diaspididae). Environmental
entomology , 16, 1314-1318.
13.
Coverdale, T.C., Goheen, J.R., Palmer, T.M. & Pringle, R.M. (2018).
Good neighbors make good defenses: associational refuges reduce defense
investment in African savanna plants. Ecology , 99, 1724-1736.
14.
Crooks, J.A. (2005). Lag times and exotic species: The ecology and
management of biological invasions in slow-motion. Ecoscience ,
12, 316-329.
15.
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H.M., Alves-Silva, E.,
Fagundes, R., Lange, D. et al. (2016). Loss and gains in
ant–plant interactions mediated by extrafloral nectar: fidelity,
cheats, and lies. Insectes Sociaux , 63, 207-221.
16.
Demian, N. & Tarnita, C.E. (2019). Ant-plant-hemipteran interactions
between non-native species in Laikipia, Kenya. In: Ecology and
Evolutionary Biology . Princeton University.
17.
Eastwood, R. & Fraser, A.M. (1999). Associations between lycaenid
butterflies and ants in Australia. Australian Journal of Ecology ,
24, 503-537.
18.
Englund, R.A. (2008). Invasive species threats to native aquatic insect
biodiversity and conservation measures in Hawai’i and French Polynesia.
In: Insect Conservation and Islands . Springer, pp. 221-234.
19.
Farquhar, G.D. & Sharkey, T.D. (1982). Stomatal conductance and
photosynthesis. Annual review of plant physiology , 33, 317-345.
20.
Fiala, B., Maschwitz, U., Pong, T.Y. & Helbig, A.J. (1989). Studies of
a South East Asian ant-plant association: protection of Macaranga trees
by Crematogaster borneensis. Oecologia , 79, 463-470.
21.
Finér, L., Jurgensen, M.F., Domisch, T., Kilpeläinen, J., Neuvonen, S.,
Punttila, P. et al. (2013). The role of wood ants (Formica rufa
group) in carbon and nutrient dynamics of a boreal Norway spruce forest
ecosystem. Ecosystems , 16, 196-208.
22.
Fox-Dobbs, K., Doak, D.F., Brody, A.K. & Palmer, T.M. (2010). Termites
create spatial structure and govern ecosystem function by affecting N-2
fixation in an East African savanna. Ecology , 91, 1296-1307.
23.
Frederickson, M.E., Greene, M.J. & Gordon, D.M. (2005). ‘Devil’s
gardens’ bedevilled by ants. Nature , 437, 495-496.
24.
Freeland, W.J., Calcott, P. & Anderson, L.R. (1985). Tannins and
saponin: interaction in herbivore diets. Biochemical Systematics
and Ecology , 13, 189-193.
25.
Fuster, F., Kaiser-Bunbury, C.N. & Traveset, A. (2020). Pollination
effectiveness of specialist and opportunistic nectar feeders influenced
by invasive alien ants in the Seychelles. American Journal of
Botany .
26.
Gadd, M.E., Young, T.P. & Palmer, T.M. (2001). Effects of simulated
shoot and leaf herbivory on vegetative growth and plant defense in
Acacia drepanolobium. Oikos , 92, 515-521.
27.
Gaigher, R., Samways, M.J. & Van Noort, S. (2013). Saving a tropical
ecosystem from a destructive ant-scale (Pheidole megacephala, Pulvinaria
urbicola) mutualism with support from a diverse natural enemy
assemblage. Biological Invasions , 15, 2115-2125.
28.
Gandhi, K.J. & Herms, D.A. (2010). Direct and indirect effects of alien
insect herbivores on ecological processes and interactions in forests of
eastern North America. Biological Invasions , 12, 389-405.
29.
Gaume, L., Zacharias, M. & Borges, R.M. (2005). Ant–plant conflicts
and a novel case of castration parasitism in a myrmecophyte.Evolutionary Ecology Research , 7, 435-452.
30.
Gebrehiwot, K., Muys, B., Haile, M. & Mitloehner, R. (2005). The use of
plant water relations to characterize tree species and sites in the
drylands of northern Ethiopia. Journal of Arid Environments , 60,
581-592.
31.
Gebrekirstos, A., Teketay, D., Fetene, M. & Mitlöhner, R. (2006).
Adaptation of five co-occurring tree and shrub species to water stress
and its implication in restoration of degraded lands. Forest
Ecology and Management , 229, 259-267.
32.
Glanz-Idan, N. & Wolf, S. (2020). Upregulation of photosynthesis in
mineral nutrition-deficient tomato plants by reduced source-to-sink
ratio. Plant Signal Behav , 15, 1712543.
33.
Glaser, B., Lehmann, J., Führböter, M., Solomon, D. & Zech, W. (2001).
Carbon and nitrogen mineralization in cultivated and natural savanna
soils of Northern Tanzania. Biology and fertility of soils , 33,
301-309.
34.
Goheen, J.R. & Palmer, T.M. (2010). Defensive plant-ants stabilize
megaherbivore-driven landscape change in an African savanna.Current Biology , 20, 1768-1772.
35.
Golan, K., Rubinowska, K., Kmieć, K., Kot, I., Górska-Drabik, E.,
Łagowska, B. et al. (2015). Impact of scale insect infestation on
the content of photosynthetic pigments and chlorophyll fluorescence in
two host plant species. Arthropod-Plant Interactions , 9, 55-65.
36.
Goldschmidt, E.E. & Huber, S.C. (1992). Regulation of Photosynthesis by
End-Product Accumulation in Leaves of Plants Storing Starch, Sucrose,
and Hexose Sugars. Plant Physiology , 99, 1443-1448.
37.
Gourlay, I.D. (1995). Growth ring characteristics of some African Acacia
species. Journal of tropical ecology , 121-140.
38.
Haavik, L., Stephen, F., Fierke, M., Salisbury, V., Leavitt, S. &
Billings, S. (2008). Dendrochronological parameters of northern red oak
(Quercus rubra L.(Fagaceae)) infested with red oak borer (Enaphalodes
rufulus (Haldeman)(Coleoptera: Cerambycidae)). Forest Ecology and
Management , 255, 1501-1509.
39.
Haile, G.G., Tang, Q., Hosseini‐Moghari, S.M., Liu, X., Gebremicael, T.,
Leng, G. et al. (2020). Projected impacts of climate change on
drought patterns over East Africa. Earth’s Future , 8,
e2020EF001502.
40.
Heil, M., Fiala, B., Linsenmair, K.E., Zotz, G. & Menke, P. (1997).
Food body production in Macaranga triloba (Euphorbiaceae): a plant
investment in anti-herbivore defence via symbiotic ant partners.Journal of Ecology , 847-861.
41.
Henry, C., John, G.P., Pan, R., Bartlett, M.K., Fletcher, L.R.,
Scoffoni, C. et al. (2019). A stomatal safety-efficiency
trade-off constrains responses to leaf dehydration. Nature
communications , 10, 1-9.
42.
Hill, J.K., Rosengaus, R.B., Gilbert, F.S. & Hart, A.G. (2013).
Invasive ants-are fire ants drivers of biodiversity loss.Ecological Entomology , 38, 539-539.
43.
Hochberg, U., Rockwell, F.E., Holbrook, N.M. & Cochard, H. (2018).
Iso/anisohydry: a plant–environment interaction rather than a simple
hydraulic trait. Trends in Plant Science , 23, 112-120.
44.
Hoffmann, B.D. & Parr, C.L. (2008). An invasion revisited: the African
big-headed ant (Pheidole megacephala) in northern Australia.Biological invasions , 10, 1171-1181.
45.
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A.,
Högberg, M.N. et al. (2001). Large-scale forest girdling shows
that current photosynthesis drives soil respiration. Nature , 411,
789-792.
46.
Holway, D.A., Lach, L., Suarez, A.V., Tsutsui, N.D. & Case, T.J.
(2002). The causes and consequences of ant invasions. Annual
review of ecology and systematics , 33, 181-233.
47.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P.,
Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem
functioning: A consensus of current knowledge. Ecological
Monographs , 75, 3-35.
48.
Horvitz, C.C. & Schemske, D.W. (1986). Seed dispersal of a neotropical
myrmecochore: variation in removal rates and dispersal distance.Biotropica , 319-323.
49.
Huntzinger, M., Karban, R., Young, T.P. & Palmer, T.M. (2004).
Relaxation of induced indirect defenses of acacias following exclusion
of mammalian herbivores. Ecology , 85, 609-614.
50.
Illius, A.W. & O’Connor, T.G. (1999). On the relevance of
nonequilibrium concepts to arid and semiarid grazing systems.Ecological applications , 9, 798-813.
51.
Inoue, Y., Ichie, T., Kenzo, T., Yoneyama, A., Kumagai, T.o. &
Nakashizuka, T. (2017). Effects of rainfall exclusion on leaf gas
exchange traits and osmotic adjustment in mature canopy trees of
Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain
forest. Tree Physiology , 37, 1301-1311.
52.
Ishida, A., Nakano, T., Yazaki, K., Matsuki, S., Koike, N., Lauenstein,
D.L. et al. (2008). Coordination between leaf and stem traits
related to leaf carbon gain and hydraulics across 32 drought-tolerant
angiosperms. Oecologia , 156, 193.
53.
Jha, P. & Mohapatra, K.P. (2010). Leaf litterfall, fine root production
and turnover in four major tree species of the semi-arid region of
India. Plant and Soil , 326, 481-491.
54.
Kebbas, S., Lutts, S. & Aid, F. (2015). Effect of drought stress on the
photosynthesis of Acacia tortilis subsp. raddiana at the young seedling
stage. Photosynthetica , 53, 288-298.
55.
Keenan, T.F. & Niinemets, Ü. (2016). Global leaf trait estimates biased
due to plasticity in the shade. Nature Plants , 3, 16201.
56.
King, E.G. & Caylor, K.K. (2010). Herbivores and mutualistic ants
interact to modify tree photosynthesis. The New phytologist , 187,
17-21.
57.
Kos, M., Hoetmer, A.J., Pretorius, Y., de Boer, W.F., de Knegt, H.,
Grant, C. et al. (2012). Seasonal diet changes in elephant and
impala in mopane woodland. European journal of wildlife research ,
58, 279-287.
58.
Kozlov, M.V. & Zvereva, E.L. (2017). Background insect herbivory:
impacts, patterns and methodology. In: Progress in Botany Vol.
79 . Springer, pp. 313-355.
59.
Kulikowski II, A.J. (2020). Ant–scale mutualism increases scale
infestation, decreases folivory, and disrupts biological control in
restored tropical forests. Biotropica , 52, 709-716.
60.
Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T.,
Carroll, A.L. et al. (2008). Mountain pine beetle and forest
carbon feedback to climate change. Nature , 452, 987-990.
61.
Lach, L., Hobbs, R.J. & Majer, J.D. (2009). Herbivory-induced
extrafloral nectar increases native and invasive ant worker survival.Population Ecology , 51, 237-243.
62.
Lach, L. & Hoffmann, B.D. (2011). Are invasive ants better
plant‐defense mutualists? A comparison of foliage patrolling and
herbivory in sites with invasive yellow crazy ants and native weaver
ants. Oikos , 120, 9-16.
63.
Lambers, H., Chapin III, F.S. & Pons, T.L. (2008). Plant
physiological ecology . Springer Science & Business Media.
64.
Martínez‐Vilalta, J. & Garcia‐Forner, N. (2017). Water potential
regulation, stomatal behaviour and hydraulic transport under drought:
deconstructing the iso/anisohydric concept. Plant, Cell &
Environment , 40, 962-976.
65.
Martins, D.J. (2010). Not all ants are equal: obligate acacia ants
provide different levels of protection against mega‐herbivores.African Journal of Ecology , 48, 1115-1122.
66.
Mathur, S., Agrawal, D. & Jajoo, A. (2014). Photosynthesis: response to
high temperature stress. Journal of Photochemistry and
Photobiology B: Biology , 137, 116-126.
67.
McDowell, N.G. (2011). Mechanisms Linking Drought, Hydraulics, Carbon
Metabolism, and Vegetation Mortality. Plant Physiology , 155,
1051-1059.
68.
McGarvey, R.C., Martin, T.A. & White, T.L. (2004). Integrating
within-crown variation in net photosynthesis in loblolly and slash pine
families. Tree Physiology , 24, 1209-1220.
69.
McGeoch, M.A., Lythe, M.J., Henriksen, M.V. & McGrannachan, C.M.
(2015). Environmental impact classification for alien insects: a review
of mechanisms and their biodiversity outcomes. Current Opinion in
Insect Science , 12, 46-53.
70.
Meyer, G.A. & Whitlow, T.H. (1992). Effects of leaf and sap feeding
insects on photosynthetic rates of goldenrod. Oecologia , 92,
480-489.
71.
Milligan, P.D., Prior, K.M. & Palmer, T.M. (2016). An invasive ant
reduces diversity but does not disrupt a key ecosystem function in an
African savanna. Ecosphere , 7, e01502.
72.
Morales, C.L., Sáez, A., Garibaldi, L.A. & Aizen, M.A. (2017).
Disruption of pollination services by invasive pollinator species. In:Impact of biological invasions on ecosystem services . Springer,
pp. 203-220.
73.
Moutinho, P., Nepstad, D. & Davidson, E. (2003). Influence of
leaf‐cutting ant nests on secondary forest growth and soil properties in
Amazonia. Ecology , 84, 1265-1276.
74.
Muraoka, H., Saigusa, N., Nasahara, K.N., Noda, H., Yoshino, J., Saitoh,
T.M. et al. (2010). Effects of seasonal and interannual
variations in leaf photosynthesis and canopy leaf area index on gross
primary production of a cool-temperate deciduous broadleaf forest in
Takayama, Japan. Journal of Plant Research , 123, 563-576.
75.
Nebauer, S.G., Renau-Morata, B., Guardiola, J.L. & Molina, R.-V.
(2011). Photosynthesis down-regulation precedes carbohydrate
accumulation under sink limitation in Citrus. Tree Physiology ,
31, 169-177.
76.
Ness, J. & Bronstein, J.L. (2004). The effects of invasive ants on
prospective ant mutualists. Biological Invasions , 6, 445-461.
77.
Ness, J.H. (2006). A mutualism’s indirect costs: the most aggressive
plant bodyguards also deter pollinators. Oikos , 113, 506-514.
78.
O’Dowd, D.J. (1980). Pearl bodies of a neotropical tree, Ochroma
pyramidale: ecological implications. American Journal of Botany ,
67, 543-549.
79.
Paini, D.R., Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S.P. &
Thomas, M.B. (2016). Global threat to agriculture from invasive species.Proceedings of the National Academy of Sciences , 113, 7575-7579.
80.
Palmer, T.M. (2004). Wars of attrition: colony size determines
competitive outcomes in a guild of African acacia ants. Animal
Behaviour , 68, 993-1004.
81.
Pellew, R.A.P. (1983). The impacts of elephant, giraffe and fire upon
the Acacia tortilis woodlands of the Serengeti. African Journal of
Ecology , 21, 41-74.
82.
Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C.,
O’connell, C. et al. (2001). Economic and environmental threats
of alien plant, animal, and microbe invasions. Agriculture,
ecosystems & environment , 84, 1-20.
83.
Pringle, E.G. (2016). Integrating plant carbon dynamics with mutualism
ecology. New Phytologist , 210, 71-75.
84.
Prior, K.M. & Palmer, T.M. (2018). Economy of scale: third partner
strengthens a keystone ant-plant mutualism. Ecology , 99, 335-346.
85.
Riginos, C., Grace, J.B., Augustine, D.J. & Young, T.P. (2009). Local
versus landscape-scale effects of savanna trees on grasses.Journal of Ecology , 97, 1337-1345.
86.
Riginos, C., Karande, M.A., Rubenstein, D.I. & Palmer, T.M. (2015).
Disruption of a protective ant–plant mutualism by an invasive ant
increases elephant damage to savanna trees. Ecology , 96, 654-661.
87.
Risch, A.C., Jurgensen, M.F., Schütz, M. & Page-Dumroese, D.S. (2005).
The contribution of red wood ants to soil C and N pools and CO2
emissions in subalpine forests. Ecology , 86, 419-430.
88.
Rodriguez-Cabal, M.A., Stuble, K.L., Guénard, B., Dunn, R.R. & Sanders,
N.J. (2012). Disruption of ant-seed dispersal mutualisms by the invasive
Asian needle ant (Pachycondyla chinensis). Biological Invasions ,
14, 557-565.
89.
Roques, K.G., O’Connor, T.G. & Watkinson, A.R. (2001). Dynamics of
shrub encroachment in an African savanna: relative influences of fire,
herbivory, rainfall and density dependence. Journal of Applied
Ecology , 38, 268-280.
90.
Rubanza, C.D., Shem, M.N., Bakengesa, S.S., Ichinohe, T. & Fujihara, T.
(2007). The content of protein, fibre and minerals of leaves of selected
Acacia species indigenous to north-western Tanzania. Archives of
animal nutrition , 61, 151-156.
91.
Savage, A.M., Rudgers, J.A. & Whitney, K.D. (2009). Elevated dominance
of extrafloral nectary‐bearing plants is associated with increased
abundances of an invasive ant and reduced native ant richness.Diversity and Distributions , 15, 751-761.
92.
Scoffoni, C., Sack, L. & Ort, D. (2017). The causes and consequences of
leaf hydraulic decline with dehydration. Journal of Experimental
Botany , 68, 4479-4496.
93.
Sharpe, P., Newton, R. & Spence, R. (1986). Forest pests: the role of
phloem osmotic adjustment in the defensive response of conifers to bark
beetle attack. In: Stress physiology and forest productivity .
Springer, pp. 113-131.
94.
Shongwe, M.E., van Oldenborgh, G.J., van den Hurk, B. & van Aalst, M.
(2011). Projected changes in mean and extreme precipitation in Africa
under global warming. Part II: East Africa. Journal of climate ,
24, 3718-3733.
95.
Simberloff, D. (2011). How common are invasion-induced ecosystem
impacts? Biological invasions , 13, 1255-1268.
96.
Stanton, M.L. & Palmer, T.M. (2011). The high cost of mutualism:
effects of four species of East African ant symbionts on their
myrmecophyte host tree. Ecology , 92, 1073-1082.
97.
Stanton, M.L., Palmer, T.M., Young, T.P., Evans, A. & Turner, M.L.
(1999). Sterilization and canopy modification of a swollen thorn acacia
tree by a plant-ant. Nature , 401, 578-581.
98.
Strayer, D.L., Eviner, V.T., Jeschke, J.M. & Pace, M.L. (2006).
Understanding the long-term effects of species invasions. Trends
in ecology & evolution , 21, 645-651.
99.
Sumbele, S., Fotelli, M.N., Nikolopoulos, D., Tooulakou, G., Liakoura,
V., Liakopoulos, G. et al. (2012). Photosynthetic capacity is
negatively correlated with the concentration of leaf phenolic compounds
across a range of different species. AoB Plants , 2012.
100.
Szarek, S. & Woodhouse, R. (1978). Ecophysiological studies of Sonoran
Desert plants. IV. Seasonal photosynthetic capacities of Acacia greggii
and Cercidium microphyllum. Oecologia , 221-229.
101.
Vanbergen, A.J., Espíndola, A. & Aizen, M.A. (2018). Risks to
pollinators and pollination from invasive alien species. Nature
Ecology & Evolution , 2, 16-25.
102.
Veblen, K.E. (2008). Season‐and herbivore‐dependent competition and
facilitation in a semiarid savanna. Ecology , 89, 1532-1540.
103.
Villamil, N., Boege, K. & Stone, G.N. (2020). Ant guards influence the
mating system of their plant hosts by altering pollinator behaviour.bioRxiv , 2020.2002.2011.943431.
104.
Ward, D. & Young, T.P. (2002). Effects of large mammalian herbivores
and ant symbionts on condensed tannins of Acacia drepanolobium in Kenya.Journal of Chemical Ecology , 28, 921-937.
105.
Wetterer, J.K. (2012). Worldwide spread of the African big-headed ant,
Pheidole megacephala (Hymenoptera: Formicidae). Myrmecological
News , 17, 51-62.
106.
Wiley, E. & Helliker, B. (2012). A re‐evaluation of carbon storage in
trees lends greater support for carbon limitation to growth. New
Phytologist , 195, 285-289.
107.
Wilson, C.M., Schaeffer, R.N., Hickin, M.L., Rigsby, C.M., Sommi, A.F.,
Thornber, C.S. et al. (2018). Chronic impacts of invasive
herbivores on a foundational forest species: a whole-tree perspective.Ecology , 99, 1783-1791.
108.
Young, T.P. & Okello, B.D. (1998). Relaxation of an induced defense
after exclusion of herbivores: spines on Acacia drepanolobium.Oecologia , 115, 508-513.
109.
Young, T.P., Stubblefield, C.H. & Isbell, L.A. (1996). Ants on
swollen-thorn acacias: species coexistence in a simple system.Oecologia , 109, 98-107.
110.
Zhang, Z., Huang, M., Zhao, X. & Wu, L. (2019). Adjustments of leaf
traits and whole plant leaf area for balancing water supply and demand
in Robinia pseudoacacia under different precipitation conditions on the
Loess Plateau. Agricultural and Forest Meteorology , 279, 107733.
111.
Zhou, A.M., Liang, G.W., Zeng, L., Lu, Y.Y. & Xu, Y.J. (2017).
Solenopsis invicta suppress native ant by excluding mutual exploitation
from the invasive mealybug, Phenacoccus solenopsis. Pakistan
Journal of Zoology , 49.