References
Assouline, S., Govers, G., Nearing, M.A. (2017). Erosion and Lateral
Surface Processes. Vadose Zone Journal ,
16(12). doi:10.2136/vzj2017.11.0194
Bagarello, V., Ferro, V., &
Giordano, G. (2010). Testing alternative erosivity indices to predict
event soil loss from bare plots in southern Italy. Hydrological
Processes , 24(6), 789–797. doi.org/10.1002/hyp.7538
Berger, C., Schulze, M., Rieke-Zapp D. (2010). Rill development and soil
erosion: a laboratory study of slope and rainfall intensity. Earth
Surface Processes and Landforms , 2010, 35(12):1456-1467.
doi:10.1002/esp.1989
Bonilla, Carlos A., Johnson, Odette I. (2012). Soil erodibility mapping
and its correlation with soil properties in Central Chile.Geoderma , 189-190,
116–123. doi:10.1016/j.geoderma.2012.05.005
Castro Filho,C., Lourenço, A., Guimarães, M.F., Fonseca, I.C.B. (2002).
Aggregate stability under different soil management systems in a red
latosol in the state of Paraná, Brazil. Soil Tillage Research ,
65, 45–51. doi:10.1016/s0167-1987(01)00275-6
Dong, Y.Q., Zhuang, X.H., Lei, T.W., Yin, Z., Ma, Y.Y. (2014). A method
for measuring erosive flow velocity with simulated rill.Geoderma , 232-234, 556–562. doi:10.1016/j.geoderma.2014.06.014
Fang, H.Y., Sun, L.Y., Tang, Z.H. (2015). Effects of rainfall and slope
on runoff, soil erosion and rill development: an experimental study
using two loess soils. Hydrological Processes , 29(11),
2649–2658. doi:10.1002/hyp.10392
Foster, G.R., Flanagan, D.C., Nearing, M. A., Lane, L.J., Risse, L.M.,
& Finkner, S.C. (1995). Hillslope erosion component. WEPP: USDA‐Water
Erosion Prediction Project, 11.1–11.12.
Gómez, J. A., Darboux, F., Nearing, M. A. (2003). Development and
evolution of rill networks under simulated rainfall. Water
Resources Research , 39(6), 1148. doi.org/10.1029/2002WR001437
Gordon, L.M., Bennett, S.J., & Wells, R.R. (2012). Response of a
soil-mantled experimental landscape to exogenic forcing. Water
Resources Research , 48. doi.org/10.1029/2012WR012283
Govers, G., Giménez, R., Van Oost, K. (2007). Rill erosion: Exploring
the relationship between experiments, modelling and field obser-vations.Earth-Science Reviews , 84(34), 87–102.
doi.org/10.1016/j.earscirev.2007.06.001
Guo, W. Z., Bai, Y., Cui, Z. Q., Wang, W. L., Li, J. M., Su, Z. G.
(2020). The impact of concentrated flow and slope on unpaved loess‐road
erosion on the Chinese Loess Plateau. Land Degradation &
Development . doi:10.1002/ldr.3774
Guo, W.Z., Xu, X.Z., Zhu, T.X., Zhang, H.W., Wang, W.L., Liu, Y.K., Zhu,
M.D. (2019). Changes in particle size distribution of suspended sediment
affected by gravity erosion: a field study on steep loess slopes.Journal of Soils and Sediments , 20(3):1730-1741.
doi:10.1007/s11368-019-02496-z
He, J.J., Li, X.J., Jia, L.J., Gong, H.L., Cai, Q.G.
(2014). Experimental Study of Rill Evolution Processes and Relationships
between Runoff and Erosion on Clay Loam and Loess. Soil Science
Society of America Journal , 78(5). doi:10.2136/sssaj2014.02.0063
He, J.J., Sun, L.Y., Gong, H.L., Cai, Q.G. (2017). Laboratory Studies on
the Influence of Rainfall Pattern on Rill Erosion and Its Runoff and
Sediment Characteristics. Land Degradation & Development .
doi:10.1002/ldr.2691
Jerzy. L., Czyż, E.A., Dexter. A.R., Siczek, A. (2018). Effects of soil
deformation on clay dispersion in loess soil. Soil and Tillage
Research , 184:203-206. doi:10.1016/j.still.2018.08.005
Knapen, A., Poesen, J, Govers, G., Gyssels, G., Nachtergaele, J.
(2017). Resistance of soils to concentrated flow erosion: A review.Earth-Science Reviews , 80(1-2),
75–109. doi:10.1016/j.earscirev.2006.08.001
Komatsu H., Shinohara Y., Kume T. (2011). Changes in peak flow with
decreased forestry practices: Analysis using watershed runoff data.Journal of Environmental Management , 2011,
92(6):1528-1536. doi:10.1016/j.jenvman.2011.01.010
Langhans, C., Govers, G., Diels,
J., Stone, J. J., Nearing, M. A. (2014). Modeling scale-dependent runoff
generation in a small semi-arid watershed accounting for rainfall
intensity and water depth. Advances in Water Resources , 69, 6
5–78. doi.org/10.1016/j. dvwatres.2014.03.005
Li, Y.S., Han, S.F., Wang, Z.H. (1985). Soil water properties and its
zonation in the Loess Plateau. Menoir NSWC Acad. Sin. 2, 1–17 (in
Chinese).
Madenoglu, S., Atalay, F., Erpul,
G. (2020). Uncertainty assessment of soil erodibility by direct
sequential Gaussian simulation (DSIM) in semiarid land uses. Soil
and Tillage Research , 204, 104731. doi:10.1016/j.still.2020.104731
Mancilla, G.A., Chen, S., McCool, D.K.(2005) Rill density prediction and
flow velocity distributions on agricultural areas in the Pacific
Northwest. Soil and Tillage Research , 84(1), 54–66.
doi.org/10.1016/j.still.2004.10.002
Nelson, D.W., Sommer, L.E. (1982). Total carbon, organic carbon, and
organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis: Chemical
and Microbiological PropertiesASA Monograph. Am. Soc. Agron.,
Madison , 539–579. doi:10.2136/sssabookser5.3.c34
Neyshabouri, M.R., Ahmadi, A., Rouhipour, H., Asadi, H., Irannajad, M.
(2011). Soil texture fractions and fractal dimension of particle size
distribution as predictors of interrill erodibility. Turk. J. Agric.
For. 35, 95–102. doi:10.3906/tar-0911-30
Owoputi, L.O., Stolte, W.J. (1995). Soil detachment in the physically
based soil erosion process: a review. Trans. ASAE 38,
1099–11. doi:10.13031/2013.27927
Oz, I., Arav, R., Filin, S., Assouline, S., Furman, A. (2017).
High-resolution measurement of topographic changes in agricultural
soils. Vadose Zone Journal , 16(12).
doi.org/10.2136/vzj2017.07.0138
Rienzi, E.A., Fox, J.F., Grove, J.H., Matocha, C.J. (2013). Interrill
erosion in soils with different land uses: The kinetic energy wetting
effect on temporal particle size distribution. Catena107:130–138. doi:10.1016/j.catena.2013.02.007
Ries, J.B., Marzen, M., Iserloh, T., Fister, W. (2014). Soil erosion in
Mediterranean landscapes – Experimental investigation on crusted
surfaces by means of the Portable Wind and Rainfall Simulator.Journal of Arid Environments , 100-101, 42–51.
doi:10.1016/j.jaridenv.2013.10.006
Robichaud, P.R., Wagenbrenner, J.W., Elliot, W.J. (2020). Rill erosion
in natural and disturbed forests: 1. Measurements. Water Resources
Research , 46, W10506. doi.org/10.1029/2009WR008314
Schneider, A., Gerke, H.H., Maurer, T., Nenov, R. (2013). Initial
hydro-geomorphic development and rill network evolution in an artificial
catchment. Earth Surface Processes and Landforms , 38(13),
1496–1512. doi:10.1002/esp.3384
Shen, H., Zheng, F.L., Wen, L.L., Han, Y., Hu, W. (2016). Impacts of
rainfall intensity and slope gradient on rill erosion processes at
loessial hillslope. Soil and Tillage Research , 155,
429–436. doi:10.1016/j.still.2015.09.011
Shen, H., Zheng, F.L., Wen, L.L., Lu, J., Jiang, Y.L. (2015). An
experimental study of rill erosion and morphology. Geomorphology ,
231, 193–201. doi:10.1016/j.geomorph.2014.11.029
Sun, L.Y., Zhou, J.L., Cai, Q.G. (2020). Impacts of soil properties on
flow velocity under rainfall events: Evidence from soils across the
Loess Plateau. catena , 194, 104704.
doi:10.1016/j.catena.2020.104704
Vaezi, A.R., Ahmadi, M., Cerdà, A. (2018). Contribution of raindrop
impact to the change of soil physical properties and water erosion under
semi-arid rainfalls. Science of The Total Environment, 583,
382–392. doi:10.1016/j.scitotenv.2017.01.078
Vaezi, A.R., Zarrinabadi, E.,
Auerswald, K. (2017). Interaction of land use, slope gradient and rain
sequence on runoff and soil loss from weakly aggregated semi-arid soils.Soil and Tillage Research , 172,
22–31. doi:10.1016/j.still.2017.05.001
Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose,
T., Vanderborght, J. (2016). Modeling soil processes: Review, key
challenges, and new perspectives. Vadose Zone Journal , 15(5).
doi.org/10.2136/vzj2015.09.0131
Wu, S., Chen, L., Wang, N., Yu, M., Assouline, S. (2018). Modeling
rainfall‐runoff and soil erosion processes on hillslopes with complex
rill network planform. Water Resources Research , 54,
10,117–10,133. doi.org/10.1029/2018WR023837
Wu, S.B., Chen, L. (2020). Modeling Soil Erosion with Evolving Rills on
Hillslopes. Water Resources Research , 56(10).
doi:10.1029/2020WR027768
Wu, X.L., Wei, Y.J., Wang, J.G., Wang, D., She, L., Wang, J., Cai, C.F.
(2017). Effects of soil physicochemical properties on aggregate
stability along a weathering gradient. Catena , 156,
205–215. doi:10.1016/j.catena.2017.04.017
Xu, X.Z., Liu, Z.Y., Xiao, P.Q., Guo, W.Z., Zhang, H.W., Zhao, C., Yan,
Q. (2015). Gravity erosion on the steep loess slope: Behavior, trigger
and sensitivity. catena, 135, 231–239. doi:10.1016/j.catena.2015.08.005
Zhang, Q. W., Lei, T. W., Huang, X. J. (2016). Quantifying the sediment
transport capacity in eroding rills using a REE tracing method.Land Degradation & Development . doi:10.1002/ldr.2535
Zhang, P., Yao, W., Tang, H., Wei, G., Wang, L. (2017). Laboratory
investigations of rill dynamics on soils of the Loess Plateau of China.Geomorphology , 293:201-210. doi:10.1016/j.geomorph.2017.06.003
Zhang, P., Yao, W., Liu, G., Xiao, P. (2019). Experimental study on soil
erosion prediction model of loess slope based on rill morphology.Catena , 173, 424–432. doi:10.1016/j.catena.2018.10.034
Zhao, L., Hou, R., & Wu, F. (2018). Effect of tillage on soil erosion
before and after rill development. Land Degradation &
Development , 29(8), 2506–2513. doi:10.1002/ldr.2996
Table 1. Soil properties from the study site