Reference
AgSTAR, U. S. (2018). Market opportunities for biogas recovery systems
at U.S. livestock facilities.
Akberdin, I. R., Thompson, M., Hamilton, R., Desai, N., Alexander, D.,
Henard, C. A., … Kalyuzhnaya, M. G. (2018). Methane utilization
in Methylomicrobium alcaliphilum 20Z R: a systems approach.Scientific Reports , 8 (1), 2512.
Badr, K., Hilliard, M., Roberts, N., He, Q. P., & Wang, J. (2019).
Photoautotroph-Methanotroph Coculture – A Flexible Platform for
Efficient Biological CO2-CH4 Co-utilization. IFAC-PapersOnLine ,52 (1), 916–921. https://doi.org/10.1016/j.ifacol.2019.06.179
Bernstein, H. C., McClure, R. S., Hill, E. A., Markillie, L. M.,
Chrisler, W. B., Romine, M. F., … others. (2016). Unlocking the
constraints of cyanobacterial productivity: acclimations enabling
ultrafast growth. MBio , 7 (4), 949.
Hill, E. A., Chrisler, W. B., Beliaev, A. S., & Bernstein, H. C.
(2017). A flexible microbial co-culture platform for simultaneous
utilization of methane and carbon dioxide from gas feedstocks.Bioresource Technology .
Kip, N., van Winden, J. F., Pan, Y., Bodrossy, L., Reichart, G.-J.,
Smolders, A. J. P., … den Camp, H. J. M. O. (2010). Global
prevalence of methane oxidation by symbiotic bacteria in peat-moss
ecosystems. Nature Geoscience , 3 (9), 617–621.
Kliphuis, A. M. J., Janssen, M., van den End, E. J., Martens, D. E., &
Wijffels, R. H. (2011). Light respiration in Chlorella sorokiniana.Journal of Applied Phycology , 23 (6), 935–947.
Milucka, J., Kirf, M., Lu, L., Krupke, A., Lam, P., Littmann, S.,
… Schubert, C. J. (2015). Methane oxidation coupled to oxygenic
photosynthesis in anoxic waters. The ISME Journal .
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I.
C., Wolters-Arts, M., Derksen, J., … others. (2005).
Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.Nature , 436 (7054), 1153–1156.
Rasouli, Z., Valverde-Pérez, B., D’Este, M., De Francisci, D., &
Angelidaki, I. (2018). Nutrient recovery from industrial wastewater as
single cell protein by a co-culture of green microalgae and
methanotrophs. Biochemical Engineering Journal , 134 ,
129–135.
Sabra, W., Dietz, D., Tjahjasari, D., & Zeng, A.-P. (2010). Biosystems
analysis and engineering of microbial consortia for industrial
biotechnology. Engineering in Life Sciences , 10 (5),
407–421. Retrieved from
http://pbi.hospedagemdesites.ws/wp-content/uploads/2012/12/Biosystems-analysis-and-engineering-of-microvial-consortia-for-industrial-biotechnology.pdf
Spiegelman, D., Whissell, G., & Greer, C. W. (2005). A survey of the
methods for the characterization of microbial consortia and communities.Canadian Journal of Microbiology , 51 (5), 355–386.
Retrieved from
http://www.researchgate.net/profile/Dan_Spiegelman/publication/7672619_A_survey_of_the_methods_for_the_characterization_of_microbial_consortia_and_communities/links/0046353ac3ffbc37c5000000.pdf
Stone, K. A., He, Q. P., & Wang, J. (2019). Two Experimental Protocols
for Accurate Measurement of Gas Component Uptake and Production Rates in
Bioconversion Processes. Scientific Reports , 9 (1), 5899.
https://doi.org/10.1038/s41598-019-42469-3
van der Ha, D., Nachtergaele, L., Kerckhof, F.-M., Rameiyanti, D.,
Bossier, P., Verstraete, W., & Boon, N. (2012). Conversion of biogas to
bioproducts by algae and methane oxidizing bacteria. Environmental
Science & Technology , 46 (24), 13425–13431.
Wang, J., & He, Q. P. (2018). Methanotroph-microalgae coculture.US Provisional Patent Application 62/664,565 .