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Abstract We proposed an efficient local differential quadrature method which is based on the radial
basis function to the numerical solution of the two-dimensional second-order hyperbolic telegraph equa-
tions. The explicit time integration technique is utilized to semi-discretize the model in the time direction
whereas the space derivatives of the model is discretized by the proposed local meshless procedure based
on multiquadric radial basis function. Numerical experiments on five test problems are performed with
the proposed numerical scheme for rectangular and non-rectangular computational domains. The results
obtained show that the proposed scheme solutions are converging extremely faster comparable to different
existing protocols.

Keywords: Meshless differential quadrature method; Radial basis function; Hyperbolic telegraph equa-
tion; Irregular domain.

1 Introduction

The telegraph equation, which has been used to describe phenomena in various fields, belongs to the hyper-
bolic partial differential equation scope. For instance, the two-dimensional (2D) second-order hyperbolic
telegraph equations can model different real world phenomena in sciences and engineering and further-
more has many applications in different fields [1]. The generalized 2D second-order hyperbolic telegraph
equation have the following form

0?*W(z,t) oW (z,t) o 0?W(z,t)  0*W(z,t) _ _
— = 1
5 + 2 5 + B°W(Z,t) 5( B2 + 0y > F(z,t), z€Q, t>0, (1)
with initial-boundary conditions
oW (z,0 _ _ _ _
W(z,0) = ¢1(2), # =g2(z), C(z,t) =g5(z,t), 7€ 0, (2)

where o > 0, 8 and § are known coefficients and F(Z,t) is the source function.

It is well-known that it is difficult to get the analytical solutions for relatively complex problems [2,3].
Thus the approximate numerical approximations to the telegraph equation is a better choice. Different nu-
merical techniques have been created and compared to deal with the hyperbolic telegraph equations during
the past two decades. In the literature, a three-level implicit unconditionally stable numerical method for
hyperbolic equation [4], multi-dimensional telegraphic equations [5]. The authors in [6] proposed a Taylor
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matrix method for the solution of 2D linear hyperbolic equation. In [7], a variational iteration method is
used for multi space telegraph equations. The numerical polynomial differential quadrature (DQ) method
has been developed for 2D hyperbolic telegraph equation [8], modified and modified extended cubic B-
Spline DQ methods [9,10]. Hafez [11] proposed a spectral method for the numerical solutions of one-
and two-dimensional linear telegraph equations. Recently, different approaches for the numerical solutions
have been discussed [12,13].

More recently, meshless techniques have seen the exploration blast in science and engineering. For
this branches, Dehghan and his coworkers proposed several meshless methods to investigate 2D hyperbolic
telegraph equation which include the implicit collocation method [11], the thin plate splines radial basis
functions (RBF's) [14], the local Petrov-Galerkin method [15] and the boundary knot method [16]. Recently,
the 2D telegraph equation in regular and irregular domains are investigated by RBF with finite difference
scheme [17], the pseudospectral RBFs method [18] and the RBFs with Crank-Nicolson finite difference
scheme [19]. By using the Houbolt method, the 2D hyperbolic telegraph equation are solved by the
singular boundary method [20] and by a hybrid meshless method [21]. Reutskiy et al. [22] proposed a
cubic B-spline method based on finite difference and meshless approaches for solving two-dimensionals
generalized telegraph equations in irregular single and multi-connected domains.

Based on the above-mentioned investigations, we propose a local meshless differential quadrature

method (LMM) for two-dimensional hyperbolic telegraph equations. The local meshless procedures pro-
duces sparse matrix which dose not have the typical ill-conditioning, additionally, this sparse matrix can
be solved efficiently and accurately, detail can be found in [23-26]. In current work, the space derivatives
of the model equation are approximated by the proposed meshless methodology utilizing multiquadric
(MQ) radial basis functions (RBFs) whereas explicit scheme is utilize for time derivatives. To check the
performance of the method on both rectangular and non-rectangular domains are considered in numerical
examinations.
The rest of this paper is organized as follows. Section 2, present the methodology of the propose proce-
dure. We present numerical results and discussion for the model equations using the proposed procedure.
Several test problems are presented to validate the accuracy of the proposed algorithm in Section 3. Some
conclusions are given in Section 4 with some additional remarks.

2 Proposed Methodology

The LMM [27,28] is extended to the two-dimensional hyperbolic telegraph model equation. The deriva-
tives of W(z,t) are approximated at the centers z;, by the neighborhood of zy, {Zn1,Zn2, 213, -.-s Zhny, } C
{z1,Z2,...,ZNn },np, < N™, where h = 1,2,...,N". In case of one-dimensional (1D), Z = x and for
two-dimensional (2D), Z = (z,y) and for three-dimensional (3D) case, Z = (x,y, 2). Now in 1D case, we

have
M h

WO (@) 2 S AW (@ne), h=1,2,...,N. (3)
k=1

By substituting radial basis function (RBF) ¢ (|| — z,||) in Equation (3), we have

2

D ([l = 2pll) = SN D lwn — zpll), p = h1,h2, ... ho, (4)
k=1

where ¢(||zpe — 7)) = /14 (c|zpe — 3, ]))? in case of multiquadric RBFs respectively.
Matrix form of Equation (4) can be written as

Y = An ALY, (5)
From Equation (5), we obtain
S (6)

Equation (3) and (6) implies

W (z),) = AU TW,,, where Wi, = [W(zp1), W(zn2),- .., W(@nn,)]"



For 2D case, the derivatives of W (z,y,t) with respect to « and y are approximated in the similar way
as follows

W™ (24, yn) ~ iy,gT“)W(xhk,yhk), h=1,2,...,N?, (7)
kn:h1
Wém)(mh,yh) R~ Zn,(cm)W(mhk, ynk), h=1,2,..., N2 (8)
k=1
For corresponding coefficients 71(€m) and n,im) (k=1,2,...,n, ), we continue as
o = AL e, 9)
i) = Al (10)

The above technique can be rehashed for three-dimensional case, etc. Using the above procedure to the
model Equation (1) in space, convert it to the second order ordinary differential equation (ODE) which is
further reduce to first order ODE by substituting W;(z,t) = V (7, t) as follows

W, =V, V,=Fzt)—2aV — W + 8§ (Wap + Wy,), (11)
with initial and boundary conditions
W(z,0) = f1(z), V(z,0) = f2(z), Z€Q, (12)

W(Z,t) = f3(t), V(Z1) = filt), 2€dQ, t>0. (13)

Now, Employing the proposed procedure to Equations (11)-(13) in space at each nodal point, we get the
accompanying type of an initial value problem

dW dvyv

W(0) =f1, V(0) =1z,

(14)

where A is the sparse coefficient matrix of order N x N™. The vectors f; and f5 denote the corresponding
initial conditions and h is the boundary condition of the problem. Orders of the vectors f;, fa and h are
N™ x 1.

3 Numerical Results

In this section, five test problems are considered to validate the local meshless method (LMM). For fair
comparison with the other numerical methods, we use the maximum absolute error (Max(e)) and root
mean square error (RM.S). In this computational process, the LMM using local stencil five with uniform
set of distributed points. Multiquadric (MQ) radial basis function is used with shape parameter value
¢ = 0.1, computational domain [0, 1] with N2 = 30 and time step size dt = 0.0001 in all computational
experiments unless mentioned explicitly. The Maz(e) and RM .S errors are defined as

YL (Wz - Wi)Q (15)

Maz(e) = max(|[W — W|), RMS = ~ ,

where W, W are the exact and the approximate solutions respectively.

Test Problem 1. In the first place, we consider the model Equation (1) with « = f = 6 = 1 having
analytical /exact solution
W (z,t) = cos(t) sin(x) sin(y), z = (x,y) € Q, (16)



Table 1: Numerical results for Test Problem 1.

Maz(e)
t LMM B 9] [10] [17] [18]
0.5 4.2516e-06 .- e e 3.11e-05  4.59e-05
1 8.8869e-07 2.27e-03  4.57e-06 1.0le-05  2.51e-05
2 1.7723e-07 2.87e-03 5.61e-06 8.25e-06  2.41e-05
RMS
0.5 1.6001e-06  3.24e-06 e e 7.82e-06  7.15e-05
1 3.4794e-07  4.27e-06  5.98e-03  2.47e-05 2.07e-05  5.45e-05
2 6.8431e-08 3.94e-06 8.50e-03 3.83e-05 3.0le-06 8.13E-05
Table 2: Numerical results with time ¢ = 1 for Test Problem 1.
N? =10 N? =120 N? =30
dt Max(e) RMS Mazx(e) RMS Mazx(e) RMS
0.01 2.5775e-04  1.1509e-04 2.5593e-04  1.2922e-04 2.5576e-04  1.3297e-04
0.001 1.0891e-05  3.6808e-06 2.2312e-05 1.1151e-05 2.4397e-05  1.2806e-05
0.0002  1.5146e-05 7.4161e-06 1.3030e-06  5.4194e-07 3.4410e-06  1.6766e-06
0.0001 1.7396e-05 8.6833e-06 2.7746e-06  1.2885e-06 8.8869e-07  3.4794e-07

where

superb.

x107

Absolute error

F(z,t) = 2 (cos(t) — sin(t)) sin(z) sin(y).

The numerical results of the LMM in term of RMS and Maz(e) errors are listed in Table 1 for different
times ¢t = 0.5, t = 1, t = 2. We have also compared our results with the ones reported in [8-10,17,18].
However, all the RMS and Max(e) of the LMM perform better than the other numerical methods and
the aftereffects of the LMM are in amazing agreement with the exact solutions too. Table 2 shows the
numerical results determined by taking different values of N, time step size dt and final time ¢t = 1. It
very well may be seen from the table that the accuracy increase by increasing N and decreasing dt to
some extend. Figure 1 shows the numerical results in term of absolute error for ¢ = 5 and ¢ = 10 which is

Absolute error

Figure 1: Absolute error for ¢t =5 (left) and ¢ = 10 (right) for Test Problem 1.

(17)



Table 3: Numerical results for Test Problem 2.

Max(e)

£ LMM ] [10] [17]

0.5 5.4956e-05 9.51e-03 2.36e-04 1.16e-03
1 4.3474e-05 7.47e-03 1.78e-04  9.25e-04
2 1.5112e-05 1.04e-03  2.39e-05 2.75e-04

RMS

0.5 2.3254e-05 8.42e-05 7.10e-04
1 2.5324e-05  1.29e-04 4.36e-04
2 6.9656e-06  3.10e-05 7.23e-05
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Figure 2: Results of the LMM for t = 2 (first row), ¢
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=5 (second row) for Test Problem 2.

Test Problem 2. Consider the hyperbolic telegraph Equation (1) with « = 8 = § = 1 having analyti-

cal/exact solution

W(z,t) =exp(x +y—t), z=(z,y) €,

where

and absolute error norm, which are self explanatory.

F(z,t) = —2exp(x +y — t).
Similar to the previous test problem, the results in term of RMS and Max(e) errors are shown in Table
3 and the results of the LMM are compared with the results given in [9,10,17,29-31]. It is observed from
the table, that the results of the LMM consistent with the exact solutions and the error norm remains
stable around Max(¢) ~ 1075 for all times tested. Figure 2 shows exact solutions, approximate solutions

(18)

(19)

Test Problem 3. Here, we consider the hyperbolic telegraph equation of the form (1) witha=g=0=1

having analytical/exact solution

W(@t) =l +a+y+1), z2=(z,y) €,

where

Fzt)=1/1+z+y+t)+In(l+z+y+t)+1/1+z+y+1)%

(20)

(21)



Table 4: Numerical results for Test Problem 3.

Maz(e)
t LMM 9] [10] 7
0.5 8.1136e-06 2.47e-03 8.18e-05 3.87e-05
1 3.8719e-06  3.31e-03  9.35e-05  2.55e-05
2 1.9407e-06 1.14e-03 4.24e-05 1.98e-05
3 2.3478e-07 4.36e-04  1.79e-05  2.09e-05
5  3.1310e-07 3.48e-04 1.08e-05 2.55e-05
RMS

0.5 3.1807e-06 1.11e-03 4.50e-05 1.13e-05
2.1918e-06 1.33e-03 5.81e-05 1.76e-05
8.9983e-07  3.20e-04 1.89e-05 8.93e-06
9.3378e-08 1.30e-04 6.58e-06  1.14e-05
1.5839e-07 8.42e-05 3.65e-06 1.42e-05

W N

Table 5: Numerical results for « = 10, § =5 and § = 1 for Test Problem 4.

Mazx(e)
£ LMM B 0] 18]
0.5 8.6758e-06 e 2.47e-04  7.13e-05
1 7.1653e-06 e 3.31e-04  3.73e-06
3.0534e-06 e 1.14e-05 2.51e-05
RMS

0.5 3.5821e-06 3.30e-05 1.11e-04 3.01e-05
1 3.2568e-06  3.23e-05 1.33e-04  1.80e-05
1.4538e-06  3.12e-05 3.20e-04  1.20e-05

Table 4 contains a comparison of numerical results in term of RMS and Max(e) error for the LMM to
those obtained by the other numerical methods [9,10,17] for different times t = 0.5, t =1, t =2, ¢t =3
and t = 5. It is observed from the table, that the results of the LMM are more accurate than the other
numerical methods. Numerical results in the form of absolute error is shown in Figure 3 for different V.
It tends to be seen that the accuracy increases with the increase in N.

Test Problem 4. Let’s consider the equation of the form (1) having analytical /exact solution
W (Z,t) = exp(—t) sinh(z) sinh(y), z = (z,y) € Q, (22)

where

F(Z,t) = (—2a + % — 1) exp(—t) sinh(z) sinh(y). (23)

Tables 5-6 present the RM.S and Maz(e) error norms for = 10, 8 = 5 and a = 10, 8 = 0 respectively.
We have compared our results with the the revealed results in [8,9,18]. From these tables, we can see
that numerical results of the LMM for times ¢t = 0.5, ¢ = 1 and ¢t = 2 are better than the other numerical
methods. The LMM is also checked on non-rectangular domain as appeared in Figures 4-5 up to final
time ¢t = 5. It is obvious from these figures that the LMM gives good numerical results irrespective of the
domain.
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Figure 3: Numerical results for Test Problem 3.

Table 6: Numerical results for « = 10, § =0 and § = 1 for Test Problem 4.

Max(e)
£ LMM B 9] 18]
0.5 1.0771e-05 4.23e-4 9.52e-5
1 1.1722e-05 e 2.58e-04  9.74e-05
2 7.8558e-06 9.58e-05  8.45e-05
RMS
0.5 4.4207e-06  3.31le-5 3.47e-4 3.91e-5
1 5.3563e-06  3.34e-05 3.91e-04 4.35e-05
2 3.8287e-06 3.41e-05 4.27e-04 3.07e-05
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Test Problem 5. Let’s consider the model equation of the form (1) having analytical /exact solution
W (z,t) = cos(t) sinh(z) sinh(y), z = (z,y) € Q, (24)
where
F(Z,t) = (=3 cos(t) — 2asin(t) + 8% cos(t)) sinh(z) sinh(y). (25)

Figure 6 shows the comparative results of the proposed method and the results reported in [8,9]. As can
be seen from this figure, numerical results for times ¢ = 0.5, t = 1 and ¢ = 2 are better than the other
numerical methods. In this test problem again we have testified the LMM on non-rectangular domains as
shown in Figures 7-8 up to final time ¢ = 5. These results indicate that the LMM gives good numerical
results irrespective of the domains.

%10

—6—LMM
—o—pPDQM ||
—6— MCB-DQM

RMS

Figure 6: Numerical results of the proposed LMM, PDQM [8] and MCB-DQM [9] for o = 10, 8 = 5 and
0 =1 for Test Problem 5.

4 Conclusions

In the current research, an efficient and accurate computational technique named local meshless differen-
tial quadrature method based on radial basis functions to investigate for the two-dimensional second-order
hyperbolic telegraph equations. The time derivative part is discretized explicitly. Test problems have been
considered on rectangular and non-rectangular domains to check the accuracy of the proposed scheme.
From the numerical results, we can conclude that the proposed meshless method is flexible and accurate
as compared to other numerical methods. In light of the current work, we can say that the proposed
technique is powerful and effective to find hyperbolic PDEs, so it can be also applied for a large-scale of
complex problems that occur in natural sciences and engineering.
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