References

Assouline, S., Govers, G., Nearing, M.A. (2017). Erosion and Lateral Surface Processes. Vadose Zone Journal , 16(12). doi:10.2136/vzj2017.11.0194
Bagarello, V., Ferro, V., & Giordano, G. (2010). Testing alternative erosivity indices to predict event soil loss from bare plots in southern Italy. Hydrological Processes , 24(6), 789–797. doi.org/10.1002/hyp.7538
Berger, C., Schulze, M., Rieke-Zapp D. (2010). Rill development and soil erosion: a laboratory study of slope and rainfall intensity. Earth Surface Processes and Landforms , 2010, 35(12):1456-1467. doi:10.1002/esp.1989
Bonilla, Carlos A., Johnson, Odette I. (2012). Soil erodibility mapping and its correlation with soil properties in Central Chile.Geoderma , 189-190, 116–123.   doi:10.1016/j.geoderma.2012.05.005
Castro Filho,C., Lourenço, A., Guimarães, M.F., Fonseca, I.C.B. (2002). Aggregate stability under different soil management systems in a red latosol in the state of Paraná, Brazil. Soil Tillage Research , 65, 45–51. doi:10.1016/s0167-1987(01)00275-6
Dong, Y.Q., Zhuang, X.H., Lei, T.W., Yin, Z., Ma, Y.Y. (2014). A method for measuring erosive flow velocity with simulated rill.Geoderma , 232-234, 556–562. doi:10.1016/j.geoderma.2014.06.014
Fang, H.Y., Sun, L.Y., Tang, Z.H. (2015). Effects of rainfall and slope on runoff, soil erosion and rill development: an experimental study using two loess soils. Hydrological Processes , 29(11), 2649–2658. doi:10.1002/hyp.10392
Foster, G.R., Flanagan, D.C., Nearing, M. A., Lane, L.J., Risse, L.M., & Finkner, S.C. (1995). Hillslope erosion component. WEPP: USDA‐Water Erosion Prediction Project, 11.1–11.12.
Gómez, J. A., Darboux, F., Nearing, M. A. (2003). Development and evolution of rill networks under simulated rainfall. Water Resources Research , 39(6), 1148. doi.org/10.1029/2002WR001437
Gordon, L.M., Bennett, S.J., & Wells, R.R. (2012). Response of a soil-mantled experimental landscape to exogenic forcing. Water Resources Research , 48. doi.org/10.1029/2012WR012283
Govers, G., Giménez, R., Van Oost, K. (2007). Rill erosion: Exploring the relationship between experiments, modelling and field obser-vations.Earth-Science Reviews , 84(34), 87–102. doi.org/10.1016/j.earscirev.2007.06.001
Guo, W. Z., Bai, Y., Cui, Z. Q., Wang, W. L., Li, J. M., Su, Z. G. (2020). The impact of concentrated flow and slope on unpaved loess‐road erosion on the Chinese Loess Plateau. Land Degradation & Development . doi:10.1002/ldr.3774
Guo, W.Z., Xu, X.Z., Zhu, T.X., Zhang, H.W., Wang, W.L., Liu, Y.K., Zhu, M.D. (2019). Changes in particle size distribution of suspended sediment affected by gravity erosion: a field study on steep loess slopes.Journal of Soils and Sediments , 20(3):1730-1741. doi:10.1007/s11368-019-02496-z
He, J.J., Li, X.J., Jia, L.J., Gong, H.L., Cai, Q.G. (2014). Experimental Study of Rill Evolution Processes and Relationships between Runoff and Erosion on Clay Loam and Loess. Soil Science Society of America Journal , 78(5). doi:10.2136/sssaj2014.02.0063
He, J.J., Sun, L.Y., Gong, H.L., Cai, Q.G. (2017). Laboratory Studies on the Influence of Rainfall Pattern on Rill Erosion and Its Runoff and Sediment Characteristics. Land Degradation & Development . doi:10.1002/ldr.2691
Jerzy. L., Czyż, E.A., Dexter. A.R., Siczek, A. (2018). Effects of soil deformation on clay dispersion in loess soil. Soil and Tillage Research , 184:203-206. doi:10.1016/j.still.2018.08.005
Knapen, A., Poesen, J, Govers, G., Gyssels, G., Nachtergaele, J. (2017). Resistance of soils to concentrated flow erosion: A review.Earth-Science Reviews , 80(1-2), 75–109. doi:10.1016/j.earscirev.2006.08.001
Komatsu H., Shinohara Y., Kume T. (2011). Changes in peak flow with decreased forestry practices: Analysis using watershed runoff data.Journal of Environmental Management , 2011, 92(6):1528-1536. doi:10.1016/j.jenvman.2011.01.010
Langhans, C., Govers, G., Diels, J., Stone, J. J., Nearing, M. A. (2014). Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth. Advances in Water Resources , 69, 6 5–78. doi.org/10.1016/j. dvwatres.2014.03.005
Li, Y.S., Han, S.F., Wang, Z.H. (1985). Soil water properties and its zonation in the Loess Plateau. Menoir NSWC Acad. Sin. 2, 1–17 (in Chinese).
Madenoglu, S., Atalay, F., Erpul, G. (2020). Uncertainty assessment of soil erodibility by direct sequential Gaussian simulation (DSIM) in semiarid land uses. Soil and Tillage Research , 204, 104731. doi:10.1016/j.still.2020.104731
Mancilla, G.A., Chen, S., McCool, D.K.(2005) Rill density prediction and flow velocity distributions on agricultural areas in the Pacific Northwest. Soil and Tillage Research , 84(1), 54–66. doi.org/10.1016/j.still.2004.10.002
Nelson, D.W., Sommer, L.E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis: Chemical and Microbiological PropertiesASA Monograph. Am. Soc. Agron., Madison , 539–579. doi:10.2136/sssabookser5.3.c34
Neyshabouri, M.R., Ahmadi, A., Rouhipour, H., Asadi, H., Irannajad, M. (2011). Soil texture fractions and fractal dimension of particle size distribution as predictors of interrill erodibility. Turk. J. Agric. For. 35, 95–102. doi:10.3906/tar-0911-30
Owoputi, L.O., Stolte, W.J. (1995). Soil detachment in the physically based soil erosion process: a review. Trans. ASAE 38, 1099–11.  doi:10.13031/2013.27927
Oz, I., Arav, R., Filin, S., Assouline, S., Furman, A. (2017). High-resolution measurement of topographic changes in agricultural soils. Vadose Zone Journal , 16(12). doi.org/10.2136/vzj2017.07.0138
Rienzi, E.A., Fox, J.F., Grove, J.H., Matocha, C.J. (2013). Interrill erosion in soils with different land uses: The kinetic energy wetting effect on temporal particle size distribution. Catena107:130–138. doi:10.1016/j.catena.2013.02.007
Ries, J.B., Marzen, M., Iserloh, T., Fister, W. (2014). Soil erosion in Mediterranean landscapes – Experimental investigation on crusted surfaces by means of the Portable Wind and Rainfall Simulator.Journal of Arid Environments , 100-101, 42–51. doi:10.1016/j.jaridenv.2013.10.006
Robichaud, P.R., Wagenbrenner, J.W., Elliot, W.J. (2020). Rill erosion in natural and disturbed forests: 1. Measurements. Water Resources Research , 46, W10506. doi.org/10.1029/2009WR008314
Schneider, A., Gerke, H.H., Maurer, T., Nenov, R. (2013). Initial hydro-geomorphic development and rill network evolution in an artificial catchment. Earth Surface Processes and Landforms , 38(13), 1496–1512.  doi:10.1002/esp.3384
Shen, H., Zheng, F.L., Wen, L.L., Han, Y., Hu, W. (2016). Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research , 155, 429–436. doi:10.1016/j.still.2015.09.011
Shen, H., Zheng, F.L., Wen, L.L., Lu, J., Jiang, Y.L. (2015). An experimental study of rill erosion and morphology. Geomorphology , 231, 193–201. doi:10.1016/j.geomorph.2014.11.029
Sun, L.Y., Zhou, J.L., Cai, Q.G. (2020). Impacts of soil properties on flow velocity under rainfall events: Evidence from soils across the Loess Plateau. catena , 194, 104704. doi:10.1016/j.catena.2020.104704
Vaezi, A.R., Ahmadi, M., Cerdà, A. (2018). Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of The Total Environment, 583, 382–392. doi:10.1016/j.scitotenv.2017.01.078
Vaezi, A.R., Zarrinabadi, E., Auerswald, K. (2017). Interaction of land use, slope gradient and rain sequence on runoff and soil loss from weakly aggregated semi-arid soils.Soil and Tillage Research , 172, 22–31. doi:10.1016/j.still.2017.05.001
Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J. (2016). Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone Journal , 15(5). doi.org/10.2136/vzj2015.09.0131
Wu, S., Chen, L., Wang, N., Yu, M., Assouline, S. (2018). Modeling rainfall‐runoff and soil erosion processes on hillslopes with complex rill network planform. Water Resources Research , 54, 10,117–10,133. doi.org/10.1029/2018WR023837
Wu, S.B., Chen, L. (2020). Modeling Soil Erosion with Evolving Rills on Hillslopes. Water Resources Research , 56(10). doi:10.1029/2020WR027768
Wu, X.L., Wei, Y.J., Wang, J.G., Wang, D., She, L., Wang, J., Cai, C.F. (2017). Effects of soil physicochemical properties on aggregate stability along a weathering gradient. Catena , 156, 205–215. doi:10.1016/j.catena.2017.04.017
Xu, X.Z., Liu, Z.Y., Xiao, P.Q., Guo, W.Z., Zhang, H.W., Zhao, C., Yan, Q. (2015). Gravity erosion on the steep loess slope: Behavior, trigger and sensitivity. catena, 135, 231–239. doi:10.1016/j.catena.2015.08.005
Zhang, Q. W., Lei, T. W., Huang, X. J. (2016). Quantifying the sediment transport capacity in eroding rills using a REE tracing method.Land Degradation & Development . doi:10.1002/ldr.2535
Zhang, P., Yao, W., Tang, H., Wei, G., Wang, L. (2017). Laboratory investigations of rill dynamics on soils of the Loess Plateau of China.Geomorphology , 293:201-210. doi:10.1016/j.geomorph.2017.06.003
Zhang, P., Yao, W., Liu, G., Xiao, P. (2019). Experimental study on soil erosion prediction model of loess slope based on rill morphology.Catena , 173, 424–432. doi:10.1016/j.catena.2018.10.034
Zhao, L., Hou, R., & Wu, F. (2018). Effect of tillage on soil erosion before and after rill development. Land Degradation & Development , 29(8), 2506–2513.   doi:10.1002/ldr.2996
Table 1. Soil properties from the study site