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Summary

In this paper, being investigated an initial - boundary value problem for a one -
dimensional wave equation with a nonlinear source of variable order and nonlinear
dissipation at the boundary. The existence of a local solution of the problem under
consideration is proved. Then the question of the absence of global solutions is inves-
tigated. Depending on the relationship between the order of growth of the nonlinear
source and the nonlinear boundary dissipation, different results are obtained on the
blow - up of weak solutions in a finite time interval.
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1 INTRODUCTION

In this paper, we consider initial - boundary value problem for the following nonlinear hyperbolic equation

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 𝑎1 |𝑢|
𝑝(𝑥)−2 𝑢, 0 ≤ 𝑥 ≤ 𝑙, 𝑡 > 0 (1)

with the initial and boundary conditions

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), 0 ≤ 𝑥 ≤ 𝑙, (2)

𝑢(0, 𝑡) = 0, 𝑡 > 0, (3)

𝑢𝑥(𝑙, 𝑡) +
[

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−2 + 𝑎2

]

𝑢𝑡(𝑙, 𝑡) = 𝑎3 |𝑢(𝑙, 𝑡)|
𝑞−2 𝑢(𝑙, 𝑡), 𝑡 > 0, (4)

where (0, 𝑙) is a bounded open interval in 𝑅 = (−∞,+∞), 𝑎1, 𝑎2, 𝑎3, 𝑟, 𝑞 are real - valued constants to be refined later,
𝑝(𝑥), 𝑢0(𝑥), 𝑢1(𝑥) are real - valued functions.

Mathematical models of some physical processes such as the flow of electrorheological fluids or fluids with temperature -
dependent viscosity, filtration in porous media, nonlinear viscoelasticity, etc., are reduced to hyperbolic equations with variable
growth rates of nonlinearity. More detailed information on these problems can be found in the papers1,2,3. However, to best of
our knowledge there are only a few works in which hyperbolic problems with nonlinearities of the variable exponent type are
investigated (see, for example,4,5,6,7). In the papers4,5, the solvability of initial - boundary value problems with the Dirichlet
boundary condition is investigate for nonlinear hyperbolic equations with variable nonlinearity exponents. The absence of global
solutions the initial - boundary value problem for the wave equation with variable exponents is investigated in the papers6,7.

Initial - boundary value problems for nonlinear wave equations is the subject of numerous studies. In these papers, the exis-
tence, blow - up and asymptotics of smooth and weak solutions were investigated. See, for example,8,9,10,11,12,13,14,15,16,17 and the
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references indicated in these papers. A wave equation given in the following form

𝑢𝑡𝑡 − Δ𝑢 + 𝛼 |
|

𝑢𝑡||
𝑚−2 𝑢𝑡 = 𝛽 |𝑢|𝑝−2 𝑢, 𝑥 ∈ Ω, 𝑡 > 0, (5)

where Ω is a bounded domain in 𝑅𝑛, but 𝛼 and 𝛽 are positive constants, together with the initial and boundary conditions of
the Dirichlet type has been carefully studied. The case of linear damping, i.e., when 𝑚 = 2, was first considered by Levin and
he showed that solutions the problem (5) with negative initial energy blow - up in a finite time10,11,13,14,15,16. The main method
used in10 and11 is the "concavity method", the main idea of which is to construct a positive - definite functional 𝜃(𝑡) depending
on the solution and to show that 𝜃−𝛼(𝑡) is a concave function depending on 𝑡, for some 𝛼 > 0.

Later, this method was developed for the study of nonlinear wave equations, namely, when 𝑚 > 2 or 𝑝 > 2. For example,
Georgiev and Todorova12 extended Levin’s result to the nonlinear damping case, when 𝑚 > 2. The interaction between the
damping term 𝛼 |

|

𝑢𝑡||
𝑚−2 𝑢𝑡 and focusing source 𝛽 |𝑢|𝑝−2 𝑢 makes the problem more interesting. Similar studies were carried out

for various equations (see, for example,13,14,15,16,17).
Various problems of mechanics and physics are reduced to the study of initial - boundary value problems for wave equations

with a nonlinear boundary condition (see, for example,18). Numerous studies have been carried out in this direction (see, for
example,19,20,21,22,23,24,25,26,27,28,29,30 and the references indicated in these works). In the papers28,29, the phenomena of blow –
up solutions of the mixed problem for the one - dimensional wave equations with a non - stationary boundary condition were
investigated.

In this paper, we at first investigate the local solvability of the problem (1) - (4). To study the existence and uniqueness of the
local solution, well - known theorems from the monograph31 are used. For this purpose, as in21,22,23,24,25,26,27, at first problem
(1) - (4) is reduced to the Cauchy problem for an operator - differential equation in some Hilbert space.

The purpose of this work is to investigate, blow – up of the solutions in a finite time depending on the interaction between
the boundary damping − |

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−2 𝑢𝑡(𝑙, 𝑡) and the internal focusing source |𝑢(𝑥, 𝑡)|𝑝(𝑥)−2 𝑢(𝑥, 𝑡) and the boundary source

|𝑢(𝑙, 𝑡)|𝑞−2 𝑢(𝑙, 𝑡). We will consider this issue in the following cases:

𝑎) 𝑎1 > 0, 𝑎2 = 0, 𝑎3 ≥ 0, 2𝑟 < 𝑝1 + 2, 𝑝1 = min
0≤𝑥≤𝑙

𝑝(𝑥), 𝐸(0) < 0;

𝑏) 𝑎1 > 0, 𝑎3 = 0, 𝑝′(𝑥) ≤ 0, 2𝑟 ≥ 𝑝1 + 2 and 𝐸(0) < − 1
𝑒
∫ 𝑙
0
|
𝑥𝑝′(𝑥)

|

𝑝2(𝑥)
𝑑𝑥.

This paper, in addition to the introduction, consists of 6 sections. In section 2 we formulate the problem statement and present
the main results on the existence of local solutions. In section 3 we recall the definitions of the variable exponent and give some
auxiliary lemmas. In section 4 we present the proofs of theorems on the existence and uniqueness of local solutions. In Section
5 present the proof of theorem a blow - up for some solutions with negative initial energy subject to condition a). Section 6 we
presents the proof of theorem a blow - up for some solutions subject to condition b). Section 7 contains the proof of the auxiliary
lemmas.

2 STATEMENT OF THE PROBLEM AND THE MAIN RESULTS

Suppose that the 𝑝(⋅) is a measurable function in [0, 𝑙] and

2 ≤ 𝑝1 ≤ 𝑝(𝑥) ≤ 𝑝2 < +∞, 0 ≤ 𝑥 ≤ 𝑙, (6)

where 𝑝1 = ess inf
x∈[0,𝑙]

𝑝(𝑥), 𝑝2 = ess sup
x∈[0,𝑙]

𝑝(𝑥).

We also assume that 𝑝(𝑥) satisfies the log - Hölder continuity condition, i.e. for any 𝑥, 𝑦 ∈ [0, 𝑙] ,

|𝑝(𝑥) − 𝑝(𝑦)| ≤ 𝐶
|log |𝑥 − 𝑦||

, (7)

where |𝑥 − 𝑦| < 𝛿, 𝐶 > 0, 0 < 𝛿 < 1.
Let’s

𝑞 ≥ 2. (8)
Let us introduce the notation: 𝐻𝑘 = 𝑊 𝑘

2 (0, 𝑙) and 0𝐻1 =
{

𝑣 ∶ 𝑣 ∈ 𝐻1, 𝑣(0) = 0
}

.
The energy functional corresponding to the problem (1) - (4) is determined by the equality

𝐸(𝑡) = 𝐸0(𝑡) − 𝐺0(𝑢(⋅, 𝑡)), (9)
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where

𝐸0(𝑡) =
1
2

⎡

⎢

⎢

⎣

𝑙

∫
0

|

|

𝑢𝑡(⋅, 𝑡)||
2 𝑑𝑥 +

𝑙

∫
0

|

|

𝑢𝑥(⋅, 𝑡)||
2 𝑑𝑥

⎤

⎥

⎥

⎦

, (10)

𝐺0(𝑢(⋅, 𝑡)) = 𝑎1

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑝(𝑥)

𝑝(𝑥)
𝑑𝑥 +

𝑎3
𝑞
|𝑢(𝑙, 𝑡)|𝑞 . (11)

A strong solution to problem (1) - (4) is a function 𝑢(𝑥, 𝑡) defined in the domain (0, 𝑇 ) × (0, 𝑙), such that 𝑢(⋅) ∈
𝐿∞(0, 𝑇 ; 𝐻2 ⋂

0𝐻1),𝑢𝑡(⋅) ∈ 𝐿∞(0, 𝑇 ; 0𝐻1), 𝑢𝑡𝑡(⋅) ∈ 𝐿∞(0, 𝑇 ;𝐿2(0, 𝑙)) and for almost all (𝑥, 𝑡) ∈ (0, 𝑇 ) × (0, 𝑙) satisfying
equation (1), boundary conditions (2), (3) and initial conditions (4).

By a weak solution to problem (1) - (4) we mean such a function 𝑢(⋅) defined in the domain (0, 𝑇 ) × (0, 𝑙) such that

1) 𝑢(⋅) ∈ 𝐶𝑤
(

[0, 𝑇 ] ; 0𝐻1) , 𝑢𝑡(⋅) ∈ 𝐶𝑤
(

[0, 𝑇 ] ;𝐿2(0, 𝑙)
)

;

2) The trace of 𝑢(⋅) in (0, 𝑇 ) × {𝑙} that exists by the trace theorem32, has a distributional time derivative on (0, 𝑇 ) × {𝑙} and
belongs to 𝐿𝑟(0, 𝑇 ), i.e. 𝑢𝑡(𝑙, 𝑡) ∈ 𝐿𝑟(0, 𝑇 );

3) For all 𝜂(⋅) ∈ 𝐶𝑤
(

[0, 𝑇 ] ; 0𝐻1) , where 𝜂𝑡(⋅) ∈ 𝐶𝑤
(

[0, 𝑇 ] ;𝐿2(0, 𝑙)
)

,𝜂𝑡(𝑙, ⋅) ∈ 𝐿𝑟(0, 𝑇 ), 𝜂(𝑥, 𝑇 ) = 0, 0 ≤ 𝑥 ≤ 𝑙 the
following equalities hold

𝑇

∫
0

𝑙

∫
0

[

−𝑢𝑡(𝑥, 𝑡)𝜂𝑡(𝑥, 𝑡) + 𝑢𝑥(𝑥, 𝑡)𝜂𝑥(𝑥, 𝑡)
]

𝑑𝑥𝑑𝑡+

+

𝑇

∫
0

[

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−2 𝑢𝑡(𝑙, 𝑡) + 𝑎2𝑢𝑡(𝑙, 𝑡)

]

𝜂(𝑙, 𝑡)𝑑𝑡 +

𝑙

∫
0

𝑢1(𝑥)𝜂(𝑥, 0)𝑑𝑥 =

=

𝑇

∫
0

𝑙

∫
0

𝑎1 |𝑢(𝑥, 𝑡)|
𝑝(𝑥) 𝑢(𝑥, 𝑡)𝜂(𝑥, 𝑡)𝑑𝑥𝑑𝑡;

lim
𝑡→0

⟨𝑢(⋅, 𝑡) − 𝑢0(⋅), 𝜂(⋅, 𝑡)⟩0𝐻1 = 0.

Here 𝐶𝑤 ([0, 𝑇 ] ; 𝑌 ) denotes the space of weakly continuous functions with values in a Banach space 𝑌 .
We introduce the following function space:

𝐶1(𝑇 ′) =
{

𝑢(⋅) ∶ 𝑢(⋅) ∈ 𝐶([0, 𝑇 ′]; 0𝐻1 ),

𝑢𝑡(⋅) ∈ 𝐶([0, 𝑇 ′];𝐿2(0, 𝑙)), 𝑢𝑡(𝑙, 𝑡) ∈ 𝐿𝑟(0, 𝑇 ′),

‖𝑢(⋅)‖𝐶1(𝑇 ′) = ‖𝑢(⋅)‖𝐶([0,𝑇 ′];0𝐻1) + ‖

‖

𝑢𝑡(⋅)‖‖𝐶([0,𝑇 ′];𝐿2(0,𝑙))
+ ‖

‖

𝑢𝑡(𝑙, 𝑡)‖‖𝐿𝑟(0,𝑇 ′)

}

.

We denote the following class of functions∶

𝐶2(𝑇 ′) =
{

𝑢(⋅) ∶ 𝑢(⋅) ∈ 𝐶([0, 𝑇 ′];𝐻2
⋂

0𝐻
1 ),

𝑢𝑡(⋅) ∈ 𝐶([0, 𝑇 ′]; 0𝐻1), 𝑢𝑡𝑡(⋅) ∈ 𝐶([0, 𝑇 ′];𝐿2(0, 𝑙))
}

.
The following theorems on the local solvability of the problem (1) - (4) are valid.

Theorem 1. Let the conditions (6), (7) be satisfied, and assume that

𝑎3 = 0 or 𝑎3 ≠ 0, 𝑎2 > 0. (12)

Then for any initial data
𝑢0 ∈

(

0𝐻
1
⋂

𝐻2
)

× 0𝐻
1, 𝑢1 ∈ 0𝐻

1, (13)
where

𝑢0𝑥(𝑙) + |

|

𝑢1(𝑙)||
𝑟−2 𝑢1(𝑙) + 𝑎2𝑢1(𝑙) − 𝑎3 ||𝑢0(𝑙)||

𝑞−2 𝑢0(𝑙) = 0 (14)
there exists such 𝑇 ′ ∈ (0, 𝑇 ] that problem (1) - (4) has a unique strong solution 𝑢(⋅) defined in the domain (0, 𝑇 ′) × (0, 𝑙) and
𝑢(⋅) ∈ 𝐶2(𝑇 ′).
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Theorem 2. Suppose that the conditions (6), (7) are satisfied, and assume that

𝑎1, 𝑎3 ∈ 𝑅, 𝑎2 ≥ 0. (15)

Then for any initial data
𝑢0 ∈ 0𝐻

1, 𝑢1 ∈ 𝐿2(0, 𝑙), (16)
there exists such 𝑇 ′ ∈ (0, 𝑇 ] that problem (1) - (4) has a weak solution 𝑢(⋅) in (0, 𝑇 ′) × (0, 𝑙) and 𝑢(⋅) ∈ 𝐶1(𝑇 ′).

If condition (12) is additionally satisfied, then this solution is unique. Moreover, weak local solutions are the limits of strong
solutions in the space 𝐶1(𝑇 ′), and for weak solutions the following equality hold:

𝐸(𝑡) +

𝑡

∫
0

{

|

|

𝑢𝜏(𝑙, 𝜏)||
𝑟 + 𝑎2 ||𝑢𝜏(𝑙, 𝜏)||

2
}

𝑑𝜏 = 𝐸(0), 𝑡 ∈
[

0, 𝑇 ′] . (17)

It can be proved that in the case when 𝑎1 ≤ 0, 𝑎3 ≤ 0, the solutions defined by Theorems 1,2 can be extended to the entire
region [0, 𝑇 ] × (0, 𝑙).

In this paper, the problem (6) - (9) is studied in the case of a focusing source, i.e. when 𝑎1 > 0, 𝑎3 > 0, and it is shown that
in this case, for certain initial data, the solutions defined by Theorems 1,2 blow-up in a finite time.

Depending on the relationship between 𝑟(𝑥) and 𝑝(𝑥), different results are obtained on the absence of global solutions to
problem (1) - (4).

In the case when 2𝑟 < 𝑝1 + 2, the following result is obtained.

Theorem 3. Let the conditions of Theorem 2 be satisfied. Assume that

𝑎1 > 0, 𝑎2 = 0, 𝑎3 ≥ 0, (18)

2𝑟 < 𝑝1 + 2, (19)

𝐸(0) < 0. (20)
Then the solution to problem (1) - (4) blows - up in finite time.

Further we investigate the absence of global solutions in the case 2𝑟 ≥ 𝑝1 + 2.

Theorem 4. Let the conditions of Theorem 1 be satisfied and assume that

𝑎1 > 0, 𝑎2 = 𝑎3 = 0, (21)

𝑝′(𝑥) ≤ 0, (22)

2𝑟 ≥ 𝑝1 + 2, (23)

𝐸(0) < −1
𝑒

𝑙

∫
0

|𝑥𝑝′(𝑥)|
𝑝2(𝑥)

𝑑𝑥, (24)

where 𝑒 =
∞
∑

𝑛=0

1
𝑛!

,

𝑙 >
2(𝑝1 − 1)

𝑝1
max

{

1
𝑎1

, 1
}

max
0≤𝑥≤𝑙

2𝑝(𝑥) − 𝑥𝑝′(𝑥)
𝑝(𝑥) [𝑝(𝑥) − 2]

. (25)

Then the solution to problem (1) - (4) blows - up in finite time.

3 NECESSARY NOTATION OF A LEBESGUE SPACE WITH VARIABLE EXPONENTS
AND SOME TECHNICAL LEMMAS

First, we note that in the future, some constants that do not depend on the solution of the problem will be denoted by 𝑐𝑖, 𝑖 =
1, 2, ....
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Let us present some information about Lebesgue and Sobolev spaces with variable exponents set out in various monographs
(see33) and articles (see, for example,34,35,36).

For a measurable function 𝑝(⋅) ∶ [0, 𝑙] → [1,+∞) the Lebesgue space 𝐿𝑝(⋅)(0, 𝑙) with variable index 𝑝(⋅) is defined as follows:

𝐿𝑝(⋅)(0, 𝑙) = {𝑣 ∶ 𝑣 ∶ [0, 𝑙] → 𝑅, measurable function and

𝜌𝑝(⋅)(𝑣) =

𝑙

∫
0

|𝑣(𝑥)|𝑝(𝑥) 𝑑𝑥 < +∞}

.
It is known that 𝐿𝑝(⋅)(0, 𝑙) with the Luxembourg - type norm

‖𝑣‖𝑝(⋅) = inf

⎧

⎪

⎨

⎪

⎩

𝜆 > 0;

𝑙

∫
0

|

|

|

|

𝑣(𝑥)
𝜆

|

|

|

|

𝑝(𝑥)
𝑑𝑥 ≤ 1

⎫

⎪

⎬

⎪

⎭

is a Banach space29,30,31,33.
The Sobolev space with the variable exponents 𝑝(⋅), i.e. 𝑊 1

𝑝(⋅)(0, 𝑙) is defined as follows:

𝑊 1
𝑝(⋅)(0, 𝑙) =

{

𝑣 ∶ 𝑣, 𝑣𝑥 ∈ 𝐿𝑝(⋅)(0, 𝑙)
}

, ‖𝑣‖𝑊 1
𝑝(⋅)(0,𝑙)

= ‖𝑣‖𝐿𝑝(⋅)(0,𝑙) +
‖

‖

𝑣𝑥‖‖𝐿𝑝(⋅)(0,𝑙)
.

𝑊 1
𝑝(⋅)(0, 𝑙) is a Banach space and 𝑊 1

𝑝(⋅)[0, 𝑙] ⊂ 𝐶[0, 𝑙], where ‖𝑣‖𝐶[0,𝑙] = max
0≤𝑥≤𝑙

|𝑣(𝑥)| .
Between 𝜌𝑝(⋅)(𝑣) and the norm ‖𝑣‖𝑝(⋅) the relation

min
{

‖𝑣‖𝑝1𝐿𝑝(⋅)(0,𝑙)
, ‖𝑣‖𝑝2𝐿𝑝(⋅)(0,𝑙)

}

≤ 𝜌𝑝(⋅)(𝑣) ≤ max
{

‖𝑣‖𝑝1𝐿𝑝(⋅)(0,𝑙)
, ‖𝑣‖𝑝2𝐿𝑝(⋅)(0,𝑙)

}

is satisfied.
If 𝑝(𝑥) satisfies conditions (6), (7), then for any 𝑢 ∈ 𝐿𝑝(⋅)(0, 𝑙), 𝑣 ∈ 𝐿𝑝′(⋅)(0, 𝑙) the following Hölder inequality holds:

𝑙

∫
0

|𝑢(𝑥)𝑣(𝑥)| 𝑑𝑥 ≤ 2 ‖𝑢‖𝐿𝑝(⋅)(0,𝑙) ⋅ ‖𝑣‖𝐿𝑝′(⋅)(0,𝑙) ,

where 𝑝′(𝑥) = 𝑝(𝑥)
𝑝(𝑥)−1

33.
Applying Hölder’s inequality and embedding theorems, we prove the following lemmas (see6,30).

Lemma 1. Let for 𝑝(𝑥) the conditions (6), (7) be satisfied, then for any 𝑣 ∈ 𝐿𝑝(⋅)(0, 𝑙) the following inequality holds:

‖𝑣‖𝑝1𝑝1 ≤ 𝜌𝑝(⋅)(𝑣) + 𝑙
𝑝2−𝑝1
𝑝2

{

𝜌𝑝(⋅)(𝑣)
}

𝑝1
𝑝2 . (26)

Lemma 2. Let for 𝑝(𝑥) the conditions (6), (7) be satisfied, then for any 𝑣 ∈ 0𝐻1 ⋂𝐿𝑝(⋅)(0, 𝑙) the following inequality holds:

𝜌𝑝(⋅)(𝑣) ≤ 𝑙 ⋅max
{

‖𝑣‖𝑝1𝐶[0,𝑙] , ‖𝑣‖
𝑝2
𝐶[0,𝑙]

}

(27)

By virtue of the embedding theorems, from (27) we obtain

𝜌𝑝(⋅)(𝑣) ≤ 𝑙 ⋅max
{

𝑙
𝑝1
2
‖𝑣‖𝑝1

0𝐻1 , 𝑙
𝑝2
2
‖𝑣‖𝑝2

0𝐻1

}

. (28)

From (17) we have
𝐸(𝑡) ≤ 𝐸(0), 𝑡 > 0. (29)

Let us introduce the following notations:
𝑉 (𝑡) = −𝐸(𝑡), (30)

𝜌(𝑢) = 𝜌𝑝(⋅)(𝑢) + |𝑢(𝑙, 𝑡)|𝑞 . (31)
It follows from (29) and (30) that

𝑉 (𝑡) ≥ −𝐸(0) > 0, 𝑡 ∈ [0,∞) . (32)
By virtue of (6), we have

𝑐1𝜌(𝑢) ≤ 𝐺0(𝑢(⋅, 𝑡)) ≤ 𝑐2𝜌(𝑢), (33)
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where 𝑐1 = min
{

𝑎1
𝑝2
, 𝑎3
𝑞

}

, 𝑐2 = max
{

𝑎1
𝑝1
, 𝑎3
𝑞

}

. Thus,

𝜌(𝑢(𝑡)) ≥ 1
𝑐2
𝑉 (0) > 0. (34)

By virtue of Lemma 1
‖𝑢‖𝑝1𝑝1 + |𝑢(𝑙, 𝑡)|𝑞 ≤ 𝜌(𝑢)

{

1 + 𝑙
𝑝2−𝑝1
𝑝2 (𝜌(𝑢))

𝑝1−𝑝2
𝑝2

}

. (35)
Taking into account (34) from (35), we obtain the following statement

Lemma 3. Let conditions (6) - (8), (13) be satisfied and 𝑢(⋅) be a solution to problem (1) - (4), then

‖𝑢(⋅, 𝑡)‖𝑝1𝑝1 + |𝑢(𝑙, 𝑡)|𝑞 ≤ 𝑐3𝜌(𝑢(⋅, 𝑡)). (36)

Lemma 4. Let conditions (6) - (8), (13) be satisfied and max
{

2
𝑝1
, 2
𝑞

}

< 𝜘 < 1, then for any 𝑢 ∈ 0𝐻1 the following inequality
holds:

[𝜌(𝑢)]𝜘 ≤ 𝑐4
{

‖

‖

𝑢𝑥‖‖
2
2 + 𝜌(𝑢)

}

. (37)

In particular, it is also true the inequality:

‖𝑢‖𝜘𝑝1𝑝1
≤ 𝑐5

{

‖

‖

𝑢𝑥‖‖
2
2 + ‖𝑢‖𝑝1𝑝1

}

. (38)

Lemma 5. Let conditions (6) - (8), (13) be satisfied, and

max
{

2
𝑝1

, 2
𝑞
, 𝑟 − 1
𝑝1 − 𝑟 + 1

}

< 𝛼 < 1.

Then the solution to problem (1) - (4) satisfies the inequality

|𝑢(𝑙, 𝑡)|𝑟 ≤ 𝑐6

[

(𝜌(𝑢))
𝑟−1
𝑝1 + (𝜌(𝑢))

𝛼+1
2 + (𝜌(𝑢))

(𝑟−1)(𝛼+1)
𝛼𝑝1

]

, (39)

so that
1
𝑝1

< 𝑟 − 1
𝑝1

, 𝛼 + 1
2

,
(𝑟 − 1)(𝛼 + 1)

𝛼𝑝1
< 1. (40)

4 PROOF OF LOCAL SOLVABILITY THEOREMS

Proof of Theorem 1. We use the standard method of reducing this problem to a Cauchy problem for differential equations in a
Hilbert space  = 0𝐻1 × 𝐿2(0, 𝑙)22,23,24,25,26,27.

For this in the space 𝐿2(0, 𝑙) define the linear operator 0Δ ∶

𝐷(0Δ) =
{

𝑓 ∶ 𝑓 ∈ 𝐻2(0, 𝑙), 𝑓 (0) = 0, 𝑓 ′(𝑙) = 0
}

, 0Δ𝑓 (𝑥) = 𝑓 ′′(𝑥), 𝑥 ∈ (0, 𝑙).

Define also the operator 𝑁 : 𝛼 → ℎ = 𝑁𝛼 ∶ (−∞,+∞) → 𝐻2 = 𝑊 2
2 (0, 𝑙),

where ℎ′′(𝑥) = 0, 0 < 𝑥 < 𝑙, ℎ(0) = 0, ℎ′(𝑙) = 𝛼 (𝑁𝛼 = 𝛼𝑥)22,23,24,25,26,27.
We define the function 𝜙𝐾 (𝜉) in the following way

𝜙𝐾 (𝜉) =

{

𝜙(𝜉), 𝑖𝑓 |𝜉| ≤ 𝐾
𝜙(𝐾 𝜉

|𝜉|
), 𝑖𝑓 |𝜉| > 𝐾 , (41)

where 𝐾 > 0, 𝜙(𝜉) = 𝑎3 |𝜉|
𝑞−2 𝜉.

It is easy to prove that 𝜙𝐾 (⋅) satisfies the Lipschitz condition, i.e., for any 𝜉1 and 𝜉2, the following inequality holds
|

|

𝜙𝐾 (𝜉2) − 𝜙𝐾 (𝜉1)|| ≤ 𝐶𝜙(𝐾) |
|

𝜉2 − 𝜉1|| . (42)

In the space  we define the operator 𝐴𝐾 (⋅):

𝐷(𝐴𝐾 ) = {(𝑢, 𝑣) ∈ , 𝑢 +𝑁
[

𝑔(𝛾𝑣) + 𝜙𝐾 (𝛾𝑢)
]

∈ 𝐷(0Δ)
}

,

𝐴𝐾 (𝑤) =
{

−𝑣,−0Δ
(

𝑢 +𝑁
[

𝑔(𝛾𝑣) − 𝜙𝐾 (𝛾𝑢)
])}

,
where 𝑔(𝑠) = |𝑠|𝑟−2 𝑠 + 𝑎2𝑠.
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Moreover, we define the nonlinear operator 𝑤 → 𝐹𝐾 (𝑤) = (0, 𝑓𝐾1
(𝑥, 𝑢)), where 𝑤 = (𝑢, 𝑣) ∈ , 𝐾1 = 𝐾𝑙

1
2 ,

𝑓𝐾1
(𝑥, 𝑢) =

{

𝑓 (𝑥, 𝑢), ‖𝑢‖
0𝐻1 ≤ 𝐾1,

𝑓 (𝑥,𝐾1
𝑢

‖𝑢‖
0𝐻1

), ‖𝑢‖
0𝐻1 > 𝐾1

, 𝑓 (𝑥, 𝑢) = 𝑎1 |𝑢|
𝑝(𝑥)−2 𝑢. (43)

Then the problem (1) - (4) can be written in the form
{

𝑤′ + 𝐴𝐾 (𝑤) + 𝐹𝐾 (𝑤) = 0,
𝑤(0) = 𝑤0,

(44)

where 𝑤0 = (𝑢0(𝑥), 𝑢1(𝑥)), 0 ≤ 𝑥 ≤ 𝑙.
At first we prove that 𝐴𝐾 (⋅) is an accretive operator. Indeed, for every 𝑤1, 𝑤2 ∈ 𝐷(𝐴𝐾 ) we have

⟨𝐴𝐾 (𝑤2) − 𝐴𝐾 (𝑤1), 𝑤2 −𝑤1⟩ = −

𝑙

∫
0

(𝑣2 − 𝑣1)𝑥(𝑢2 − 𝑢1)𝑥𝑑𝑥−

−

𝑙

∫
0

{

0Δ
[

𝑢2 −𝑁𝑔(𝛾𝑣2) +𝑁𝜙𝐾 (𝛾𝑢2)
]

− 0Δ[𝑢1 −𝑁𝑔(𝛾𝑣1) +𝑁𝜙𝐾 (𝛾𝑢1)]
}

×

×(𝑣2 − 𝑣1)𝑑𝑥 =
[

𝑔(𝑣2(𝑙)) − 𝑔(𝑣1(𝑙))
]

(𝑣2(𝑙) − 𝑣1(𝑙))−
−[𝜙𝐾 (𝑢2(𝑙)) − 𝜙𝐾 (𝑢1(𝑙))](𝑣2(𝑙) − 𝑣1(𝑙)).

Hence, it is clear that if 𝑎3 = 0, then
⟨𝐴𝐾 (𝑤2) − 𝐴𝐾 (𝑤1), 𝑤2 −𝑤1⟩ ≥ 0.

If 𝑎3 ≠ 0 and 𝑎2 > 0, then using the Hölder and Young’s inequality, we obtain

⟨𝐴𝐾 (𝑤2) − 𝐴𝐾 (𝑤1), 𝑤2 −𝑤1⟩ ≥ 𝑙(𝑎2 − 𝜀) |
|

𝑣2(𝑙) − 𝑣1(𝑙)||
2 −

𝑙𝐶𝜙(𝐾)
𝜀

|

|

𝑢2(𝑙) − 𝑢1(𝑙)||
2 ,

where 0 < 𝜀 < 𝑎2.
Therefore, in both cases 𝐴𝐾 (⋅) + 𝜔𝐼 is an accretive operator in , for any 𝐾 > 0, where 𝜔 = 𝑙𝐶𝜙(𝐾)

𝜀
.

Secondly, we prove that 𝐴𝐾 (⋅) + 𝜔𝐼 + 𝜇𝐼 is a surjective operator for some 𝜇 > 0, i.e. for any 𝐸 = (𝜂1, 𝜂2) ∈ , there exists
such 𝑤 = (𝑢, 𝑣) ∈ 𝐷(𝐴𝐾 ) that

𝐴𝐾 (𝑤) + 𝜆𝑤 = 𝐸
is equivalent to the following equations

{

−𝑣 + 𝜆𝑢 = 𝜂1
−0Δ(𝑢 −𝑁[𝑔(𝛾𝑣) − 𝜙𝐾 (𝛾𝑢)]) + 𝜆𝑣 = 𝜂2

.

It’s clear that 𝑢 = 1
𝜆
𝑣 + 1

𝜆
𝜂1 and the function 𝑧 = 𝑢 −𝑁[𝑔(𝛾𝑣) − 𝜙𝐾 (𝛾𝑢)] is solutions to the boundary value problem

𝑧′′ − 𝜆2𝑧 = 𝜂(𝑥), (45)

𝑧(0) = 0, 𝑧′(𝑙) = 0, (46)
where 𝜂(𝑥) = −𝜂2 + 𝜆𝜂1 + 𝜆2𝑁[𝑔(𝛾𝑣) − 𝜙𝐾 (𝛾𝑢)].

Solving the problem (45), (46), we have

𝑧(𝑥) = 𝐴(𝑥, 𝜆)
{

𝜆2[𝑔(𝑣(𝑙)) − 𝜙𝐾 (
1
𝜆
𝜂1(𝑙) −

1
𝜆
𝑣(𝑙))]

}

+ 𝐵(𝑥, 𝜆), (47)

where

𝐴(𝑥, 𝜆) = − 1
2𝜆

𝑒−𝜆𝑥
𝑥

∫
0

𝑒𝜆𝑠𝑠𝑑𝑠 + 1
2𝜆

𝑒𝜆𝑥
𝑥

∫
0

𝑒−𝜆𝑠𝑠𝑑𝑠+

+ 𝑒−𝜆𝑥

2𝜆(𝑒𝜆𝑥 + 𝑒−𝜆𝑥)

⎧

⎪

⎨

⎪

⎩

𝑒−𝜆𝑙
𝑙

∫
0

𝑒𝜆𝑠𝑠𝑑𝑠 + 𝑒𝜆𝑙
𝑙

∫
0

𝑒−𝜆𝑠𝑠𝑑𝑠

⎫

⎪

⎬

⎪

⎭

−
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− 𝑒𝜆𝑥

2𝜆(𝑒𝜆𝑥 + 𝑒−𝜆𝑥)

⎧

⎪

⎨

⎪

⎩

𝑒−𝜆𝑙
𝑙

∫
0

𝑒𝜆𝑠𝑠𝑑𝑠 + 𝑒𝜆𝑙
𝑙

∫
0

𝑒−𝜆𝑠𝑠𝑑𝑠

⎫

⎪

⎬

⎪

⎭

,

𝐵(𝑥, 𝜆) = −1
𝜆

𝑥

∫
0

𝑆ℎ(𝑥 − 𝑠)(𝜂2(𝑠) + 𝜆𝜂1(𝑠))𝑑𝑠+

+1
𝜆
𝑡ℎ𝜆𝑥

𝑙

∫
0

𝐶ℎ𝜆(𝑙 − 𝑠)(𝜂2(𝑠) + 𝜆𝜂1(𝑠))𝑑𝑠.

From a simple calculation we get

𝐴(𝑙, 𝜆) = − 1
𝜆2

[

𝑙 − 1 − 𝑒−2𝜆𝑙

𝜆(1 + 𝑒−2𝜆𝑙)

]

. (48)

By using (47) and (48), we have

𝑧(𝑙) = 𝐴(𝑙, 𝜆)
{

𝜆2
[

𝑔(𝑣(𝑙)) − 𝜙𝐾

(1
𝜆
𝜂1(𝑙) −

1
𝜆
𝑣(𝑙)

)]}

+ 𝐵(𝑙, 𝜆),

from which it follows that
𝑔(𝑣(𝑙)) + 1 + 𝑒−2𝜆𝑙

1 − 𝑒−2𝜆𝑙
𝑣(𝑙) + 𝜙𝐾

(1
𝜆
𝜂1(𝑙) −

1
𝜆
𝑣(𝑙)

)

= 𝐵1(𝑙, 𝜆), (49)

where 𝐵1(𝑙, 𝜆) =
1+𝑒−2𝜆𝑙

1−𝑒−2𝜆𝑙
𝐵(𝑙, 𝜆).

From (42) we obtain that for any 𝜉1 and 𝜉2 the following inequality is true

|

|

𝜙1𝐾 (𝜉2) − 𝜙1𝐾 (𝜉1)|| ≤
𝐶𝜑(𝐾)

𝜆
|

|

𝜉2 − 𝜉1|| , (50)

where 𝜙1𝐾 (𝜉) = 𝜙𝐾 (
1
𝜆
𝜂1(𝑙)−

1
𝜆
𝜉). By virtue of (49) and (50) 𝜏(𝜉) = 𝑔(𝜉)+ 1+𝑒−2𝜆𝑙

1−𝑒−2𝜆𝑙
𝜉+𝜙1𝐾 (𝜉) is continuous function and monotoni-

cally decreases for
𝜆 ≥ 𝐶𝜑(𝐾)

𝑎2
.

Let 𝜉0 be a solution to the equation 𝜏(𝜉) = 𝐵1(𝑙, 𝜆). Taking 𝑣(𝑙) = 𝜉0, and using (47), we find the function 𝑧(𝑥). So we find
the function 𝑢(𝑥) = 𝑧(𝑥) +𝑁[𝑔(𝜉0) − 𝜑𝐾 (

1
𝜆
𝜉0 +

1
𝜆
𝜂1(𝑥))] and 𝑣(𝑥) = 𝜆𝑢(𝑥) − 𝜂1(𝑥).

Thus for𝜆 ≥ 𝑐𝜑(𝑘)
𝑎2

, 𝐽𝑚(𝐴𝐾 (⋅) + 𝜆𝐼) = and therefore 𝐴𝐾 (⋅) + 𝜔𝐼 is the maximal accretive operator for each 𝐾 > 0.
Using Lemma 4, one can easily prove that the nonlinear operator 𝐹𝐾 (⋅) satisfies the Lipschitz condition, i.e. for any 𝑤1, 𝑤2 ∈

 the following inequality holds:
‖

‖

𝐹𝐾 (𝑤2) − 𝐹𝐾 (𝑤1)‖‖ ≤ 𝐶𝐹 (𝐾) ‖
‖

𝑤2 −𝑤1
‖

‖ ,
where 𝐶𝐹 (𝐾) > 0, 𝐹𝐾 (⋅) is a Lipshtsev operator. Thus, 𝐴𝐾 (⋅) + 𝐹𝐾 (⋅) is the maximal accretive operator31,37.

If 𝑎3 = 0 or 𝑎3 ≠ 0, 𝑎2 > 0, then, according to the31, the following statements are true:
(i) For any 𝑤0 ∈ 𝐷(𝐴𝐾 ) and 𝐾 > 0 there exists such 𝑇𝐾 = 𝑇𝐾 (𝑤0) > 0 that problem (44) has a unique strong solution
𝑤(⋅) ∈ 𝐶1(

[

0, 𝑇𝐾
]

;)
⋂

𝐶(
[

0, 𝑇𝐾
]

;𝐷(𝐴𝐾 )) (31: Theorem 4.1);
(ii) If 𝑤0 ∈, then problem (44) has a weak solution (31: Theorem 4.1A, corollary 4.1A), and this solution is the limit of strong
solutions in the space 𝐶(

[

0, 𝑇𝐾
]

;).
According to reference31 (Theorem 4.2) for any 𝑢0 ∈ 0𝐻1, 𝑢1 ∈ 𝐿2(0, 𝑙) the problem (44) has a unique solution in the space

𝐶(
[

0, 𝑇𝐾
]

;), and this solution is equal to the limit of strong solutions in the same space.
Identity (17) for strong solutions is proved by direct differentiation taking into account (1) - (4). For weak solutions, the same

identity is obtained by approximating them by strong solutions.
Since 𝐴𝐾 (⋅) + 𝜔𝐼 is a maximally accretive operator, from (44) we have

𝑑
𝑑𝑡

‖𝑤(⋅, 𝑡)‖2 ≤
[

𝜔 + 𝐶𝐾
]

‖𝑤(⋅, 𝑡)‖2 ,

𝑤(𝑥, 0) = 𝑤0(𝑥).
Hence we get if ‖

‖

𝑤0(⋅)‖‖ < 𝐾, then

‖𝑤(⋅, 𝑡)‖2 ≤ ‖

‖

𝑤0(⋅)‖‖
2
 𝑒[𝜔+𝐶𝐾 ]𝑡 < 𝐾, 0 ≤ 𝑡 ≤ 𝑡∗, (51)

where 𝑡∗ = 1
𝜔+𝐶𝐾

𝐿𝑛 𝐾2

‖
𝑤0(⋅)‖

2
𝐻

. It follows from (51) the validity of the inequality ‖𝑢(𝑥, 𝑡)‖𝐻1 < 𝐾 , ‖

‖

𝑢𝑡(𝑥, 𝑡)‖‖𝐿2(0;𝑙)
< 𝐾 , so

𝜑𝑘(𝑢𝑡(𝑥, 𝑡)) = 𝜑(𝑢𝑡(𝑥, 𝑡)), 𝑓𝑘(𝑢(𝑥, 𝑡)) = 𝑓 (𝑥, 𝑢(𝑥, 𝑡)).
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Hence, the function 𝑢(𝑥, 𝑡) is the solution of the problem (1) - (4).
Theorem 1 is proved.
Proof of Theorem 2. Let 𝑤0 ∈  then there exist 𝑤𝑛0 = (𝑢𝑛0(⋅), 𝑢𝑛1(⋅)) ∈ 𝐷(𝐴𝐾 ), 𝑛 = 1, 2, such that

𝑤𝑛0 → 𝑤0 in  at 𝑛 → ∞. (52)

By Theorem 1, for each 𝑛 ∈ 𝑁 exists 𝑇𝑛 ∈ (0, 𝑇 ], such that problem

𝑢𝑛𝑡𝑡 − 𝑢𝑛𝑥𝑥 − 𝑎1 ||𝑢𝑛||
𝑝(𝑥)−2 𝑢𝑛 = 0, 0 < 𝑥 < 𝑙, 0 ≤ 𝑡 ≤ 𝑇𝑛, (53)

𝑢𝑛(0, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇𝑛, (54)

𝑢𝑛𝑥(𝑙, 𝑡) + |

|

𝑢𝑛𝑡(𝑙, 𝑡)||
𝑟−2 𝑢𝑛𝑡(𝑙, 𝑡)+

+1
𝑛
𝑢𝑛𝑡(𝑙, 𝑡) − 𝑎3 ||𝑢𝑛(𝑙, 𝑡)||

𝑞−2 𝑢𝑛(𝑙, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇𝑛, (55)

𝑢𝑛(𝑥, 0) = 𝑢𝑛0(𝑥), 𝑢𝑛𝑡(𝑥, 0) = 𝑢𝑛1(𝑥), 0 < 𝑥 < 𝑙, (56)
has a unique strong solution 𝑢𝑛(𝑥, 𝑡) in the domain (0, 𝑙) × (0, 𝑇𝑛) where 𝑢𝑛 ∈ 𝐶2

𝑇𝑛
, and the following identity is true

𝐸𝑛(𝑡) +

𝑡

∫
0

{

|

|

𝑢𝑛𝜏(𝑙, 𝜏)||
𝑟𝑖+1 + 1

𝑛
|

|

𝑢𝑛𝜏(𝑙, 𝜏)||
2
}

𝑑𝜏 = 𝐸𝑛(0), 0 ≤ 𝑡 ≤ 𝑇𝑛. (57)

Here 𝐸𝑛(𝑡) = 𝐸𝑛0(𝑡) − 𝐺0(𝑢𝑛), 𝐸𝑛0(𝑡) =
1
2

[

‖

‖

𝑢𝑛𝑡(⋅, 𝑡)‖‖
2
2 + ‖

‖

𝑢𝑛𝑥(⋅, 𝑡)‖‖
2
2

]

,

𝐺𝑛(𝑡) = 𝑎1 ∫
𝑙
0
|
𝑢𝑛(𝑥,𝑡)|

𝑝(𝑥)

𝑝(𝑥)
𝑑𝑥 + 𝑎3

𝑞
|

|

𝑢𝑛(𝑙, 𝑡)||
𝑞 ,where

𝑇𝑛 =
1

𝜔 + 𝐶𝐹 (𝐾)
𝐿𝑛 𝐾

‖

‖

𝑤𝑛0
‖

‖
. (58)

From (57) it follows that
𝐸′

𝑛0(𝑡) +
[

|

|

𝑢𝑛𝑡(𝑙, 𝑡)||
𝑟+1 + 1

𝑛
|

|

𝑢𝑛𝑡(𝑙, 𝑡)||
2
]

=

= 𝑎1

𝑙

∫
0

|

|

𝑢𝑛(𝑥, 𝑡)||
𝑝(𝑥)−2 𝑢𝑛(𝑥, 𝑡)𝑢𝑛𝑡(𝑥, 𝑡)𝑑𝑥 + 𝑎3 ||𝑢𝑛(𝑙, 𝑡)||

𝑞−2 𝑢𝑛(𝑙, 𝑡)𝑢𝑛𝑡(𝑙, 𝑡) =

= 𝐽1 + 𝐽2. (59)
Applying the Hölder and Young inequalities and taking into account (27), we have:

|

|

𝐽1|| ≤

𝑙

∫
0

|

|

𝑢𝑛(𝑥, 𝑡)||
𝑝(𝑥)−1

|

|

𝑢𝑛𝑡(𝑥, 𝑡)|| 𝑑𝑥 ≤

≤ max

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑛(𝑥, 𝑡)||
2(𝑝1−1) 𝑑𝑥

⎞

⎟

⎟

⎠

1
2

,
⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑛(𝑥, 𝑡)||
2(𝑝2−1) 𝑑𝑥

⎞

⎟

⎟

⎠

1
2⎫

⎪

⎬

⎪

⎭

⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑛𝑡(𝑥, 𝑡)||
2 𝑑𝑥

⎞

⎟

⎟

⎠

1
2

≤

≤
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑛(𝑥, 𝑡)||
2(𝑝1−1) 𝑑𝑥

⎞

⎟

⎟

⎠

1
2

+
⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑛(𝑥, 𝑡)||
2(𝑝2−1) 𝑑𝑥

⎞

⎟

⎟

⎠

1
2⎫

⎪

⎬

⎪

⎭

⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑛𝑡(𝑥, 𝑡)||
2 𝑑𝑥

⎞

⎟

⎟

⎠

1
2

≤

≤ ‖

‖

𝑢𝑛(⋅, 𝑡)‖‖
𝑝1−1

0𝐻1
‖

‖

𝑢𝑛𝑡(⋅, 𝑡)‖‖𝐿2(0,𝑙)
+ ‖

‖

𝑢𝑛(⋅, 𝑡)‖‖
𝑝2−1

0𝐻1
‖

‖

𝑢𝑛𝑡(⋅, 𝑡)‖‖𝐿2(0,𝑙)
≤

≤ 𝑐7
{

‖

‖

𝑢𝑛(⋅, 𝑡)‖‖
𝑝1
0𝐻1 + ‖

‖

𝑢𝑛(⋅, 𝑡)‖‖
𝑝2
0𝐻1 + ‖

‖

𝑢𝑛𝑡(⋅, 𝑡)‖‖
𝑝1
𝐿2(0,𝑙)

+ ‖

‖

𝑢𝑛𝑡(⋅, 𝑡)‖‖
𝑝2
𝐿2(0,𝑙)

}

≤

≤ 𝑐8
{

𝐸𝑝1
𝑛0(𝑡) + 𝐸𝑝2

𝑛0(𝑡)
}

.
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Similarly, applying Young’s inequalities, we have:
|

|

𝐽2|| ≤ |

|

𝑢𝑛(𝑙, 𝑡)||
𝑞−1

|

|

𝑢𝑛𝑡(𝑙, 𝑡)|| ≤ 𝑐9 ‖‖𝑢𝑛(⋅, 𝑡)‖‖
𝑞−1
0𝐻1

|

|

𝑢𝑛𝑡(𝑙, 𝑡)|| ≤

≤
𝑟𝑐

𝑟+1
𝑟

9

(𝑟 + 1)
1
𝑟 𝜀

1
𝑟

‖

‖

𝑢𝑛(⋅, 𝑡)‖‖
(𝑞−1) 𝑟+1

𝑟

0𝐻1 + 𝜀 |
|

𝑢𝑛𝑡(𝑙, 𝑡)||
𝑟+1 ≤

≤
𝑟𝑐

𝑟+1
𝑟

9

(𝑟 + 1)
1
𝑟 𝜀

1
𝑟

𝐸(𝑞−1) 𝑟+1
𝑟

𝑛0
(𝑡) + 𝜀 |

|

𝑢𝑛𝑡(𝑙, 𝑡)||
𝑟+1 ,

where 0 < 𝜀 < 1
2
.

Therefore, for 𝑦 = 𝑦(𝑡) = 𝐸𝑛0(𝑡) + 1 we have the inequality

𝑦′ ≤ 𝑐10𝑦
𝑃 , (60)

where 𝑦(0) = 𝑦0𝑛 = 𝐸𝑛0(0) + 1, 𝑃 = max
{

𝑝1, 𝑝2,
(𝑞−1)(𝑟+1)

𝑟

}

.

From (60) we obtain that 𝑦(𝑡) ≤ 2
1

𝑃−1 𝑦0𝑛, 0 ≤ 𝑡 ≤ 𝑇̃𝑛, where 𝑇̃𝑛 = min
{

𝑇𝑛,
1

2𝑐10𝑦𝑃−10𝑛 (𝑃−1)

}

, i.e.

𝐸𝑛0(𝑡) ≤ 2
1

𝑃−1 [𝐸𝑛0(0) + 1
]

, 0 ≤ 𝑡 ≤ 𝑇̃𝑛. (61)

It follows from (52) that lim
𝑛→∞

𝐸𝑛0(0) = 𝐸0(0) =
1
2

[

‖

‖

𝑢1‖‖
2
𝐿2(0,𝑙)

+ ‖

‖

‖

𝑢0𝑥
‖

‖

‖

2

𝐿2(0,𝑙)

]

. For this reason, there exists a natural number
𝑁 such that, for any 𝑛 ≥ 𝑁 , the inequality 𝐸𝑛0(0) ≤ 2𝐸0(0), holds. Taking this into account, from (61) we find that

𝐸𝑛0(𝑡) ≤ 2
1

𝑃−1 [2𝐸0(0) + 1
]

, 0 ≤ 𝑡 ≤ 𝑇0, (62)

where 𝑇0 = min
{

1
𝜔+𝐶𝐹 (𝐾)

ln 𝐾
√

𝐸0(0)
, 1
2𝑐10[2𝐸0(0)+1]𝑃−1(𝑃+1)

}

.

It follows from (57), (62) that
𝑡

∫
0

|

|

|

𝑢𝑛𝜏 (𝜏, 𝑡)
|

|

|

𝑟
𝑑𝜏 ≤ 𝑐11, 0 ≤ 𝑡 ≤ 𝑇0, 𝑖 = 1, 2 (63)

and
1
𝑛

𝑡

∫
0

|

|

|

𝑢𝑛𝜏 (𝜏, 𝑡)
|

|

|

2
𝑑𝜏 ≤ 𝑐11, 0 ≤ 𝑡 ≤ 𝑇0, 𝑖 = 1, 2. (64)

From (55) - (58), we see that there exists a function 𝑢(𝑡) and a subsequence of the sequence
{

𝑢𝑛
}

, which, we still denote by
{

𝑢𝑛
}

, where as 𝑛 → ∞ (see32).
𝑢𝑛(⋅) → 𝑢(⋅), weakly star in 𝐿∞(0, 𝑇0; 0𝐻1), (65)

𝑢𝑛𝑡(⋅) → 𝑢𝑡(⋅), weakly star in 𝐿∞(0, 𝑇0;𝐿2(0, 𝑙)), (66)

|

|

𝑢𝑛𝑡(𝑙, ⋅)||
𝑟−2 𝑢𝑛𝑡(𝑙, ⋅) → 𝜁 (⋅) weakly in 𝐿 𝑟

𝑟−1
(0, 𝑇0), (67)

1
𝑛
𝑢𝑛𝑡(𝑙, ⋅) → 0 weakly in 𝐿2(0, 𝑇0). (68)

Due to the monotonicity of the operator 𝑔0(𝑣) = |𝑣|𝑟−2 𝑣, 𝐿𝑟(0, 𝑇0) → 𝐿 𝑟
𝑟−1
(0, 𝑇0) we have

|

|

𝑢𝑛𝑡(⋅)||
𝑟−1 𝑢𝑛𝑡(⋅) → |

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−2 𝑢𝑡(𝑙, 𝑡) weakly in 𝐿𝑟(0, 𝑇0). (69)

If we write down the problem (53) - (56) for 𝑢𝑛(⋅) and take into account (65) - (69), we get that in the case 𝑎2 = 0 the limit
function 𝑢(⋅) satisfies (1) - (4). Then, using26 (Lemma 1), we obtain 𝑢(⋅) ∈ 𝐶1

𝑇0
.

Theorem 2 is proved.
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5 SCHEMA PROOF OF THEOREM 3

Theorem 3 is proved in a similar way as the proof of Theorem 2 from30. For this reason, here we only give a scheme for the
proof of this theorem.

It follows from (30), (33) and Lemma 5 that

𝑉 𝜎(𝑟−1)(𝑡) ⋅ |𝑢(𝑙, 𝑡)|𝑟 ≤ 𝑐12𝜌(𝑢), (70)

where 0 < 𝜎 < min
{

𝑝1−𝑟
𝑝1(𝑟−1)

, 1−𝛼0
2(𝑟−1)

, 𝛼0𝑝1−(𝑟−1)(𝛼0+1)
𝛼0𝑝1(𝑟−1)

, 𝑝1−2
2𝑝1

}

, 0 < max
{

2
𝑝1
, 2
𝑞
, 𝑟−1
𝑝1−𝑟+1

}

<
< 𝛼0 < 1.

Let us introduce the notation:

𝐿(𝑡) = 𝑉 1−𝜎(𝑡) + 𝜀

𝑙

∫
0

𝑢(𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥. (71)

Taking into account (29)-(34), Lemmas 1-4 and applying Hölder’s inequality, as well as Young’s inequalities with the parameter
𝛿 = − 𝑟−1

𝑟 𝑉
𝜎(𝑟−1)

𝑟 (𝑡), we obtain that

𝐿′(𝑡) ≥
(

1 − 𝜎 −
𝜀(𝑟 − 1)

𝑟

)

𝑉 −𝜎(𝑡)𝑉 ′(𝑡) + 2𝜀(1 − 𝜂)(𝑝1 + 1)𝑉 (𝑡)+

+𝑐13
⎡

⎢

⎢

⎣

𝑙

∫
0

|𝑢𝑡|
2𝑑𝑥 +

𝑙

∫
0

|𝑢𝑥|
2𝑑𝑥

⎤

⎥

⎥

⎦

+ 𝜀
(

𝑐14 −
1−𝑟

𝑟
𝑐15

)

𝜌(𝑢).

where  > 0 is sufficiently large number and 0 < 𝜂 < 1 (see30).
Taking into account Lemmas 1-5 and using the Hölder and Young inequalities, we obtain that

𝐿′(𝑡) ≥ 𝑐16
[

𝑉 (𝑡) + ‖

‖

𝑢𝑡‖‖
2
2 + 𝜌(𝑢)

]

≥ 𝑐17
[

𝑉 (𝑡) + ‖

‖

𝑢𝑡‖‖
2
2 + ‖𝑢‖𝑝1𝑝1

]

≥ 0. (72)

On the other hand, by virtue of (20), for sufficiently small 𝜀 > 0 we have

𝐿(0) > 0. (73)

From (71), (72), and (73) it follows
𝐿(𝑡) ≥ 𝐿(0) > 0. (74)

Applying the Hölder and Young inequalities and taking into accound (38) we have

𝐿
1

1−𝜎 (𝑡) ≤ 𝑐18
[

𝑉 (𝑡) + ‖

‖

𝑢𝑡‖‖
2
2 + ‖𝑢‖𝑝1𝑝1

]

. (75)

Comparing (72) and (75), we get
𝐿′(𝑡) ≥ 𝑐19 [𝐿(𝑡)]

1
1−𝜎 , 𝑡 > 0.

This implies that 𝐿(𝑡) ≥
[

[𝐿(0)]−
𝜎

1−𝜎 − 𝑐19𝑡
𝜎

1−𝜎

]
𝜎−1
𝜎 . Obviously, lim

𝑡→𝑇 ∗
𝐿(𝑡) = +∞, where 𝑇 ∗ = 1−𝜎

𝜎𝑐19[𝐿(0)]
𝜎

1−𝜎
.

6 PROOF OF THEOREM 4

By virtue of (22) 𝑝1 = 𝑝(𝑙) and 𝑝2 = 𝑝(0).
Let us introduce the notation:

𝑦(𝑡) = −𝐸(𝑡) + 𝜀𝑘

𝑙

∫
0

𝑢(𝑥, 𝑡) ⋅ 𝑢𝑡(𝑥, 𝑡)𝑑𝑥 + 𝜀

𝑙

∫
0

𝑥𝑢𝑡(𝑥, 𝑡) ⋅ 𝑢𝑥(𝑥, 𝑡)𝑑𝑥,

where
max
0≤𝑥≤𝑙

2𝑝(𝑥) − 𝑥𝑝′(𝑥)
𝑝(𝑥)(𝑝(𝑥) − 2)

< 𝑘 <
𝑙𝑝1

2(𝑝1 − 1)
. (76)

By virtue of (25), such 𝑘 exists. It follows from (1) – (4) that

𝑦′(𝑡) = |

|

𝑢𝑡(𝑙, 𝑡)||
𝑟 − 𝜀(1 + 2𝑘)𝐸(𝑡) + 2𝜀𝑘

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥+
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+𝜀𝑎1

𝑙

∫
0

{

𝑘
𝑝(𝑥) − 2
𝑝(𝑥)

−
2𝑝(𝑥) − 𝑥𝑝′(𝑥)

𝑝2(𝑥)

}

|𝑢(𝑥, 𝑡)|𝑝(𝑥) 𝑑𝑥−

−𝜀𝑎1

𝑙

∫
0

𝑥𝑝′(𝑥)
𝑝(𝑥)

|𝑢(𝑥, 𝑡)|𝑝(𝑥) ln |𝑢(𝑥, 𝑡)| 𝑑𝑥 + 𝜀𝑙
2
|

|

𝑢𝑡(𝑙, 𝑡)||
2 + 𝜀𝑙

2
|

|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) +

+
𝑎1𝑙𝜀
𝑝1

|𝑢(𝑙, 𝑡)|𝑝1 − 𝜀𝑘 |
|

𝑢𝑡(𝑙, 𝑡)||
𝑟−2 𝑢𝑡(𝑙, 𝑡)𝑢(𝑙, 𝑡). (77)

Using Young’s inequality with exponents 𝜃 = 𝑝1, 𝜃′ = 𝑝1
𝑝1−1

,we have

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1

|𝑢(𝑙, 𝑡)| ≤
𝑝1 − 1
𝑝1

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑝1

𝑝1−1
(𝑟−1) + 1

𝑝1
|𝑢(𝑙, 𝑡)|𝑝1 . (78)

Since (𝑟 − 1) 𝑝1
𝑝1−1

≤ 2(𝑟 − 1) and (𝑟 − 1) 𝑝1
𝑝1−1

− 2 ≥ 𝑝1
2

𝑝1
𝑝1−1

− 2 = 𝑝21−4(𝑝1−1)
2(𝑝1−1)

> 0,
we have

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑝1

𝑝1−1
(𝑟−1) ≤ |

|

𝑢𝑡(𝑙, 𝑡)||
2 + |

|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) . (79)

From (76), (77) - (79) we obtain

𝑦′(𝑡) ≥ |

|

𝑢𝑡(𝑙, 𝑡)||
𝑟 − 𝜀(1 + 2𝑘)𝐸(𝑡) + 2𝜀𝑘

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥+

+𝜀𝑎1

𝑙

∫
0

{

𝑘
𝑝(𝑥) − 2
𝑝(𝑥)

−
2𝑝(𝑥) − 𝑥𝑝′(𝑥)

𝑝2(𝑥)

}

|𝑢(𝑥, 𝑡)|𝑝(𝑥) 𝑑𝑥−

−𝜀𝑎1

𝑙

∫
0

𝑥𝑝′(𝑥)
𝑝(𝑥)

|𝑢(𝑥, 𝑡)|𝑝(𝑥) ln |𝑢(𝑥, 𝑡)| 𝑑𝑥 + 𝜀𝑙
2
|

|

𝑢𝑡(𝑙, 𝑡)||
2 +

+𝜀( 𝑙
2
−

𝑝1 − 1
𝑝1

𝑘) |
|

𝑢𝑡(𝑙, 𝑡)||
2 + 𝜀( 𝑙

2
−

𝑝1 − 1
𝑝1

𝑘) |
|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) +

+𝜀(
𝑎1𝑙
𝑝1

− 1
𝑝1

𝑘) |𝑢(𝑙, 𝑡)|𝑝1 . (80)

For 𝑡 > 0 we denote Σ1𝑡 = {𝑥 ∶ |𝑢(𝑥, 𝑡)| ≥ 1, 0 ≤ 𝑥 ≤ 𝑙} and
Σ2𝑡 = {𝑥 ∶ |𝑢(𝑥, 𝑡)| < 1, 0 ≤ 𝑥 ≤ 𝑙} , then

𝐼𝑡 =

𝑙

∫
0

𝑥𝑝′(𝑥)
𝑝(𝑥)

|𝑢(𝑥, 𝑡)|𝑝(𝑥) ln |𝑢(𝑥, 𝑡)| 𝑑𝑥 = 𝐼(Σ1𝑡) + 𝐼(Σ2𝑡),

where
𝐼(Σ1𝑡) = ∫

𝑥∈Σ1𝑡

𝑥𝑝′(𝑥)
𝑝(𝑥)

|𝑢(𝑥, 𝑡)|𝑝(𝑥) ln |𝑢(𝑥, 𝑡)| 𝑑𝑥,

𝐼(Σ2𝑡) = ∫
𝑥∈Σ2𝑡

𝑥𝑝′(𝑥)
𝑝(𝑥)

|𝑢(𝑥, 𝑡)|𝑝(𝑥) ln |𝑢(𝑥, 𝑡)| 𝑑𝑥.

By virtue of (20)
𝐼(Σ1𝑡) ≤ 0. (81)

On the other hand, |𝛼|𝑝(𝑥) ln |𝛼| ≥ − 1
𝑝(𝑥)

𝑒−1, if |𝛼| < 1. Hence,

𝐼(Σ2𝑡) ≤ 𝑒−1
𝑙

∫
0

|𝑥𝑝′(𝑥)|
𝑝2(𝑥)

𝑑𝑥 = 𝑀1. (82)

From (81) and (82) we have
−𝜀𝑎1𝐼𝑡 ≥ −𝜀𝑀1. (83)
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Moreover, from (25), (76), and (83) we obtain the following inequalities

𝑘
𝑝(𝑥) − 2
𝑝(𝑥)

−
2𝑝(𝑥) − 𝑥𝑝′(𝑥)

𝑝2(𝑥)
≥ 0,

−𝜀(1 + 2𝑘)𝐸(𝑡) − 𝑎1𝜀𝐼𝑡 ≥ −𝜀
{

(1 + 2𝑘)𝐸(0) +𝑀1
}

≥ 0.
On the other hand, it follows from (76) that

𝜉 = 𝜀min
{

𝑙
2
− 𝑘

𝑝1 − 1
𝑝1

, 𝑙
𝑝1

− 𝑘 1
𝑝1

}

> 0.

Then, taking into account the last inequalities, from (80) we have

𝑦′(𝑡) ≥ 𝜉
{

|

|

𝑢𝑡(𝑙, 𝑡)||
2 + |

|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) + |𝑢(𝑙, 𝑡)|𝑝1

}

. (84)

After fixing 𝑘 we choose a rather small 𝜀, so that

𝑦(0) = −𝐸(0) + 𝜀𝑘

𝑙

∫
0

𝑢0(𝑥)𝑢1(𝑥)𝑑𝑥 + 𝜀

𝑙

∫
0

𝑥𝑢0𝑥(𝑥)𝑢1(𝑥)𝑑𝑥 > 0.

Hence
𝑦(𝑡) ≥ 𝑦(0) > 0. (85)

On the other hand, applying Hölder’s inequality and taking into account inequality (33), for sufficiently small 𝜀 > 0, we obtain

𝑦(𝑡) ≤ −𝐸(𝑡) + 𝜀𝑙2

2
(𝑘 + 1)

𝑙

∫
0

|

|

𝑢𝑥(𝑥, 𝑡)||
2 𝑑𝑥 + 𝜀𝑙

2
(𝑘 + 1)

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥 ≤

≤ 𝑎1

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑝(𝑥)

𝑝(𝑥)
𝑑𝑥 ≤

𝑎1
𝑝1

𝜌(𝑢(⋅, 𝑡)). (86)

Next, we define

𝑧(𝑡) = 𝑦1−𝛼1(𝑡) + 𝜃

𝑙

∫
0

𝑢(𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥, (87)

𝛼1 =
𝑝1 − 1
2𝑝1

, (88)

where 𝜃 is chosen rather small to satisfy
𝑧(0) > 0. (89)

Differentiating 𝑧(𝑡) and using (1) - (4), we have

𝑧′(𝑡) = (1 − 𝛼1)𝑦−𝛼1(𝑡)𝑦′(𝑡) − 2𝜃𝐸(𝑡) + 2𝜃

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥+

+𝜃

𝑙

∫
0

𝑝(𝑥) − 2
𝑝(𝑥)

|𝑢(𝑥, 𝑡)|𝑝(𝑥) 𝑑𝑥 − 𝜃 |
|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1 𝑢(𝑙, 𝑡). (90)

Using Young’s inequality with the exponents 1
𝛼1
, 1

1−𝛼1
, get

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1

|𝑢(𝑙, 𝑡)| =

[

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1

|𝑢(𝑙, 𝑡)|
𝛿

]

𝛿 ≤

≤ (1 − 𝛼1)𝛿
− 1

1−𝛼1

[

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1

|𝑢(𝑙, 𝑡)|
]

1
1−𝛼1 + 𝛼1𝛿

1
𝛼1 .

Let 𝛿 = Λ−1𝑦𝛼1(1−𝛼1)(𝑡), where Λ > 0 will be defined later, then from (84),(90), we have

𝑧′(𝑡) ≥ 𝜉(1 − 𝛼1)𝑦−𝛼1(𝑡)
{

|

|

𝑢𝑡(𝑙, 𝑡)||
2 + |

|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) +
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+ |𝑢(𝑙, 𝑡)|𝑝1
}

− 𝜃(1 − 𝛼1)Λ
1

1−𝛼1 𝑦−𝛼1(𝑡)
[

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1 𝑢(𝑙, 𝑡)

]
1

1−𝛼1 +

+𝜃𝛼1Λ
− 1

𝛼1 𝑦1−𝛼1(𝑡) − 2𝜃𝐸(𝑡) + 2𝜃

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥. (91)

From (86) it follows

𝑦1−𝛼1(𝑡) ≤
(

𝑎1
𝑝1

)1−𝛼1
[𝜌(𝑢(⋅, 𝑡))]1−𝛼1 . (92)

Further, using Young’s inequality with the exponents 2(1 − 𝛼1),
2(1−𝛼1)
1−2𝛼1

, we get

[

|

|

𝑢𝑡(𝑙, 𝑡)||
𝑟−1 𝑢(𝑙, 𝑡)

]
1

1−𝛼1 ≤ 1
2(1 − 𝛼1)

|

|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) +

1 − 2𝛼1
2(1 − 𝛼1)

|𝑢(𝑙, 𝑡)|𝑝1 . (93)

Taking this into account (92) and (93) in the (91), we have

𝑧′(𝑡) ≥ (1 − 𝛼1)𝑦−𝛼1(𝑡)
{

𝜉 |
|

𝑢𝑡(𝑙, 𝑡)||
2 +

(

𝜉 − 𝜃 1
2(1 − 𝛼1)

Λ
1

1−𝛼1

)

|

|

𝑢𝑡(𝑙, 𝑡)||
2(𝑟−1) +

+
(

𝜉 − 𝜃
1 − 2𝛼1
2(1 − 𝛼1)

Λ
1

1−𝛼1

)

|𝑢(𝑙, 𝑡)|𝑝1
}

+ 2𝜃

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥+

+𝜃

𝑙

∫
0

{

𝑝(𝑥) − 2
𝑝(𝑥)

− 𝛼1

(

𝑎1
𝑝1

)1−𝛼1
Λ− 1

𝛼1

}

|𝑢(𝑥, 𝑡)|𝑝(𝑥) 𝑑𝑥. (94)

Let’s choose a rather large Λ > 0 and a rather small 𝜃 > 0 so that

𝑝(𝑥) − 2
𝑝(𝑥)

− 𝛼1

(

𝑎1
𝑝1

)1−𝛼1
Λ− 1

𝛼1 ≥ 𝜃0 > 0, 𝜉 − 𝜃 1
2(1 − 𝛼1)

Λ
1

1−𝛼1 > 0.

Taking into account these inequalities, it follows from (93) that

𝑧′(𝑡) ≥ 𝑚

⎧

⎪

⎨

⎪

⎩

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥 +

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑝(𝑥) 𝑑𝑥

⎫

⎪

⎬

⎪

⎭

, (95)

where 𝑚 = min
{

2𝜃, 𝜃0
}

.
Applying Hölder’s inequality, we obtain

⎡

⎢

⎢

⎣

𝑙

∫
0

𝑢(𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥
⎤

⎥

⎥

⎦

1
1−𝛼1

≤

≤ ‖𝑢(𝑥, 𝑡)‖
1

1−𝛼1
2

‖

‖

𝑢𝑡(𝑥, 𝑡)‖‖
1

1−𝛼1
2 ≤ 𝑐20 ‖𝑢(𝑥, 𝑡)‖

1
1−𝛼1
2

‖

‖

𝑢𝑡(𝑥, 𝑡)‖‖
1

1−𝛼1
2 .

On the other hand, applying Young’s inequality with the exponents 2(1−𝛼1)
1−2𝛼1

, we have

⎡

⎢

⎢

⎣

𝑙

∫
0

𝑢(𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥
⎤

⎥

⎥

⎦

1
1−𝛼1

≤

≤ 𝑐21

{

‖𝑢(𝑥, 𝑡)‖
2

1−2𝛼1
𝑝1 + ‖

‖

𝑢𝑡(𝑥, 𝑡)‖‖
2
2

}

≤ 𝑐21
{

‖𝑢(𝑥, 𝑡)‖𝑝1𝑝1 +
‖

‖

𝑢𝑡(𝑥, 𝑡)‖‖
2
2

}

≤

≤ 𝑐22
{

𝜌𝑝(⋅)(𝑢(𝑥, 𝑡)) + ‖

‖

𝑢𝑡(𝑥, 𝑡)‖‖
2
2

}

. (96)
Taking into account (86), and (96), it follows from (95) that

𝑧
1

1−𝛼1 (𝑡) ≤ 𝑐23

⎧

⎪

⎨

⎪

⎩

𝑙

∫
0

|

|

𝑢𝑡(𝑥, 𝑡)||
2 𝑑𝑥 +

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑝(𝑥) 𝑑𝑥

⎫

⎪

⎬

⎪

⎭

. (97)
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It follows from (95) and (97) that 𝑧′(𝑡) ≥ 𝑐24𝑧
1

1−𝛼1 (𝑡). Thus,

𝑧(𝑡) ≥
𝑧0

[

𝑧
𝛼1

1−𝛼1
0 − 𝑐24𝛼1

1−𝛼1
𝑡
]

1−𝛼1
𝛼1

.

Hence, lim 𝑧(𝑡)
𝑡→𝑇 ′−0

= +∞, where 𝑇 ′ = 1−𝛼1
𝑐24𝛼1

𝑧
𝛼1

1−𝛼1
0 .

7 PROOF OF LEMMAS

To prove the lemmas, we use some ideas from6,7,18,19.
Proof of Lemma 1. Introduce the notation Ω− = {𝑥 ∶ |𝑣(𝑥)| ≤ 1} , Ω+ = {𝑥 ∶ |𝑣(𝑥)| > 1} and get

𝜌𝑝(⋅)(𝑣) ≥ ∫
Ω−

|𝑣(𝑥)|𝑝2 𝑑𝑥 + ∫
Ω+

|𝑣(𝑥)|𝑝1 𝑑𝑥. (98)

On the other hand, applying Hölder’s inequality, we have

∫
Ω−

|𝑣(𝑥)|𝑝2 𝑑𝑥 ≥ 𝑙
𝑝1−𝑝2
𝑝1

⎛

⎜

⎜

⎝

∫
Ω−

|𝑣(𝑥)|𝑝1 𝑑𝑥
⎞

⎟

⎟

⎠

𝑝2
𝑝1

. (99)

From (98) and (99) it follows

𝜌𝑝(⋅)(𝑣) ≥ ∫
Ω+

|𝑣(𝑥)|𝑝1 𝑑𝑥

and

𝑙
𝑝2−𝑝1
𝑝2

(

𝜌𝑝(⋅)(𝑣)
)

𝑝1
𝑝2 ≥ ∫

Ω−

|𝑣(𝑥)|𝑝1 𝑑𝑥.

Adding these inequalities, we obtain (26).
Proof of Lemma 2. Lemma 2 is a corollary of the definition of 𝜌𝑝(⋅)(⋅).
Proof of Lemma 3. The proof of Lemma 3 is given in the section 3 where the lemma is stated.
Proof of Lemma 4. To prove this lemma, we use some ideas from the proof of Lemma 3 given in30.

If 𝜌(𝑢) > 1, then it is obvious that
(𝜌(𝑢))𝜘 ≤ 𝜌(𝑢). (100)

Now consider the case 𝜌(𝑢) ≤ 1. Then 𝜌𝑝(⋅)(𝑢) ≤ 1 and |𝑢(𝑙, 𝑡)|𝑞 ≤ 1.
Let’s suppose that ‖𝑢‖𝐶[0,𝑙] ≤ 1. Then by Lemma 2 and the embedding theorem, we have

(𝜌𝑝(⋅)(𝑢))𝜘 ≤ 𝐿𝜘
‖𝑢‖𝜘𝑝1𝐶[0,𝑙] .

On the other hand, 𝜘𝑝1 > 2 so
(𝜌𝑝(⋅)(𝑢))𝜘 ≤ 𝑙𝜘 ‖𝑢‖2𝐶[0,𝑙] ≤ 𝑙𝜘+1 ‖

‖

𝑢𝑥‖‖
2
2 . (101)

As 𝜘𝑞 > 2 and |𝑢(𝑙, 𝑡)|𝑞 ≤ 1, we have

(|𝑢(𝑙, 𝑡)|𝑞)𝜘 ≤ |𝑢(𝑙, 𝑡)|𝑞𝜘 ≤ ‖𝑢‖𝑞𝜘𝐶[0,𝑙] ≤ ‖𝑢‖2𝐶[0,𝑙] ≤ 𝑙 ‖
‖

𝑢𝑥‖‖
2
2 . (102)

If ‖𝑢‖𝐶[0,𝑙] > 1, then by Lemma 2 𝜌𝑝(⋅)(𝑢) ≤ 𝑙 ‖𝑢‖𝑝2𝐶[0,𝑙] . On the other hand, 𝜌𝑝(⋅)(𝑢) ≤ 1, hence

(𝜌𝑝(⋅)(𝑢))𝜘 ≤ (𝜌𝑝(⋅)(𝑢))
𝜘 𝑝1

𝑝2 . (103)

From (100), (101), and (103), we obtain

(𝜌𝑝(⋅)(𝑢))𝜘 ≤
(

𝑙 ‖𝑢‖𝑝2𝐶[0,𝑙]

)𝜘 𝑝1
𝑝2 = 𝑙𝜘

𝑝1
𝑝2
‖𝑢‖𝜘𝑝1𝐶[0,𝑙] ≤
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≤ 𝑙𝜘
𝑝1
𝑝2
‖𝑢‖2𝐶[0,𝑙] ≤ 𝑙𝜘

𝑝1
𝑝2
+1

‖

‖

𝑢𝑥‖‖
2
2 . (104)

From (102) and (104) we have
(𝜌(𝑢))𝜘 ≤

{

𝜌𝑝(⋅)(𝑢) + |𝑢(𝑙, 𝑡)|𝑞
}𝜘 ≤ 𝑐25 ‖‖𝑢𝑥‖‖

2
2 . (105)

Thus, from (100) and (105) it follows the inequality

(𝜌(𝑢))𝜘 ≤ 𝑐26
[

‖

‖

𝑢𝑥‖‖
2
2 + 𝜌(𝑢)

]

. (106)

Inequality (38) is proved in a similar way. The proof is complete.
Proof of Lemma 5. Applying Hölder’s inequality and Lemma 3, we have

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑟 𝑑𝑥 ≤ 𝑙
𝑝1−𝑟
𝑝1

‖𝑢(⋅, 𝑡)‖𝑟𝑝1 ≤ 𝑐27𝑙
𝑝1−𝑟
𝑝1

(

𝜌𝑝(⋅)(𝑢(⋅, 𝑡))
)

𝑟
𝑝1 . (107)

Further, integrating by parts, we obtain

|𝑢(𝑙, 𝑡)|𝑟 ≤ 1
𝑙

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑟 𝑑𝑥 + 𝑟

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑟−1 |
|

𝑢𝑥(𝑥, 𝑡)|| 𝑑𝑥. (108)

Applying Hölder’s inequality with the exponents 𝛼 + 1 and 𝛼+1
𝛼

, where 2
𝑝1

< 𝛼 < 1, we have

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑟−1 |
|

𝑢𝑥(𝑥, 𝑡)|| 𝑑𝑥 ≤

≤ 𝛼 + 1
𝛼

𝑙

∫
0

|𝑢(𝑥, 𝑡)|(𝑟−1)
𝛼+1
𝛼 𝑑𝑥 + (𝛼 + 1)

𝑙

∫
0

|

|

𝑢𝑥(𝑥, 𝑡)||
𝛼+1 𝑑𝑥. (109)

Choosing the Hölder’s exponents 𝜂1 =
𝑝1𝛼

(𝑟−1)(𝛼+1)
,𝜂′1 =

𝑝1𝛼
𝑝1𝛼−(𝑟−1)(𝛼+1)

, we obtain the inequality

𝑙

∫
0

|𝑢(𝑥, 𝑡)|(𝑟−1)
𝛼+1
𝛼 𝑑𝑥 ≤ 𝑙

𝑝1𝛼−(𝑟−1)(𝛼+1)
𝑝1𝛼

⎛

⎜

⎜

⎝

𝑙

∫
0

|𝑢(𝑥, 𝑡)|𝑝1 𝑑𝑥
⎞

⎟

⎟

⎠

(𝑟−1)(𝛼+1)
𝑝1𝛼

. (110)

Similarly, applying Hölder’s inequality with the exponents 𝜂2 =
2

𝛼+1
, 𝜂′2 =

2
1−𝛼

, we get

𝑙

∫
0

|

|

𝑢𝑥(𝑥, 𝑡)||
𝛼+1 𝑑𝑥 ≤ 𝑙

1−𝛼
2

⎛

⎜

⎜

⎝

𝑙

∫
0

|

|

𝑢𝑥(𝑥, 𝑡)||
2 𝑑𝑥

⎞

⎟

⎟

⎠

𝛼+1
2

. (111)

Taking into account (32) - (34), hence we have
𝑙

∫
0

|

|

𝑢𝑥(𝑥, 𝑡)||
𝛼+1 𝑑𝑥 ≤ 𝑐28(𝜌(𝑢))

𝛼+1
2 . (112)

By virtue of (109) - (110), it follows from (112) that

|𝑢(𝑙, 𝑡)|𝑟 ≤ 𝑐29

[

(𝜌(𝑢))
𝑟−1
𝑝1 + (𝜌(𝑢))

𝛼+1
2 + (𝜌(𝑢))

(𝑟−1)(𝛼+1)
𝛼𝑝1

]

.
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