5. Reference

Chen, X., Liu, Z.-Q., Lin, C.-P., & Zheng, Y.-G. (2016). Chemoenzymatic synthesis of (S)-duloxetine using carbonyl reductase from Rhodosporidium toruloides. Bioorganic Chemistry , 65 , 82–89. https://doi.org/https://doi.org/10.1016/j.bioorg.2016.02.002
Contreras-Llano, L. E., & Tan, C. (2018). High-throughput screening of biomolecules using cell-free gene expression systems. Synthetic Biology . https://doi.org/10.1093/synbio/ysy012
Fibla, J., & Gonzàlez-Duarte, R. (1993). Colorimetric assay to determine alcohol dehydrogenase activity. Journal of Biochemical and Biophysical Methods . https://doi.org/10.1016/0165-022X(93)90025-J
Forrest, G. L., & Gonzalez, B. (2000). Carbonyl reductase.Chemico-Biological Interactions . https://doi.org/10.1016/S0009-2797(00)00196-4
Fox, R. J., Davis, S. C., Mundorff, E. C., Newman, L. M., Gavrilovic, V., Ma, S. K., … Huisman, G. W. (2007). Improving catalytic function by ProSAR-driven enzyme evolution. Nature Biotechnology . https://doi.org/10.1038/nbt1286
Held, P. (2007). Determination of NADH Concentrations with the SynergyTM 2 Multi-Detection Microplate Reader using Fluorescence or Absorbance. BioTek .
Huang, R., Chen, H., Zhong, C., Kim, J. E., & Zhang, Y. H. P. (2016). High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+. Scientific Reports . https://doi.org/10.1038/srep32644
Kara, S., Spickermann, D., Weckbecker, A., Leggewie, C., Arends, I. W. C. E., & Hollmann, F. (2014). Bioreductions catalyzed by an alcohol dehydrogenase in non-aqueous media. ChemCatChem . https://doi.org/10.1002/cctc.201300841
Ma, X., Liang, H., Cui, X., Liu, Y., Lu, H., Ning, W., … Zhou, K. (2019). A standard for near-scarless plasmid construction using reusable DNA parts. Nature Communications . https://doi.org/10.1038/s41467-019-11263-0
Makino, Y., Dairi, T., & Itoh, N. (2007). Engineering the phenylacetaldehyde reductase mutant for improved substrate conversion in the presence of concentrated 2-propanol. Applied Microbiology and Biotechnology , 77 (4), 833–843. https://doi.org/10.1007/s00253-007-1223-2
Mayer, K. M., & Arnold, F. H. (2002). A colorimetric Assay to Quantify Dehydrogenase Activity in Crude Cell Lysates. Journal of Biomolecular Screening . https://doi.org/10.1089/10870570252906594
Nealon, C. M., Musa, M. M., Patel, J. M., & Phillips, R. S. (2015). Controlling Substrate Specificity and Stereospecificity of Alcohol Dehydrogenases. ACS Catalysis . https://doi.org/10.1021/cs501457v
Packer, M. S., & Liu, D. R. (2015). Methods for the directed evolution of proteins. Nature Reviews Genetics . https://doi.org/10.1038/nrg3927
Parmeggiani, C., Matassini, C., & Cardona, F. (2017). A step forward towards sustainable aerobic alcohol oxidation: New and revised catalysts based on transition metals on solid supports. Green Chemistry . https://doi.org/10.1039/c7gc00406k
Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology . https://doi.org/10.1038/nbt1172
Qin, F., Qin, B., Zhang, W., Liu, Y., Su, X., Zhu, T., … You, S. (2018). Discovery of a Switch Between Prelog and Anti-Prelog Reduction toward Halogen-Substituted Acetophenones in Short-Chain Dehydrogenase/Reductases. ACS Catalysis , 8 (7), 6012–6020. https://doi.org/10.1021/acscatal.8b00807
Savile, C., Gruber, J. M., Mundorff, E., Huisman, G., & Collier, S. J. (2014). Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine . Retrieved from https://www.google.ch/patents/US20100151534
Simeonov, A., & Davis, M. I. (2004). Interference with Fluorescence and Absorbance. In Assay Guidance Manual .
Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S., & van Dijl, J. M. (2000). Signal Peptide-Dependent Protein Transport in Bacillus subtilis: a Genome-Based Survey of the Secretome. Microbiology and Molecular Biology Reviews . https://doi.org/10.1128/mmbr.64.3.515-547.2000
Yamamoto, H., & Kudoh, M. (2013). Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols. Applied Microbiology and Biotechnology , 97 (18), 8087–8096. https://doi.org/10.1007/s00253-012-4643-6
Yamamoto, K., Kurisu, G., Kusunoki, M., Tabata, S., Urabe, I., & Osaki, S. (2001). Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 Å resolution. Journal of Biochemistry . https://doi.org/10.1093/oxfordjournals.jbchem.a002858
Zeymer, C., & Hilvert, D. (2018). Directed Evolution of Protein Catalysts. Annual Review of Biochemistry . https://doi.org/10.1146/annurev-biochem-062917-012034
Zhang, H., Lountos, G. T., Ching, C. B., & Jiang, R. (2010). Engineering of glycerol dehydrogenase for improved activity towards 1, 3-butanediol. Applied Microbiology and Biotechnology . https://doi.org/10.1007/s00253-010-2735-8
Zhang, R., Xu, Y., & Xiao, R. (2015). Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnology Advances . https://doi.org/10.1016/j.biotechadv.2015.08.002
Zhang, Z., Tang, R., Zhu, D., Wang, W., Yi, L., & Ma, L. (2017). Non-peptide guided auto-secretion of recombinant proteins by super-folder green fluorescent protein in Escherichia coli.Scientific Reports . https://doi.org/10.1038/s41598-017-07421-3
Zheng, Y. G., Yin, H. H., Yu, D. F., Chen, X., Tang, X. L., Zhang, X. J., … Liu, Z. Q. (2017). Recent advances in biotechnological applications of alcohol dehydrogenases. Applied Microbiology and Biotechnology . https://doi.org/10.1007/s00253-016-8083-6