References
1. Sussmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl. 2017; 56 (14): 3770-3821.
2. Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery.Nat Rev Drug Discov. 2021; 20 : 309-325.
3. Feng Z, Xu B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol Concepts. 2016;7 : 179-187.
4. Ogasawara Y, Dairi T. Peptide Epimerization Machineries Found in Microorganisms. Front Microbiol. 2018; 9 : 156.
5. Gaudelli NM, Townsend CA. Epimerization and substrate gating by a TE domain in beta-lactam antibiotic biosynthesis. Nat Chem Biol. 2014; 10 (4): 251-258.
6. Patel KD, d’Andrea FB, Gaudelli NM, Buller AR, Townsend CA, Gulick AM. Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions.Nat Commun. 2019; 10 (1): 3868.
7. Gunsior M, Breazeale SD, Lind AJ, Ravel J, Janc JW, Townsend CA. The biosynthetic gene cluster for a monocyclic beta-lactam antibiotic, nocardicin A. Chem Biol. 2004; 11 (7): 927-938.
8. Aoki H, Sakai H, Kohsaka M.;, Konomi T, Hosoda J. Nocardicin A, a new monocyclic beta-lactam antibiotic. I. Discovery, isolation and characterization.J Antibiot (Tokyo). 1976; 29 (5): 492-500.
9. Nishida M, Mine Y, Nonoyama S, Kojo H. Nocardicin A, a new monocyclic beta-lactam antibiotic III. In vitro evaluation. J Antibiot (Tokyo). 1977; 30 (11): 917-925.
10. Yu Q, Xie LF, Li YL, Bai LQ, Zhao YL, Wei DQ, Shi T. Exploring the Molecular Basis of Substrate and Product Selectivities of Nocardicin Bifunctional Thioesterase. Interdiscip Sci. 2022; 14 (1): 233-244.
11. Tanner ME. Understanding nature’s strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res. 2002;35 (4): 237-246.
12. Liu B, Hou Y, Wang X, Ma X, Fang S, Huang T, Chen Y, Bai Z, Lin S, Zhang R, Hu K. Structural basis of the mechanism of beta-methyl epimerization by enzyme MarH. Org Biomol Chem. 2019; 17 (44): 9605-9614.
13. Zhang YL, Zheng QC, Zhang JL, Zhang HX. Insights into the epimerization activities of RaCE and pAGE: the quantum mechanics/molecular mechanics simulations. Rsc Adv. 2015;5 (124): 102284-102293.
14. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004; 32 : W665-W667.
15. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008; 120 (1-3): 215-241.
16. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA. 6-31G*basis set for third-row atoms. J Comput Chem. 2001;22 (9): 976-984.
17. Payne PW. The hartree-fock theory of local regions in molecules.J. Am. Chem. Soc. 1977; 100 (11):7742-7743.
18. Frisch MJ, Trucks G W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ.Gaussian 09 ; Gaussian, Inc. Wallingford (CT), 2009.
19. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995; 117 (19): 5179– 5197.
20. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33 (5): 580-592.
21. Wang JM, Wang W, Kollman PA. Antechamber: An accessory software package for molecular mechanical calculations. Abstr Pap Am Chem S. 2001; 222 : U403-U403.
22. Case DA, Ben-Shalom IY, Rozell SR, Cerutti DS, Cheatham TEIII, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P. Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA. AMBER 2018 ; University of California: San Francisco, CA, 2018.
23. Maier, JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.J Chem Theory Comput. 2015; 11 (8): 3696-3713.
24. Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98 (12): 10089–10092.
25. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977; 23 (3): 327–341.
26. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013; 9 (7): 3084-3095.
27. Vreven T, Frisch MJ, Kudin KN, Schlegel HB, Morokuma K. Geometry optimization with QM/MM methods II: Explicit quadratic coupling. Mol Phys. 2006;104 (5-7): 701-714.
28. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ. Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. J Chem Theory Comput . 2006;2 (3):815-826.
29. Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions.J Phys Chem B. 2009; 113 (18): 6378-6396.
30. Cisneros GA, Piquemal JP, Darden TA. Quantum mechanics/molecular mechanics electrostatic embedding with continuous and discrete functions. J Phys Chem B. 2006; 110 (28): 13682-13684.
31. Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature. 1997; 387 (6635): 827-830.