References
1. Wintjens, R.; Liévin, J.; Rooman,
M.; Buisine, E., Contribution of cation-π interactions to the stability
of protein-DNA complexes. Journal of molecular biology2000, 302 (2), 393-408.
2. Subramanian, K.; Lakshmi, S.;
Rajagopalan, K.; Koellner, G.; Steiner, T., Cooperative hydrogen bond
cycles involving O H⋯π and C H⋯ O hydrogen bonds as found in a
hydrated dialkyne. Journal of molecular structure1996, 384 (2-3), 121-126.
3. Salamone, M.; Anastasi, G.; Bietti,
M.; DiLabio, G. A., Diffusion Controlled Hydrogen Atom Abstraction from
Tertiary Amines by the Benzyloxyl Radical. The Importance of C− H/N
Hydrogen Bonding. Organic letters 2010, 13 (2),
260-263.
4. Biot, C.; Wintjens, R.; Rooman, M.,
Stair motifs at protein− DNA interfaces: nonadditivity of H-bond,
stacking, and cation− π interactions. Journal of the American
Chemical Society 2004, 126 (20), 6220-6221.
5. Saito, M., Subunit cooperativity in
the action of lactate dehydrogenase. Biochimica et Biophysica Acta
(BBA)-Enzymology 1972, 258 (1), 17-26.
6. Guo, H.; Salahub, D. R.,
Cooperative hydrogen bonding and enzyme catalysis. Angewandte
Chemie International Edition 1998, 37 (21), 2985-2990.
7. Kumara Swamy, K.; Kumaraswamy, S.;
Kommana, P., Very Strong C− H⊙⊙⊙ O, N− H⊙⊙⊙ O, and O− H⊙⊙⊙ O Hydrogen
Bonds Involving a Cyclic Phosphate. Journal of the American
Chemical Society 2001, 123 (50), 12642-12649.
8. Cordier, F.; Barfield, M.;
Grzesiek, S., Direct Observation of Cα− Hα⊙⊙⊙ OC Hydrogen Bonds in
Proteins by Interresidue h3 J CαC ‘Scalar Couplings. Journal of
the American Chemical Society 2003, 125 (51),
15750-15751.
9. Jeffrey, G. A.; Saenger, W.,Hydrogen bonding in biological structures . Springer Science &
Business Media: 2012.
10. Guo, H.; Gresh, N.; Roques, B.
P.; Salahub, D. R., Many-body effects in systems of peptide
hydrogen-bonded networks and their contributions to ligand binding: a
comparison of the performances of DFT and polarizable molecular
mechanics. The Journal of Physical Chemistry B2000, 104 (41), 9746-9754.
11. Zhao, Y.-L.; Wu, Y.-D., A
theoretical study of β-sheet models: is the formation of hydrogen-bond
networks cooperative? Journal of the American Chemical Society2002, 124 (8), 1570-1571.
12. Kargi, F., Effect of
cooperativity on microbial growth. Journal of Applied Chemistry
and Biotechnology 1977, 27 (6), 704-707.
13. Hammes, G. G.; Benkovic, S. J.;
Hammes-Schiffer, S., Flexibility, diversity, and cooperativity: pillars
of enzyme catalysis. Biochemistry 2011, 50 (48),
10422-10430.
14. Koshland, D. E.; Hamadani, K.,
Proteomics and models for enzyme cooperativity. Journal of
Biological Chemistry 2002, 277 (49), 46841-46844.
15. Frank, H. S.; Wen, W.-Y.,
Ion-solvent interaction. Structural aspects of ion-solvent interaction
in aqueous solutions: a suggested picture of water structure.Discussions of the Faraday Society 1957, 24 ,
133-140.
16. Kleeberg, H.; Klein, D.; Luck,
W., Quantitative infrared-spectroscopic investigations of hydrogen-bond
cooperativity. Journal of Physical Chemistry1987, 91 (12), 3200-3203.
17. Maes, G.; Smets, J., Hydrogen
bond cooperativity: a quantitative study using matrix-isolation FT-IR
spectroscopy. The Journal of Physical Chemistry1993, 97 (9), 1818-1825.
18. Cruzan, J.; Braly, L.; Liu, K.;
Brown, M.; Loeser, J.; Saykally, R., Quantifying hydrogen bond
cooperativity in water: VRT spectroscopy of the water tetramer.Science 1996, 271 (5245), 59-62.
19. Rivelino, R.; Chaudhuri, P.;
Canuto, S., Quantifying multiple-body interaction terms in H-bonded HCN
chains with many-body perturbation/coupled-cluster theories. The
Journal of chemical physics 2003, 118 (23), 10593-10601.
20. Esrafili, M. D.; Behzadi, H.;
Hadipour, N. L., Theoretical study of N–H··· O hydrogen bonding
properties and cooperativity effects in linear acetamide clusters.Theoretical Chemistry Accounts 2008, 121 (3-4),
135-146.
21. Esrafili, M. D.; Beheshtian, J.;
Hadipour, N. L., Computational study on the characteristics of the
interaction in linear urea clusters. International Journal of
Quantum Chemistry 2011, 111 (12), 3184-3195.
22. Mahadevi, A. S.; Neela, Y. I.;
Sastry, G. N., A theoretical study on structural, spectroscopic and
energetic properties of acetamide clusters [CH 3 CONH 2](n= 1–15).Physical Chemistry Chemical Physics 2011, 13 (33),
15211-15220.
23. Guevara-Vela, J. M.;
Romero-Montalvo, E.; Gómez, V. A. M.; Chávez-Calvillo, R.;
García-Revilla, M.; Francisco, E.; Pendás, Á. M.; Rocha-Rinza, T.,
Hydrogen bond cooperativity and anticooperativity within the water
hexamer. Physical Chemistry Chemical Physics2016, 18 (29), 19557-19566.
24. Pérez, C.; Zaleski, D. P.;
Seifert, N. A.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Pate, B. H.,
Hydrogen Bond Cooperativity and the Three‐Dimensional Structures of
Water Nonamers and Decamers. Angewandte Chemie International
Edition 2014, 53 (52), 14368-14372.
25. Tokmachev, A. M.; Tchougréeff, A.
L.; Dronskowski, R., Hydrogen‐Bond Networks in Water Clusters (H2O) 20:
An Exhaustive Quantum‐Chemical Analysis. ChemPhysChem2010, 11 (2), 384-388.
26. Xantheas, S. S., Cooperativity
and hydrogen bonding network in water clusters. Chemical Physics2000, 258 (2-3), 225-231.
27. Vijayalakshmi, K. P.; Suresh, C.
H., Ammonia borane clusters: energetics of dihydrogen bonding,
cooperativity, and the role of electrostatics. The Journal of
Physical Chemistry A 2017, 121 (13), 2704-2714.
28. Zabardasti, A.; Kakanejadi, A.;
Moosavi, S.; Bigleri, Z.; Solimannejad, M., Anticooperativity in
dihydrogen bonded clusters of ammonia and BeH42. Journal of
Molecular Structure: THEOCHEM 2010, 945 (1-3), 97-100.
29. Mó, O.; Yáñez, M.; Del Bene, J.
E.; Alkorta, I.; Elguero, J., Cooperativity and Proton Transfer in
Hydrogen‐Bonded Triads. ChemPhysChem 2005, 6 (7),
1411-1418.
30. Turi, L.; Dannenberg, J.,
Molecular orbital studies of crystal formation: the aggregation and
nucleation of 1, 3-diones. The Journal of Physical Chemistry1992, 96 (14), 5819-5824.
31. Turi, L.; Dannenberg, J.,
Molecular orbital study of acetic acid aggregation. 1. Monomers and
dimers. The Journal of Physical Chemistry 1993, 97(47), 12197-12204.
32. Dannenberg, J., Cooperativity in
hydrogen bonded aggregates. Models for crystals and peptides.Journal of molecular structure 2002, 615 (1-3),
219-226.
33. Kobko, N.; Paraskevas, L.; del
Rio, E.; Dannenberg, J., Cooperativity in amide hydrogen bonding chains:
implications for protein-folding models. Journal of the American
Chemical Society 2001, 123 (18), 4348-4349.
34. Masunov, A.; Dannenberg, J.,
Theoretical study of urea and thiourea. 2. Chains and ribbons. The
Journal of Physical Chemistry B 2000, 104 (4), 806-810.
35. Desiraju, G. R., The C− H··· O
hydrogen bond: structural implications and supramolecular design.Accounts of Chemical Research 1996, 29 (9),
441-449.
36. Desiraju, G. R., DESIRAJU:
CH… 0 Hydrogen Bonding and the Deliberate Design of Organic
Crystal Structures. Molecular Crystals and Liquid Crystals Science
and Technology. Section A. Molecular Crystals and Liquid Crystals1992, 211 (1), 63-74.
37. Aravinda, S.; Shamala, N.;
Pramanik, A.; Das, C.; Balaram, P., An unusual C–H··· O hydrogen bond
mediated reversal of polypeptide chain direction in a synthetic peptide
helix. Biochemical and biophysical research communications2000, 273 (3), 933-936.
38. Iqbalsyah, T. M.; Doig, A. J.,
Anticooperativity in a Glu− Lys− Glu salt bridge triplet in an isolated
α-helical peptide. Biochemistry 2005, 44 (31),
10449-10456.
39. Czaplewski, C.; Liwo, A.; Ripoll,
D. R.; Scheraga, H. A., Molecular origin of anticooperativity in
hydrophobic association. The Journal of Physical Chemistry B2005, 109 (16), 8108-8119.
40. Weimann, M.; Fárník, M.; Suhm, M.
A.; Alikhani, M.; Sadlej, J., Cooperative and anticooperative mixed
trimers of HCl and methanol. Journal of molecular structure2006, 790 (1-3), 18-26.
41. Albrecht, L.; Boyd, R. J., Atomic
energy analysis of cooperativity, anti-cooperativity, and
non-cooperativity in small clusters of methanol, water, and
formaldehyde. Computational and Theoretical Chemistry2015, 1053 , 328-336.
42. Romero-Montalvo, E.;
Guevara-Vela, J. M.; Costales, A.; Pendás, Á. M.; Rocha-Rinza, T.,
Cooperative and anticooperative effects in resonance assisted hydrogen
bonds in merged structures of malondialdehyde. Physical Chemistry
Chemical Physics 2017, 19 (1), 97-107.
43. Bing, D.; Hamashima, T.; Fujii,
A.; Kuo, J.-L., Anticooperative Effect Induced by Mixed Solvation in H+
(CH3OH) m (H2O) n (m+ n= 5 and 6): A Theoretical and Infrared
Spectroscopic Study. The Journal of Physical Chemistry A2010, 114 (31), 8170-8177.
44. Samanta, A. K.; Banerjee, P.;
Bandyopadhyay, B.; Pandey, P.; Chakraborty, T., Antagonistic Interplay
Between an Intermolecular CH··· O and an Intramolecular OH··· O Hydrogen
Bond in a 1: 1 Complex Between 1, 2-Cyclohexanedione and Chloroform: A
Combined Matrix Isolation Infrared and Quantum Chemistry Study.The Journal of Physical Chemistry A 2017, 121(32), 6012-6020.
45. Samanta, A. K.; Pandey, P.;
Bandyopadhyay, B.; Chakraborty, T., Cooperative Strengthening of an
Intramolecular O H··· O Hydrogen Bond by a Weak C H··· O Counterpart:
Matrix-Isolation Infrared Spectroscopy and Quantum Chemical Studies on
3-Methyl-1, 2-cyclohexanedione. The Journal of Physical Chemistry
A 2009, 114 (4), 1650-1656.
46. Zeegers-Huyskens, T.,
Non-linearity of the cooperativity effects in hydrogen bond complexes
involving hydrogen halides in solid argon. Journal of molecular
structure 1993, 297 , 149-159.
47. Banerjee, P.; Bhattacharya, I.;
Chakraborty, T., Cooperative effect on phenolic νO–H frequencies in 1:
1 hydrogen bonded complexes of o-fluorophenols with water: A matrix
isolation infrared spectroscopic study. Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy 2017, 181 ,
116-121.
48. Samanta, A. K.; Chakraborty, T.,
Infrared spectroscopic demonstration of cooperative and anti-cooperative
effects in CH–O hydrogen bonds. In Recent Advances in
Spectroscopy , Springer: 2010; pp 53-61.
49. Suhai, S., Cooperativity and
electron correlation effects on hydrogen bonding in infinite systems.International journal of quantum chemistry1994, 52 (2), 395-412.
50. Kollman, P. A.; Allen, L. C.,
Hydrogen bonded dimers and polymers involving hydrogen fluoride, water,
and ammonia. Journal of the American Chemical Society1970, 92 (4), 753-759.
51. Karpfen, A.; Ladik, J.;
Russegger, P.; Schuster, P.; Suhai, S., Hydrogen bonding in long chains
of hydrogen fluoride and long chains and large clusters of water
molecules. Theoretica chimica acta 1974, 34 (2),
115-127.
52. Parra, R. D.; Bulusu, S.; Zeng,
X. C., Cooperative effects in two-dimensional ring-like networks of
three-center hydrogen bonding interactions. The Journal of
chemical physics 2005, 122 (18), 184325.
53. Parra, R. D.; Bulusu, S.; Zeng,
X. C., Cooperative effects in one-dimensional chains of three-center
hydrogen bonding interactions. The Journal of chemical physics2003, 118 (8), 3499-3509.
54. King, B. F.; Weinhold, F.,
Structure and spectroscopy of (HCN) n clusters: Cooperative and
electronic delocalization effects in C–H⋅⋅⋅ N hydrogen bonding.The Journal of chemical physics 1995, 103 (1),
333-347.
55. Karpfen, A., Linear and cyclic
clusters of hydrogen cyanide and cyanoacetylene: a comparative ab initio
and density functional study on cooperative hydrogen bonding. The
Journal of Physical Chemistry 1996, 100 (32),
13474-13486.
56. Philp, D.; Robinson, J. M., A
computational investigation of cooperativity in weakly hydrogen-bonded
assemblies. Journal of the Chemical Society, Perkin Transactions
2 1998, (7), 1643-1650.
57. Sarkar, S.; Bandyopadhyay, B.,
Cooperative nature of the sulfur centered hydrogen bond: investigation
of (H 2 S) n (n= 2–4) clusters using an affordable yet accurate level
of theory. Physical Chemistry Chemical Physics2019, 21 (45), 25439-25448.
58. Bandyopadhyay, B.; Pandey, P.;
Banerjee, P.; Samanta, A. K.; Chakraborty, T., CH··· O Interaction
Lowers Hydrogen Transfer Barrier to Keto–Enol Tautomerization of
β-Cyclohexanedione: Combined Infrared Spectroscopic and Electronic
Structure Calculation Study. The Journal of Physical Chemistry A2012, 116 (15), 3836-3845.
59. Valiron, P.; Mayer, I., Hierarchy
of counterpoise corrections for N-body clusters: generalization of the
Boys-Bernardi scheme. Chemical physics letters1997, 275 (1-2), 46-55.
60. Reed, A. E.; Curtiss, L. A.;
Weinhold, F., Intermolecular interactions from a natural bond orbital,
donor-acceptor viewpoint. Chemical Reviews1988, 88 (6), 899-926.
61. Frisch, M.; Trucks, G.; Schlegel,
H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.;
Petersson, G.; Nakatsuji, H., Gaussian 16. Revision A2016, 3 .
62. Biegler‐König, F.; Schönbohm, J.,
Update of the AIM2000‐Program for atoms in molecules. Journal of
computational chemistry 2002, 23 (15), 1489-1494.
63. Taylor, R.; Kennard, O.;
Versichel, W., The geometry of the N–H⋯ O= C hydrogen bond. 3.
Hydrogen-bond distances and angles. Acta Crystallographica Section
B: Structural Science 1984, 40 (3), 280-288.
64. Grabowski, S. J., Analysis of C
O… H O interactions in organic crystal structures.Tetrahedron 1998, 54 (34), 10153-10160.