References
1. Sussmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and
Prospects. Angew Chem Int Ed Engl. 2017; 56 (14):
3770-3821.
2. Muttenthaler M, King GF, Adams DJ, Alewood PF.
Trends in peptide drug discovery.Nat Rev Drug Discov. 2021; 20 : 309-325.
3. Feng Z, Xu B. Inspiration from the mirror: D-amino acid containing
peptides in biomedical approaches. Biomol Concepts. 2016;7 : 179-187.
4. Ogasawara Y, Dairi T. Peptide
Epimerization Machineries Found in Microorganisms. Front
Microbiol. 2018; 9 : 156.
5. Gaudelli NM, Townsend CA.
Epimerization
and substrate gating by a TE domain in beta-lactam antibiotic
biosynthesis. Nat Chem Biol. 2014; 10 (4): 251-258.
6. Patel KD, d’Andrea FB, Gaudelli NM, Buller AR, Townsend CA, Gulick
AM. Structure of a bound peptide phosphonate reveals the mechanism of
nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions.Nat Commun. 2019; 10 (1): 3868.
7. Gunsior M, Breazeale SD, Lind AJ, Ravel J, Janc JW, Townsend CA. The
biosynthetic gene cluster for a monocyclic beta-lactam antibiotic,
nocardicin A. Chem Biol. 2004; 11 (7): 927-938.
8. Aoki H, Sakai H, Kohsaka M.;, Konomi T, Hosoda J.
Nocardicin A, a new monocyclic
beta-lactam antibiotic. I. Discovery, isolation and characterization.J Antibiot (Tokyo). 1976; 29 (5): 492-500.
9. Nishida M, Mine Y, Nonoyama S, Kojo H. Nocardicin A, a new monocyclic
beta-lactam antibiotic III. In vitro evaluation. J Antibiot
(Tokyo). 1977; 30 (11): 917-925.
10. Yu Q, Xie LF, Li YL, Bai LQ, Zhao YL, Wei DQ, Shi T. Exploring the
Molecular Basis of Substrate and Product Selectivities of Nocardicin
Bifunctional Thioesterase. Interdiscip Sci. 2022; 14 (1):
233-244.
11. Tanner ME. Understanding nature’s strategies for enzyme-catalyzed
racemization and epimerization. Acc Chem Res. 2002;35 (4): 237-246.
12. Liu B, Hou Y, Wang X, Ma X, Fang S, Huang T, Chen Y, Bai Z, Lin S,
Zhang R, Hu K. Structural basis of
the mechanism of beta-methyl epimerization by enzyme MarH. Org
Biomol Chem. 2019; 17 (44): 9605-9614.
13. Zhang YL, Zheng QC, Zhang JL, Zhang HX. Insights into the
epimerization activities of RaCE and pAGE: the quantum
mechanics/molecular mechanics simulations. Rsc Adv. 2015;5 (124): 102284-102293.
14. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an
automated pipeline for the setup of Poisson-Boltzmann electrostatics
calculations. Nucleic Acids Res. 2004; 32 : W665-W667.
15. Zhao Y, Truhlar DG. The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent
interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and 12
other functionals. Theor Chem Acc. 2008; 120 (1-3):
215-241.
16. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA.
6-31G*basis set for third-row atoms. J Comput Chem. 2001;22 (9): 976-984.
17. Payne PW. The hartree-fock theory of local regions in molecules.J. Am. Chem. Soc. 1977; 100 (11):7742-7743.
18. Frisch MJ, Trucks G W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman
JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H,
Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G,
Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida
M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr,
Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN,
Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant
JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE,
Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE,
Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL,
Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich
S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ.Gaussian 09 ; Gaussian, Inc. Wallingford (CT), 2009.
19. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM,
Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force
field for the simulation of proteins, nucleic acids, and organic
molecules. J. Am. Chem. Soc. 1995; 117 (19): 5179– 5197.
20. Lu T, Chen F. Multiwfn: a
multifunctional wavefunction analyzer. J Comput Chem. 2012;33 (5): 580-592.
21. Wang JM, Wang W, Kollman PA. Antechamber: An accessory software
package for molecular mechanical calculations. Abstr Pap Am Chem
S. 2001; 222 : U403-U403.
22. Case DA, Ben-Shalom IY, Rozell SR, Cerutti DS, Cheatham TEIII,
Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H,
Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman
T, Lee TS, LeGrand S, Li P. Lin C, Liu J, Luchko T, Luo R, Mermelstein
DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev
A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J,
Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J,
Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA. AMBER 2018 ;
University of California: San Francisco, CA, 2018.
23. Maier, JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE,
Simmerling C. ff14SB: Improving the
Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.J Chem Theory Comput. 2015; 11 (8): 3696-3713.
24. Darden T, York D, Pedersen L.
Particle mesh Ewald: An N⋅log (N)
method for Ewald sums in large systems. J Chem Phys. 1993;98 (12): 10089–10092.
25. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the
cartesian equations of motion of a system with constraints: molecular
dynamics of n-alkanes. J Comput Phys. 1977; 23 (3):
327–341.
26. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and
Analysis of Molecular Dynamics Trajectory Data. J Chem Theory
Comput. 2013; 9 (7): 3084-3095.
27. Vreven T, Frisch MJ, Kudin KN, Schlegel HB, Morokuma K.
Geometry optimization with QM/MM
methods II: Explicit quadratic coupling. Mol Phys. 2006;104 (5-7): 701-714.
28. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA, Morokuma
K, Frisch MJ. Combining Quantum Mechanics Methods with Molecular
Mechanics Methods in ONIOM. J Chem Theory Comput . 2006;2 (3):815-826.
29. Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based
on Solute Electron Density and on a Continuum Model of the Solvent
Defined by the Bulk Dielectric Constant and Atomic Surface Tensions.J Phys Chem B. 2009; 113 (18): 6378-6396.
30. Cisneros GA, Piquemal JP, Darden TA. Quantum mechanics/molecular
mechanics electrostatic embedding with continuous and discrete
functions. J Phys Chem B. 2006; 110 (28): 13682-13684.
31. Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J,
Baldwin JE. Structure of
isopenicillin N synthase complexed with substrate and the mechanism of
penicillin formation. Nature. 1997; 387 (6635): 827-830.