REFERENCES
Aronesty, E. (2011). ea-utils: Command-line tools for processing biological sequencing data. Durham, NC: Expression Analysis . http://code.google.com/p/ ea-utils
Bates, J. M., Mittge, E., Kuhlman, J., Baden, K. N., Cheesman, S. E., & Guillemin, K. (2006). Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Developmental Biology, 297 (2), 374-386. https://doi.org/10. 1016/j.ydbio.2006.05.006
Bernardet, J. F., & Bowman, J. P. (2006). The genus Flavobacterium . The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass . 481-531.
Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 (1), 59. https://doi.org/10.1038/nmeth.3176
Cantarel, B. L., Coutinho, P. M., Corinne, R., Thomas, B., Vincent, L., & Bernard, H. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research, 37 (Database issue), D233-238. https://doi.org/10.1093/nar/gkn663
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., . . . Gordon, J. I. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5), 335-336. https://doi.org/ 10.1038/nmeth.f.303
Cheesman, S. E., Neal, J. T., Mittge, E., Seredick, B. M., & Guillemin, K. (2011). Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proceedings of the National Academy of Sciences of the United States of America, 108 (Supplement_1), 4570-4577. https://doi.org/10.1073/pnas.1000072107
Choo, P. S. (2008). Population status, fisheries and trade of sea cucumbers in Asia. In: Toral-Granda, V., Lovatelli, A., Vasconcellos, M. (eds) Sea cucumbers: a global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper No. 516. FAO , Rome, pp 81-118.
DeCandia, A. L., Brenner, L. J., King, J. L., & vonHoldt, B. M. (2020). Ear mite infection is associated with altered microbial communities in genetically depauperate Santa Catalina Island foxes (Urocyon littoralis catalinae ). Molecular Ecolog y, 29 ,1463-1475. https://doi.org/10.1111/mec.15325
Dolmatov, I. Y., & Ginanova, T. T. (2009). Post-autotomy regeneration of respiratory trees in the holothurian Apostichopus japonicus (Holothuroidea, Aspidochirotida). Cell and Tissue Research, 336 (1), 41-58. https://doi.org/10.1007/s00441-009 -0761-6
Gao, Fei, Tan, Jie, Huiling, Yan, & Jingping. (2014). Bacterial diversity of gut content in sea cucumber (Apostichopus japonicus ) and its habitat surface sediment. Journal of Ocean University of China, 13 (2), 303-310. https://doi.org/10.1007/ s11802-014-2078-7
Gao, F., Li, F., Tan, J., Yan, J., & Sun, H. (2014). Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS ONE, 9 (6), e100092. https://doi. org/ 10.1371/journal.pone.0100092
Geng, H., Tran-Gyamfi, M. B., Lane, T. W., Sale, K. L., & Yu, E. T. (2016). Changes in the structure of the microbial community associated with Nannochloropsis salinafollowing treatments with antibiotics and bioactive compounds.Frontiers in Microbiology, 7 , 1155. https://doi.org/ 10.3389/fmicb.2016.01155
Holt, C. C., van der Giezen, M., Daniels, C. L., Stentiford, G. D., & Bass, D. (2020). Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus ). The ISME Journal,14 (2), 531-543. https://doi.org/ 10.1038/s41396-019-0546-1
Jendrossek, D., & Pfeiffer, D. (2014). New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate).Environmental Microbiology, 16 (8), 2357-2373. https:// doi.org/10.1111/1462-2920.12356
Jooste, P. J., & Hugo, C. J. (1999). The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. International Journal of Food Microbiology, 53 (2-3), 81-94. https://doi.org/10.1016/s0168-1605(99)00162-2
Josefsdottir, K. S., Baldridge, M. T., Kadmon, C. S., & King, K. Y. (2017). Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood, 129 (6), 729-739. https://doi.org/10.1182/blood-2016-03-708594
Lahiri, S., Kim, H., Garcia-Perez, I., Reza, M. M., Martin, K. A., Kundu, P., . . . Pettersson, S. (2019). The gut microbiota influences skeletal muscle mass and function in mice.Science Translational Medicine, 11 (502), eaan5662. https://doi. org/10.1126/scitranslmed.aan5662
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Method s, 9 , 357-359. https://doi.org/ 10.1038/nmeth.1923
Li, C., Ren, Y., Jiang, S., Zhou, S., Zhao, J., Wang, R., & Li, Y. (2017). Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumberApostichopus japonicus Selenka. Fish & Shellfish Immunology, 74 , 69-75. https://doi.org/10.1016/j.fsi.2017.12.037
Li, W., & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22 (13), 1658. https://doi.org/10.1093/bioinformatics/ btl158
Li, X., Sun, L., Yang, H., Zhang, L., Miao, T., Xing, L., & Huo, D. (2017). Identification and expression characterization of WntA during intestinal regeneration in the sea cucumber Apostichopus japonicus . Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 210 , 55-63. https://doi.org/10.1016/j.cbpb. 2017.06.005
Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., . . . Liu, Y. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.Gigascience, 1 , 18. https://doi.org/10.1186/2047 -217X-1-18
Luo, Y., Chen, G. L., Hannemann, N., Ipseiz, N., Krönke, G., Bäuerle, T., . . . Bozec, A. (2015). Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metabolism, 22 (5), S1550413115004118. https://doi.org/10.1016/j.cmet.2015.08.020
Minoru, K., Susumu, G., Masahiro, H., Aoki-Kinoshita, K. F., Masumi, I., Shuichi, K., . . . Mika, H. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Research , 34 , D354-357. https://doi.org/ 10.1093/nar/ gkj102
Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., . . . Le Chatelier, E. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.Nature Biotechnology, 32 (8), 822-828. https://doi.org/10.1038/nbt.2939
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., . . . Yamada, T. (2010). A human gut microbial gene catalogue established by metagenomic sequencing.Nature, 464 (7285), 59-65. https://doi.org/10.1038/nature08821
Rawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota.Proceedings of the National Academy of Sciences of the United States of America, 101 (13), 4596-4601. https://doi.org/10.1073/pnas.0400705101
Ruokolainen, L., Ikonen, S., Makkonen, H., & Hanski, I. (2016). Larval growth rate is associated with the composition of the gut microbiota in the Glanville fritillary butterfly. Oecologia, 181 (3), 895-903. https://doi.org/10.1007/s00442-016-3603-8
Sakai, T., Kimura, H., & Kato, I. (2002). A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Marine Biotechnology, 4 (4), 399-405. https://doi.org/ 10.1007/s10126-002-0032-y
Schoenborn, A. A., von Furstenberg, R. J., Valsaraj, S., Hussain, F. S., Stein, M., Shanahan, M. T., . . . Gulati, A. S. (2018). The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells.Gut Microbes, 10 , 45-58. https://doi.org/10.1080/19490976.2018.1474321
Sean, P., Kristoffer, F., Damian, S., Kalliopi, T., Alexander, R., Jaime, H. C., . . . Michael, K. (2014). eggNOG v4.0: nested orthology inference across 3686 organisms.Nucleic Acids Research, 42 , 231-239. https://doi.org/10.1093/nar/ gkt1253
Sha, Y., Liu, M., Wang, B., Jiang, K., Sun, G., & Wang, L. (2016). Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates.Microbiology, 85 (1), 109-115. https://doi.org/10.1134/s0026261716010112
Shindo, K., Kikuta, K., Suzuki, A., Katsuta, A., Kasai, H., Yasumoto-Hirose, M., . . . Takaichi, S. (2007). Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Applied Microbiology & Biotechnology, 74 (6), 1350-1357. https://doi. org/10.1007/s00253-006-0774-y
Shukalyuk, A. I., & Dolmatov, I. Y. (2001). Regeneration of the digestive tube in the HolothurianApostichopus japonicus after evisceration. Russian Journal of Marine Biology, 27 (3), 168-173. https://doi.org/10.1023/a:1016717502616
Staffas, A., da Silva, M. B., Slingerland, A. E., Lazrak, A., Bare, C. J., Holman, C. D., . . . Pickard, A. J. (2018). Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host & Microbe, 23 (4), 447-457. https://doi.org/10.1016/j.bbmt.2017.12.658
Sun, F., Zhang, X., Zhang, Q., Liu, F., Zhang, J., & Gong, J. (2015). Seagrass (Zostera marina ) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling. Applied and Environmental Microbiology, 81 (19), 6901-6914. https://doi.org/10.1128/AEM.01382-15
Sun, L., Chen, M., Yang, H., Wang, T., Liu, B., Shu, C., & Gardiner, D. M. (2011). Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus . Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 6 (2), 195-205. https://doi.org/10. 1016/j.cbd.2011. 03.002
Sun, L., Sun, J., Li, X., Zhang, L., Yang, H., & Wang, Q. (2017). Understanding regulation of microRNAs on intestine regeneration in the sea cucumber Apostichopus japonicususing high-throughput sequencing. Comparative Biochemistry & Physiology Part D Genomics & Proteomics, 22 , 1-9. https://doi. org/10.1016/j.cbd.2017.01.001
Sun, L., Xu, D., Xu, Q., Sun, J., Xing, L., Zhang, L., & Yang, H. (2017). iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus . Comparative Biochemistry & Physiology Part D Genomics & Proteomics, 22 , 39-59. https://doi.org/10.1016/j.cbd.2017.02.004
Sun, L., Yang, H., Chen, M., Ma, D., & Lin, C. (2013). Correction: RNA-seq reveals dynamic changes of gene expression in key stages of intestine regeneration in the sea cucumber Apostichopus japonicus . PLoS ONE, 8 (8), e69441. https://doi.org/ 10.1371/journal.pone.0069441
Thomson, K. S. (1988). Antibiotic resistance of Flavobacterium and related genera.University of Tasmania .
Uribe, A., ., Alam, M., ., Johansson, O., ., Midtvedt, T., ., & Theodorsson, E., . (1994). Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology, 107 (5), 1259-1269. https://doi.org/10.1016/0016-5085(94) 90526-6
Wang, L., Li, X., Hu, D., Lai, Q., & Shao, Z. (2015). Tenacibaculum holothuriorum sp. nov., isolated from the sea cucumberApostichopus japonicus intestine. International Journal of Systematic & Evolutionary Microbiology, 65 (12), 4347. https://doi.org/10.1099/ijsem.0.000574
Wang, L., Zhao, X., Xu, H., Bao, X., Liu, X., Chang, Y., & Ding, J. (2018). Characterization of the bacterial community in different parts of the gut of sea cucumber (Apostichopus Japonicus ) and its variation during gut regeneration. Aquaculture Research, 49 (5), 1987-1996. https://doi.org/10.1111/are.13654
Yamazaki, Y., Meirelles, P. M., Mino, S., Suda, W., Oshima, K., Hattori, M., . . . Sawabe, T. (2016). Individual Apostichopus japonicusfecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Scientific Reports, 6 , 21631. https://doi.org/10.1038/srep21631
Yang, G., Xu, Z., Tian, X., Dong, S., & Peng, M. (2015). Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus ) response to dietary β-glucan supplementation. Biochemical & Biophysical Research Communications, 458 (1), 98-103. https://doi.org/10.1016/j.bbrc. 2015.01.074
Zhang, H., Wang, Q., Liu, S., Huo, D., Zhao, J., Zhang, L., . . . Yang, H. (2019). Genomic and metagenomic insights into the microbial community in the regenerating intestine of the sea cucumber Apostichopus japonicus . Frontiers in Microbiology, 10 , 1165. https://doi.org/10.3389/fmicb.2019.01165
Zhang, X., Nakahara, T., Murase, S., Nakata, H., Inoue, T., & Kudo, T. (2013). Physiological characterization of aerobic culturable bacteria in the intestine of the sea cucumber Apostichopus japonicus .Journal of General & Applied Microbiology, 59 (1), 1-10. https://doi.org/10.2323/jgam.59.1
Zhang, Z., Xing, R., Lv, Z., Shao, Y., Zhang, W., Zhao, X., & Li, C. (2018). Analysis of gut microbiota revealed Lactococcus garviaeae could be an indicative of skin ulceration syndrome in farmed sea cucumber Apostichopus japonicus . Fish & Shellfish Immunology, 80 , 148-154. https://doi.org/10.1016/j.fsi.2018.06.001