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Structural, mechanical, electronic, optical and piezoelectric properties of Na2SiO3 are studied under different compressive uni-
directional pressure(0-50 GPa with a difference of 10 GPa) using density functional theory (DFT). The calculated structural
properties are well agreed with the previously reported results. At 12 GPa, our calculation shows structural phase transition from
orthorhombic Cmc21 to triclinic P1. The mechanical profile of Na2SiO3 structures under different compressive unidirectional
pressures are analysed by calculating the elastic moduli, Poisson’s ratio and eigenvalues of stiffness matrix. Our study shows
mechanical stability of the system till pressure reaches 40 GPa. Herein, we have obtained an indirect band gap of 2.97 eV at 0
GPa. Between 0-50 GPa, the band gaps are within the range of 2.62 to 3.46 eV. The system under our study possesses wide band
gap and high optical absorption in UV-Vis range of electro-magnetic(em) radiation. The calculated static refractive indices η
x,y,z(0) are closed to unity suggesting its transparent behaviour. For piezoelectric properties, we have reported the total Cartesian
polarization. Our calculations have revealed that Na2SiO3 to be one of the promising candidates for opto-electronic devices while
its application in ferroelectric and piezoelectric devices could be improved with further research.

1 Introduction

A theoretical and experimental insight into a novel silica
(SiO2) based glasses have became an interesting topic among
the researchers due to the presence of their wide-direct
bandgap, high thermodynamical stability, low thermal con-
ductivity and abundant in nature.1,2 Its flexibility and relia-
bility towards different appliances for different task has made
them one of the prominent candidates in technological and
commercial applications, such as battery and storage systems,
fireproof fabrics, fiber optics, bio-active glasses for antibiotic-
free antibacterial materials, optoelectronic devices, etc.3–7

Moreover, modifications of such properties upon the manu-
facturing processes, chemical compositions thereby enhanc-
ing its resistivity towards thermal, chemical, pressure, and its
transparency have made silicate glasses a promising material
over wide range of applications.8–11 Most of the important
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glasses are silicate glass based on the compound silica (SiO2)
or quartz.12 The structure of silicate glass was thought to be
well understood at a local level. Randall et al.13 have per-
formed the experimental investigation by using X-ray diffrac-
tion and reported that the vitreous silica probably consists of
small crystals of cristobalite13. A later studies on silica (SiO2)
by Zachariasen et al.14 reported that the heat-treated speci-
mens occurred in vitreous forms and showed the relative ori-
entation of two neighbouring oxygen tetrahedral. It has also
been reported that the silicon atoms surrounded by oxygen
may vary within a wide limit and oxygen to oxygen bond an-
gle varies throughout the whole network.14,15 This leads to
more complications while investigating the structure of sili-
cate glass.

The pure silica is a three dimensional network of [SiO4]
tetrahedral arranged in such a way that the silicon atom is
bonded to four neighbouring oxygen atoms and which in turn
each oxygen atom is bonded to two silicon atoms.16 The
structure is well described by the continuous random network
(CRN).14 Addition of alkali Na+ cations disrupt the Si-O-
Si bridging bonds (BO) that results in the formation of non-
bridging oxygen (NBO) consisting of one half of the perma-
nent broken oxygen bond. The Na+ ions proceed close to
the NBO forming weak ionic bonds producing the formation
of glass-like sodium metasilicate (SiO2+Na2O → Na2SiO3,
∆H773K = -235 kJ mol−1).17,18 Alkali silicate are the most
studied glass materials due to their important chemical and
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physical properties which make them relevant materials in sci-
ence and technology. From some decades back, the structure,
mechanical and electronic properties of glass-like sodium sili-
cate are being investigated through experiment as well as from
the computational simulation methods. The pioneer work of
Grund and Pizy19 for the structural investigation of sodium
metasilicate (Na2SiO3) where the atomic positions had been
determined from Patterson and Fourier-Bragg projections20

and noted that the structure showed pseudo-hexagonal sym-
metry: later refined by Richet et al.21 via Raman spectroscopy
and X-ray diffraction. More recently, an experimental inves-
tigation using single-energy Raman spectroscopy and energy-
dispersive X-ray powder diffraction revealed that a structural
phase transition from the orthorhombic Cmc21 (space group)
to the lower primitive symmetry space group at 850K.21

Experimentally, different techniques and approaches have
been implemented: the Raman spectroscopy, x-ray diffrac-
tion(XRD), nuclear magnetic resonance (NMR), x-ray absorp-
tion fine structure and extended x-ray absorption fine structure
(XAFS and EXAFS) are the superlative experimental set up
for structural determination and properties study.22–31 How-
ever, Na2SiO3 lacks the long-range order (LRO) or transi-
tional periodicity that forces upon complication inducing to
much more challenging than in crystalline solids while inquir-
ing structural properties.32 To generate useful data and nec-
essary information, reverse Monte Carlo and Ab initio molec-
ular dynamics (AIMD) based on the Density functional the-
ory (DFT) are the most preferable simulation methods.33–35

The computational DFT base AIMD being an accurate inter-
atomic potential has become the major appliance to probe the
details of amorphous solids which is generally controlled by
short-range order (SRO) and medium range order (MRO) in
their structure.36

As far as we are aware, among the surveyed literature the
theoretical and the experimental works are mainly focused
on the structural and electronic properties of the Sodium Sil-
icate (Na2SiO3). So, in this work in addition to the structural
and electronic properties of the Sodium Silicate (Na2SiO3),
we have also given emphasised on the unexplored properties
like phase-transition, optical and piezoelectric properties un-
der different unidirectional compressive pressures within the
frame work of density functional theory (DFT).

2 Computational Details

All the calculations were performed using the density func-
tional theory. Linear combination of atomic orbital method
(LCAO) employed in QuantumATK Q-2019.12 was adopted
for all DFT calculations.37–39 For treating all electrons,
an exchange-correlation functional of generalized gradient
approximation(GGA) within Perdew-Burke-Ernzerhof(PBE)
scheme is adopted.40 Our sodium silicate unit cell consists of

24 atoms with 8-sodium, 4-silicon and 12-oxygen atoms. The
space group of the Na8Si4O12 is Cmc21 or C2v

12. We have
employed force field method with Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm in couple with
the ReaxFF_CHOSiNa_2018 and Pedone_LiNaKSiO_2007
potentials for the geometry optimization.41–43 These force
field potentials are specially designed for alkali silicates and
vastly used for its property calculations. The minimum cri-
teria for Hellmann-Feynman force and stress tolerances were
set to 0.01 eV/Åand 0.0001 eV/Å3, respectively for geome-
try optimization. During geometry optimization, no constraint
were imposed on the structure along any axes. The pseu-
dojo pseudopotential of Na, Si and O considering medium
basis set (similar to double zeta polarized) is used for our cal-
culation.44 The density mesh cut off were set to 125.0 Ha.
The self-consistent field(SCF) tolerance were set to 10−5 Ha.
The above mentioned geometry convergence criteria were fol-
lowed for all the structures under a compressive stress of 0-50
GPa with a difference of 10 GPa. Monkhorst-pack method
was used to sample the K-points45 within a first Brillouin
zone. For all the electronic properties calculation 5×3×6 K-
points were sampled. Moreover, for partial density of states
and optical calculation a high k-mesh of 8×5×10 has been
taken into consideration.

3 Result and Discussion

3.1 Structural Properties

In this section, we have discussed about the structural proper-
ties of the sodium silicate. The unit cell of Na8Si4O12 exists
in orthorhombic crystal structure with a space group Cmc21.
This is to be noted that for the convenience of our calcula-
tion we have swapped the x and z axis (a↔c) and applied
the unidirectional compressive pressure along the longer axis
(z-axis). The optimised lattice parameters are a=6.158 Å,
b=4.876 Å, c=10.630 Å. The optimised volume(V) of the unit
cell is found to be 319.20 Å3. The optimised lattice param-
eters (a,b,c in Å unit) versus energy (in eV) are presented in
Fig.2. Table 1 shows the agreement between our results and
the previously calculated results from Cuautli et al.46 using
PBE as exchange-correlation functionals. Our calculated vol-
ume is 2.04% and 3.95% higher than the volume calculated by
using Becke, 3-parameter, Lee–Yang–Parr(B3LYP) functional
by Belmonte et al.47 and the one experimentally obtained by
McDonald et al.48, respectively. The difference in volume is
due to the well-known effect of the generalized gradient ap-
proximation(GGA) exchange-correlation functionals by PBE.

The change in lattice parameters under unidirectional com-
pressive pressure in the pressure range 0→50 GPa are reported
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in Table 2. The current work gives a thorough study of the
structural deformation under the unidirectional compressive
pressure (0-50 GPa). However, we do not have sufficient ex-
perimental or theoretical data to compare the results of pres-
sure related studies particularly on Na2SiO3. With the in-
creased in pressure, the negative deformation along the lattice
constant ’∆ c’ and the positive one along ’∆ a’ and ’∆ b’ in-
dicates compression and tensile strain, respectively [see Table
2]. On application of compressive pressure the change in lat-
tice parameter ’c’ is high as compared to ’a’ and ’b’ due to
the unconstrained x and y axes as a result the dissipation of
tensile stress took place along x- and y-axis. This specifies
that our compressive pressure is unidirectional which is acted
along the lattice parameter ’c’. The structural deformations at
different pressure had led to change in the optimised unit cell
volumes as: at P=0, 10, 20, 30, 40, 50 (in GPa), V=319.2,
328.5, 319.4, 311, 305.1, 301.6 (in Å3), respectively.

The hallmarks of Na2SiO3 structure are the presence of
[SiO4] tetrahedral chains and that of the existence of BO and
the NBO bonds where the sodium atoms are attached. The
presence of NBOs in the structure make a large distortion on
the tetrahedral [SiO4] units.18 Initially, at 0 GPa pressure, our
Na2SiO3 existed as an orthorhombic crystal structure with a
space group of Cmc21. As shown in Fig. 1, Na2SiO3 experi-
enced a structural phase transition from orthorhombic Cmc21
space group to the lower primitive symmetry of triclinic crys-
tal structure with space group P1 at 12 GPa.

12 GPa

CmC21 C1
1

Fig. 1 Phase transition from Cmc21 → C1
1 under 12 GPa

unidirectional compressive pressure.

Table 1 Calculated optimised lattice parameters of Na2SiO3
compared to B3LYP (Belmonte et al.47), PBE (Cuautli et al.46) and
Experimental (McDonald et al.48). [Swapped x and z axis (a↔c)]

Parameters PBE-GGA B3LYP 47 PBE46 Exp. 48

(This work)
a(Å) 6.158 6.0977 6.16 6.07
b(Å) 4.876 4.8523 4.88 4.82
c(Å) 10.630 10.5676 10.63 10.48
V(Å3) 319.20 312.673 319.546 306.6

Table 2 Calculated lattice parameters in Å and the change in lattice
parameters with respect to pistine one in Å under different
unidirectional pressure in GPa. [Swapped x and z axis (a↔c)]

P a b c ∆a ∆b ∆c
0 6.158 4.876 10.630 0 0 0
10 6.157 5.221 10.22 -0.001 0.345 -0.41
12 6.198 5.233 10.08 0.040 0.357 -0.55
20 6.326 5.276 9.569 0.168 0.400 -1.061
30 6.446 5.316 9.077 0.288 0.440 -1.553
40 6.531 5.348 8.736 0.373 0.472 -1.894
50 6.588 5.388 8.497 0.430 0.512 -2.133

3.2 Mechanical Properties

This section is about the discussion of the mechanical proper-
ties of Na2SiO3. In order to perceive whether our compound
meets the required stability and durability for practical appli-
cations, knowledge of its mechanical and elastic properties are
essential. We have calculated the elastic constants and other
mechanical properties for Na2SiO3 under different compres-
sive unidirectional pressure. Our calculated elastic constants
(as shown in Table 3) and the elastic constants calculated by
Belmonte et al.47 (using LCAO DFT/B3LYP functionals) had
shown different values due to the difference in the exchange-
correlation functionals employed. However, the two results
had satisfied the necessary and sufficient Born criteria of me-
chanical stability for an orthorhombic system49:

C11 > 0, C11C22 >C12
2,

[C11C22C33+2C12C13C23-C11C23
2-C22C13

2-C33C12
2]> 0,

C44 > 0, C55 > 0, C66 > 0
(1)

From Table 3, it can be seen that the stability criteria for or-
thorhombic system are satisfied at 0 and 10 GPa pressures
showing the mechanical stabiliy of the orthorhombic phase of
Na2SiO3. In the previous sub-section, we have reported that
there is a phase transition from orthorhombic Cmc21 to tri-
clinic P1 at 12 GPa pressure. Further, for triclinic system the
Born criteria of mechanical stability are49,50:

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,

[C11 +C22 +C33 +2(C12 +C13 +C23)]> 0, C33C55−C35
2 > 0,

C44C66−C46
2 > 0, C22 +C33−2C23 > 0

(2)

Our calculated elastic constants in the pressure range of 12-50
GPa (as shown in Table 3) had satisfied the above mentioned
mechanical stability criteria for triclinic phase of Na2SiO3.
The agreement of the stability criteria had shown that our sys-
tem Na2SiO3 is mechanically stable at the different compres-
sive pressure ranges of 0-50 GPa. This is also confirmed by
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Fig. 2 Difference of energy (E-Eo) eV as a function of Lattice constants of Na2SiO3 (a) a (Å), (b) b (Å) and (c) c (Å) (Eo is the minimum
ground state energy).

the fact that the stiffness matrix is positive at all pressures ex-
cept at P=50 GPa as can be seen in the eigenvalues reported in
Table 5. At 50 GPa there is a mismatching between the Born
criteria for mechanical stability and the stiffness matrix eigen-
values where we get negative value at λ1. Mouhat et al.49

had reported that when studying such low-symmetry crystals
like monoclinic and triclinic, it was usually more convenient
to keep the stiffness coefficients in matrix form and check
whether all eigenvalues of C were positive. In Fig. 3, we have
presented the calculated phonon dispersion curves of Na2SiO3
to test its dynamical stability between 0-50 GPa. Since, the
unit cell consists of 24 atoms hence, there are 72 branches in
the phonon dispersion curve. At 0 and 30 GPa [see Fig. 3(a
and d)] we observe positive phonon spectrum, this implies that
Na2SiO3 is dynamically stable at these pressures. However,
at 10, 20, 40 and 50 GPa [see Fig. 3(b,c,e and f)] we ob-
tain small negative phonon spectrum of the considered system
which could be highly probable that it is just a numerical noise
in the calculation as the lowest phonon curve does not cross
the energy values of -10 meV for all four cases. This implies
that the considered system i.e., Na2SiO3 is dynamically stable
between the applied mechanical stress of 0-50 GPa. From Ta-
ble 3, it is obvious that between P=10-40 GPa our calculated
C11, C22, C33 are considerably larger than C66, C55, C44 which
shows that Na2SiO3 has more resistance to axial compression
as compared to shear deformation. This can be confirmed by
comparing the bulk modulus and shear modulus reported in
Table 4. From the analysis of our calculated elastic constants
(Ci j), it can be seen that C11 and C22 decreases while C55 in-
creases when pressure escalates from 10 GPa to 12 GPa, this
suggest that there is a tendency of phase transition from or-
thorhombic Cmc21 to lower symmetry phase (see Fig. 1).
In Table 4, the calculated elastic moduli and the Poisson’s ra-
tio under different compressive pressures are reported. Our re-

ported bulk modulus(B), Young’s modulus(Y) and shear mod-
ulus(G) are estimated in Voigt (uniform strain assumption)51,
Reuss (uniform stress assumption)52 and Hill assumption.53

It can be seen that there are regular or low fluctuation in our
calculated elastic moduli from 0-40 GPa pressures indicating
that our system is mechanically stable. At P=50 GPa, the elas-
tic moduli fluctuate very high or our calculated elastic moduli
are out of order compared to lower pressures (i.e. 0-40 GPa)
, which might be due to the fact that our system (Na2SiO3)
shows mechanical unstablility at 50 GPa. Glass-like Na2SiO3
materials are usually brittle.54 The brittleness or ductility is
generally characterized by the values of Poisson’s ratio. We
have reported our calculated Poisson’s ratio (ν) estimated us-
ing the Voigt, Reuss and Hill assumptions. From Table 4, it is
obvious that the value of ν is increasing with pressure showing
that Na2SiO3 becomes more ductile with pressure. Interest-
ingly, between 0-40 GPa, one can find that our system under-
goes tensile deformation which can be confirmed by the fact
that all the Poisson’s ratio are positive between this range of
pressure. However, at 50 GPa, the value of νH drastically falls
to negative. This negative Poisson’s ratio (at νH=-34.603, see
Table 4) has resulted in compressive deformation. Thus, at 50
GPa Na2SiO3 shows the property of auxetic materials which
are having high applications in biomedical field, surgical im-
plants and even for piezoelectric sensors and actuators.55–58

3.3 Electronic Properties

The most fundamental property while investigating the atomic
level interaction in any material is the electronic property. In
this section, we present detail results of electronic properties
for pristine Na2SiO3(0 Gpa) and Na2SiO3 at five different
pressures. Figure 4 and 5 show the calculated electronic band
structure and partial density of state (PDOS) for Na2SiO3. It
is found that the top of the valence bands (VBs) have small

4



Table 3 Calculated elastic constants Ci j under different unidirectional pressure (both in GPa units). Here, at 0 and 10 GPa Na2SiO3 is of
orthorhombic (Cmc21) phase and between 12-50 GPa Na2SiO3 is at triclinic (P1) phase.

P C11 C22 C33 C44 C55 C66 C12 C13 C23 C35 C46 C15 C25
0 57.36 43.76 59.70 24.32 51.91 27.74 43.47 19.38 10.51 - - - -
10 52.60 157.37 111.47 38.05 21.60 50.56 29.81 34.62 42.08 - - - -
12 45.27 154.18 135.71 36.35 26.58 48.35 34.21 43.54 53.20 -11.11 -9.94 -5.28 -6.08
20 80.36 179.37 188.73 27.41 18.38 55.80 53.81 45.66 60.86 -2.28 -2.62 -8.08 -4.58
30 118.92 189.26 196.31 20.92 16.46 59.71 71.84 58.66 62.90 1.24 -1.68 -2.48 -0.31
40 131.05 180.53 207.47 17.47 16.62 62.87 71.60 66.00 68.26 0.36 -0.82 -2.66 -1.47
50 5.25 180.28 169.59 22.00 30.47 53.31 19.14 41.27 57.20 5.05 5.32 -28.00 -13.01

Table 4 Calculated elastic moduli (Bulk modulus (B), Young’s modulus (Y), and Shear modulus (G) all in GPa unit) and Poisson’s ratio (ν)
(unitless) under different unidirectional pressure (in GPa units). Here, the subscripts V, R and H represent Voigt, Reuss and Hill assumptions
respectively.

P BV BR BH YV YR YH GV GR GH νV νR νH

0 34.171 26.067 30.119 63.406 27.146 45.921 26.625 10.233 18.429 0.19074 0.32643 0.24589
10 59.384 41.197 50.291 90.613 67.677 79.168 36.371 27.596 31.983 0.24569 0.22621 0.23763
12 66.34 42.744 54.542 91.177 67.057 79.182 35.87 27.071 31.471 0.27094 0.23853 0.25804
20 85.458 68.677 77.068 102.74 79.334 91.042 39.527 30.339 34.933 0.29963 0.30747 0.30311
30 99.032 93.485 96.259 106.13 79.365 92.894 40.157 29.21 34.684 0.32139 0.35851 0.33916
40 103.42 99.311 101.37 106.93 77.512 92.424 40.271 28.291 34.281 0.32767 0.36992 0.34803
50 65.593 -118.29 -26.349 93.411 601.82 -5549.5 36.99 128.16 82.574 0.26265 1.34790 -34.603

Fig. 3 Phonon dispersion curve of Na2SiO3 under (a) 0 GPa, (b) 10
GPa, (c) 20 GPa, (d) 30 GPa, (e) 40 GPa, (f) 50 GPa.

dispersion while the bottom of the conduction bands (CBs)
have large dispersion for all different compressive pressures
(see Fig.4). This is in good agreement with the electronic
band structure result reported by F.Lui et al.59 using ab ini-
tio total-energy and force calculations within the local density
approximation (LDA) via a preconditioned conjugate gradient
algorithm. From our calculation, at P=0 GPa [see fig. 4(a)],
the highest energy of the valence band is at the Z point, and

Table 5 Calculated eigenvalues of stiffness matrix (in GPa units)
calculated from elastic constants under different unidirectional
pressures.

P λ1 λ2 λ3 λ4 λ5 λ6
0 5.7103 19.843 28.63 47.31 50.672 112.62
10 16.694 32.253 41.275 54.111 90.336 196.98
12 23.039 25.862 32.821 54.016 93.228 217.47
20 16.984 27.313 54.458 56.227 123.93 271.14
30 15.739 20.84 60.16 70.957 131.56 302.32
40 15.909 17.629 63.062 77.369 127.3 314.75
50 -20.633 21.085 44.627 54.416 120.81 240.59

the lowest energy of the conduction band is at the Γ point, and
with an indirect (Z to Γ points) band gap of 2.97 eV. Experi-
mentally, Sigel60 had reported a band gap of 6 eV for silicate
glasses. It is well known that the PBE-GGA density functional
theory calculations usually underestimates the band gap. An
indirect (Z to Γ points) band gap was reported by F.Lui et al.59

but with a band gap value of 4 eV. Ching et al.18 had reported
band gap values of 6.46 eV with α = 2

3 and 9.98 eV with α

= 1.0 and concluded that the band gap of Na2SiO3 was very
dependent on the exchange parameter used. In this work, we
have done elctronic band structure calculation under compres-
sive pressures in the pressure range of 0-50 GPa with a differ-
ence of 10 GPa. It is found that the highest energy point of
the valence band changes with pressure while the bottom of
the conduction band is at Γ point for all different pressures,
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Fig. 4 Calculated band structure (a)P=0 GPa, (b) P=10 GPa, (c)
P=20 GPa, (d) P=30 GPa, (e) P=40 GPa and (e) P=50 GPa.

Total
O-py

O-pz

O-px

Na-s
Si-py

Si-pz

Si-px

Fig. 5 Partial density of states (a) P=0 GPa, (b) P=10 GPa, (c) P=20
GPa, (d) P=30 GPa, (e) P=40 GPa and (e) P=50 GPa.

see fig. 4(a-f). It is obvious that the application of pressure
changes the lattice parameters and so for the reason, average
distance between electron or hole. This in turn changes the
magnitude of the electron-hole ions potential. This change in
the potential is significant as it plays an important role in de-
termining the band gap at the Brillouin zone. In this work, we
have found that the band gap fluctuate with the application of
pressure. Initially, the band gap increases upto 20 GPa, and
from 20 GPa-40 GPa the band gap decreases linearly. From
40 GPa-50 GPa, the band gap starts to increase again (see fig.
6 for variation of band gap with the application of pressure).
Obviously, the band gap should decrease with increasing ap-
plied pressure but, from our calculation, we can clarify that
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 g
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e
V

)

Fig. 6 Calculated band gap (in eV) versus pressure (in GPa) for
Na2SiO3. Here, the red dots represent the corresponding band gaps
at 0, 10, 20, 30, 40, 50 GPa.

the variation in band gap with the application of pressure does
not have specific trend followed (i.e., there is a rise and fall
in the band gap value when the amount of applied pressure is
increasing). This might be due to the nature of the material
that we are being investigating.
The calculated PDOS of Na2SiO3 at 0 GPa, 10 GPa, 20 GPa,
30 GPa, 40 GPa and 50 GPa are shown in Fig. 5 (a), (b),
(c), (d), (e) and (f), respectively. The Fermi level (εF ) is set
at 0 eV which lies between the valence band and the conduc-
tion band. At 0 GPa, the energy states around the top of the
valence band is mainly contributed by the states O-2px and
O-2py orbitals. And, the valence band electronic states are
mainly distributed in the energy range from -3.8 eV to -1.8 eV
owing the hybridization of O-2px, O-2py, O-2pz and Si-3px.
The energy states around the bottom of the conduction band
is composed mainly by the Na-3s orbitals and also, we could
find a slight contribution from Si-3px orbitals. With the ap-
plication of pressure, the main contributors of the energy state
at the top of the valence band changes i.e., from the state O-
2py to O-2pz till it reaches 40 GPa [see Fig. 5 (b, c, d and e)]
while, the energy states which contributed the bottom of the
conduction band remain consistent. Clearly, we could find an
overall shifting of both the valence band and conduction band
when pressure is increasing. At 10 and 20 GPa’s both the top
of valence band and the bottom of conduction band shifted
away from the Fermi level (εF ). Therefore, the band gap is
large. Hence, light of a higher frequency and lower wave-
length would be absorbed. Between 30-50 GPa, we observed
the reverse characteristics where both the top of valence band
and the bottom of conduction band shifted towards the Fermi
level (εF ). As a results, there is a reduction in band gap and
therefore, the light absorption in the visible range might be
improved.
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3.4 Optical properties

The optical properties of a material define how the material in-
teracts with the electro-magnetic radiation.61 So, detail study
of the optical properties is crucial in many industrial and other
scientific applications such as heat transfer, contactless tem-
perature measurement, laser technology, optics industry for
the productions of mirrors, lenses and optical windows, photo-
voltaic industry, the aerospace industry and so on.62,63 There-
fore, we have studied the optical properties of Na2SiO3 at dif-
ferent compressive pressures by calculating the dielectric con-
stant (ε), absorption coefficient (α) and refractive index (η) as
a function of the photon energy(eV). We have calculated the
optical properties of Na2SiO3 in terms of complex dielectric
function which is closely related to the interaction between the
photons (electromagnetic radiation) and the electrons (atoms),
therefore it is represented by both the real and the imaginary
parts given by64–67:

ε = ε1 + iε2 (3)

where ε1 and ε2 are the real part and imaginary part of the di-
electric constant, respectively. The above equation is mainly
connected with the electronic structures and determines the
linear response of the materials to electromagnetic radiations.
The imaginary part (ε2) is related to the electronic band and
represent the optical absoption in the crystal and is given
by64–67:

ε2(ω) = h̄2e2

πm2ω2 ∑nn′
∫

k d3k
∣∣∣∣〈~kn|~p|~kn′〉

∣∣∣∣2×[1− f (~kn)
]

δ (E~kn - E~kn′ - h̄ω)
(4)

where ~p is the momentum operator, |~kn〉 is the eigenfunc-
tion of the eigenvalue E~kn and f (~kn) is the Fermi distribution
function. The real part (ε1) is evaluated from the imaginary
part (ε2) using the Kramers-Kronig transformation68 which is
given by:

ε1(ω) = 1+
2
π

∫
∞

0

ε2(ω
′)ω ′dω ′

ω ′2−ω2 (5)

The optical constant, the refractive index (η) can be computed
from the complex dielectric function (ε1). The absorption
coefficient(α) and the refractive index(η) which are the op-
tical properties related to the dielectric function and are given
by:

α(ω) =
2ωκ(ω)

c
(6)

where κ(ω) is the extinction coefficient related to the imagi-
nary part of the complex refactive index.

η(ω) =

√
(ε2

1 + ε2
2 )

1
2 + ε1

2
(7)

Table 6 Calculated static real part of the dielectric constant ε1(0)
and static refractive indices η(0) along x, y, z-axes under 0, 10, 20,
30, 40 and 50 GPa pressures.

P εx
1(0) ε

y
1(0) ε

z
1(0) ηx(0) ηy(0) ηz(0)

0 1.07 1.18 1.04 1.03 1.08 1.01
10 1.08 1.04 1.20 1.04 1.02 1.09
20 1.05 1.03 1.16 1.02 1.01 1.07
30 1.05 1.05 1.24 1.02 1.02 1.10
40 1.06 1.03 1.36 1.02 1.01 1.16
50 1.11 1.08 1.18 1.05 1.03 1.08

The presence of discrete spikes in the electronic density of
states influence the optical properties. The real part(ε1) and
imaginary part(ε2) of dielectric constant as a function of the
photon energy up to 10 eV along x, y, z-axes under P=0, 10,
20, 30, 40, 50 GPa’s are presented in Fig. 7(a,b). The calcu-
lated static real dielectric function ε1(0) (at E=0.0 eV) along x,
y, z-axes are presented in Table 6. The real dielectric function
ε1 shows anisotropic behaviour up to 10 eV, beyond 10 eV the
values of ε1 is ∼1 arb. unit under different applied pressures
along different axes exhibiting negligible effect of pressure on
the ε1 for high values of the photon energy. Meanwhile, along
x-axis one could find one prominent peak for each different
pressures, as shown in Fig. 7(a) (top). For 0 GPa the peak
point is at around 5.0 eV with a value of 1.3 arb. unit. The
peak points shifted to the higher energy region as pressure is
increasing till it reaches 20 GPa and from 30 GPa the peak
points shifted back to the lower energy region till the pressure
reaches 50 GPa where the peak point is at around 2.85 eV with
a peak value of 1.24 arb. unit. The value of εx

1 goes to a lower
value after reaching the maximum point. The minimum points
for all different pressures are in the energy region where the
photon energy is at 5 eV-6.2 eV with the minimum value in
the range of 0.65-0.80 arb. unit. However, along y-axis, as
shown in Fig. 7(a) (middle), we can notice two prominent
peak points for 0 GPa where the first peak is at around 2.85
eV and the second peak is at around 4.8 eV with peak values
of ∼1.4 and ∼1.3 arb. units, respectively, and as the photon
energy is increasing ε

y
1 drops below 0.5 arb. unit at around

6 eV. The peak value as well as the lowest value of ε
y
1 at 0

GPa are comparatively high and low, respectively, when com-
paring with the peak value and the lowest value at all other
pressures that are being applied within the same energy range.
This indicates that along y-axis, the photon energy might have
the greatest effect on the refractive index when pressure is at
0 GPa. Considering from the second peak, one can note that
ε

y
1 shows similar behaviour as that in the case of εx

1 where
the peak points shifted to the higher photon energy region and
goes back to the lower photon energy when pressure is in-
creasing. Along z-axis, as shown in Fig. 7(a) (bottom), the
value of ε

z
1 at 0 GPa almost remains unity throughout the en-
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Fig. 7 Optical parameters as a function of the photon energy(in eV) under 0, 10, 20, 30, 40, and 50 GPa pressures: (a) Real part of dielectric
function(ε1), (b) Imaginary part of dielectric function(ε2), (c) Absorption coefficient(α) and (d) Refractive index(η).

ergy ranges, it has a maximum peak value at around 6 eV with
a value of ∼1.05 arb. unit. As pressure is increasing the peak
points are shifted to the lower energy region within the energy
range of 3.0 eV-4.0 eV. At 40 GPa one could find the highest
peak for this axis which is at around 3.0 eV with a value of
∼1.75 arb. unit. The imaginary part of the dielectric constant
ε2 is interconnected with the dielectric losses and also, corre-
sponds to the inter-band transition between the valence band
and conduction band. It is highly correlated with the optical
absorption (α) of a materials [see Fig. 7(c)]. Plot of imag-
inary part of dielectric constant (ε2) as a function of photon
is shown in Fig. 7(b). Along x and y-axes, one can notice
that the peak points of εx

2 and ε
y
2 [see 7(b)(top and middle)]

are shifted to the higher photon energy region when pressure
is increasing till the pressure reaches 20 GPa but above this
the peak points shifted back towards the lower energy region
which is very similar with the one we obtained in the real part.
However, when analyzing our calculated data for ε2 along the
z-axis, it clearly shows that within the same energy range the
ε

z
2 has much higher value when comparing with εx

2 and ε
y
2 ,

except at 0 GPa. This is due to the fact that the pressure is
applied along the z-axis. We have measured absorption coef-
ficients (α) along x, y, z-axes as a function of incident photon
energy shown in Fig. 7(c). Here, we can find a very strong op-
tical absorption along x, y, z-axes (αx, αy, αz) under different
pressures within the energy range of 0-10 eV. The most active
region is found in between 2.5 eV to 8.0 eV. The absorption
spectra is highly anisotropic in nature. Our main concerns is to
observe the variation of absorption spectra under applied pres-
sure for its potential application in opto-electronic devices.
Our results of absorption spectra is very interesting because it
falls within UV-Vis range. Referring to Fig. 7(c)(bottom), the
absorption spectra peaks have shown blue shift up to 20 GPa

pressure after that there is a small red shift as compared to the
one at 0 GPa. The intensity of absorption spectra increases
as we keep increasing pressure up to 40 GPa. The minimum
threshold energy is found to be 2.5 eV which is corresponds
to an optical band gap in good agreement with electronic band
gap at 40 GPa [Fig. 7(c)(bottom)]. We have observed four
prominent peaks at 3.2 eV, 3.8 eV, 4.5 eV and 6 eV. The op-
tical band gap is result of first direct electron transition from
top of the valence band (O-pz) to the bottom of the conduc-
tion band (Na-s) along Γ-symmetry. The first peak at 3.2 eV
is a result of transition from third band of valence region to
bottom of conduction band (Γ-symmetry). The second peak
at 3.8 eV is a probability transition from top of valence band
to bottom of conduction band along Z-symmetry point. The
third peak at 4.5 eV is due to the outcome of the transition
from second band of valence region to first band of conduc-
tion region along x-symmetry. The last peak at 6 eV having
the maximum intensity is due to third band of valence region
to third band of conduction region along x-symmetry. Interest-
ingly, the maximum intensity peaks shifted towards the higher
energy on increasing the pressure for x- and y-axes which is
contrary to the absorption spectra peak measured along z-axis.
This discrepancy is due to the tensile strain along x- and y-axes
while the compressive strain is experienced by the atom along
z-axis on application of unidirectional pressure (along z-axis).
The calculated spectra of refractive indices (η) along x, y, z-
axes are presented in Fig. 7(d). The static refractive indices
ηx,y ,z(0) are given in Table 6. Clearly, all the values are close
to unity at 0 eV indicating that our system Na2Si03 is trans-
parent in nature. Recently, Baral et al.69 had reported that
the high refractive index of (Na2O)x(SiO2)1−x when sodium
oxide concentration was increased. Using the orthogonalized
linear combination of atomic orbitals (OLCAO) method in the
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VASP-relaxed structures he reported η value in the range of
1.415-1.530 when concentration was x=0-0.5. On analysing
the variation of refractive indices (η) with respect to the inci-
dent photon energy (eV) under unidirectional pressure along
the z-axis, one can find the change in refractive index is al-
most negligible along the x- and y-axes up to around 5.5 eV
even when the pressure reaches 50 GPa [see Fig. 7(d) (top and
middle)]. However, referring to Fig. 7(d)(bottom), along the
z-axis we have noticed an isotropic behaviour. The refractive
indices start increasing at around 3 eV as pressure escalates
compare to the one at 0 GPa where the value almost remains
unity throughout the whole incident photon energy. Mean-
while, above 6 eV the values of all the refractive indices along
(i.e., along x, y, z) falls below 1 up to around 10 eV [see Fig.
7(d)]. This seems physically not possible as refractive index
below 1 occurs only when the speed of light is exceeded by
phase velocity of electro-magnetic wave (νp >c). In addition,
this phenomenon arises due to the presence of plasmonic vi-
bration.

3.5 Piezoelectric properties

It is well-known that the piezoelectric properties of a mate-
rials arise as a result of the atomic scale polarization which
could be due to the application of mechanical stress.70 Study
of piezoelectric properties of a materials has become an inter-
esting topic among the researchers as those materials have a
industrial applications such as; as actuators, sensors, micro-
phones and so on, also it has an application in medical devices
for monitoring heartbeats and breathing.71–78 To our knowl-
edge the insight study of piezoelectric properties of a mate-
rials are usually based on the study of piezoelectric tensors
(dki j).79,80 Interestingly, in this section we are going to dis-
cuss about the piezoelectric properties of glass-like Na2SiO3
by calculating the total Cartesian polarization under different
compressive unidirectional pressures as shown in Table 7. Our
calculation is simply based on the modern theory of polariza-
tion where the spontaneous polarization of a materials are cal-
culated to understand about its ferroelectric property. Since
quartz (SiO2) are naturally occurring single crystalline piezo-
electric materials, therefore, our system Na2SiO3 has a possi-
bility of showing piezoelectric property. In modern theory of
polarization, polarization of a materials are divided into two
parts; electronic and ionic parts. The contribution of electronic
part to polarization is given as81:

Pe =
−2|e|i
(2π)3

∫
A

dk⊥
M

∑
n=1

∫ G‖

0
〈Uk,n|

∂

∂k‖
|Uk,n〉dk‖ (8)

here, the summation runs over occupied bands, and k‖ is par-
allel to the direction of polarization, and G‖ is a reciprocal
lattice vector in the same direction. The states |Uk,n〉 are the

cell-periodic parts of the Bloch functions, ψk,n=Un,k(r)eik.r.
The electronic polarization part is simply calculated by classi-
cal electrostatic sum of point charges given as:

Pi =
|e|
Ω

∑
ν

Zν
ionrν (9)

where the summation runs over all the ions in the unit cell, and
Zν

ion and rν are the valence charge and position vector of atom
ν , and Ω is the volume of unit cell.
The total Cartesian polarization (Pt (c)) is calculated by taking
the product of total fractional polarization (Pt ) and polariza-
tion quantum (Pq), i.e.,

Pt(c) = Pt ·Pq (10)

where Pt=Pe+Pi is the sum of electronic and ionic polariza-
tion parts and P j

q= |e|R
j

Ω
is the polarization quantum, here, |e| is

electronic charge, R j is lattice vector j and Ω unit cell volume.
Our calculated total Cartesian polarization in Cm−2 unit under
the application of different compressive unidirectional pres-
sures are given in Table 7. From our calculation, one can find
that at 0 GPa the Cartesian polarization is maximum along the
z-direction with a value of ∼ 0.1 Cm−2. This indicates that
Na2SiO3 has shown some properties of ferroelectricity. How-
ever, when pressure is applied along the z-axis, it is obvious
that one will notice a compressive stress along the z-axis while
tensile stress will be observed along both x- and y-axes. This
structural changes with pressure will patently distort the neg-
ative cloud of electrons around positive atomic nuclei. This
slight separation will result in an electric field between them,
and consequently polarization is created which can be manip-
ulated to give novel piezoelectric properties. Our biggest con-
cerns is to obtain the Cartesian polarization of Na2SiO3 for
its potential application in piezoelectric materials. Interest-
ingly, from Table 7 we have observed that the maximum po-
larization axis changes from z to y-axes as pressure increases
from 0 GPa to 40 GPa. At 50 GPa the Cartesian polarization
has its highest value along the x-axis. The calculated Carte-
sian polarization for 10, 20, 30, 40 and 50 GPa’s are ∼ 0.041,
0.063, 0.076, 0.065 and 0.018 (in Cm−2) which are fairly low.
Therefore, to use Na2SiO3 in practical ferroelectric and piezo-
electric devices a rigorous research is necessary which could
further enhance its polarizability.

4 Conclusions

In summary, we have studied the properties of sodium silicate
(Na2SiO3) by using DFT calculations under different unidi-
rectional compressive pressures. Our findings revealed that
Na2SiO3 is a stable structure which shows mechanical sta-
bility upto 40 GPa. And at 12 GPa, our system experiences
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Table 7 Calculated total cartesian polarization Pt (c) in Cm−2 along x, y, z-axes under different compressive unidirectional pressure.
P 0 10 20 30 40 50
x -2.97064990×10−3 -2.66488487×10−2 2.36226850×10−2 -7.18990850×10−3 -9.0549006×10−3 1.77675552×10−2

y -2.29594955×10−2 4.11457135×10−2 6.31891403×10−2 7.57134265×10−2 6.49859613×10−2 -6.33370486×10−2

z 1.00901047×10−1 1.64564653×10−2 8.47809484×10−3 -5.85834073×10−3 -3.35035488×10−3 1.39032451×10−3

structural phase transition from orthorhombic Cmc21 to lower
primitive symmetry of triclinic P1 structure. Also, at 50 GPa
Na2SiO3 is found to have an auxetic materials property which
opens up its potential applications in the field of biomedical
and other electronic devices. Interestingly, Na2SiO3 is found
to have its optical absorbance falls within UV-Vis range. The
value of η x,y,z(0)∼1 has revealed that Na2SiO3 is transpar-
ent in nature. Therefore, it is a promising materials for opto-
electronic devices.
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