REFERENCES
  1. Seoane B, Coronas J, Gascon I, Etxeberria Benavides M, Karvan O, Caro J, Kapteijn F, Gascon J. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev . 2015;44:2421-2454.
  2. Miller DC, Litynski JT, Brickett LA, Morreale BD. Toward transformational carbon capture systems. AIChE J . 2016;62:2-10.
  3. Sinha A, Realff MJ. A parametric study of the techno-economics of direct CO2 air capture systems using solid adsorbents.AIChE J . 2019;65:e16607.
  4. Yang Z, Khan TS, Alshehhi M, AlWahedi YF. Economic assessment of carbon capture by minichannel absorbers. AIChE J . 2018;64:620-631.
  5. Xian S, Xu F, Zhao Z, Li Y, Li Z, Xia Q, Xiao J, Wang H. A novel carbonized polydopamine (C-PDA) adsorbent with high CO2 adsorption capacity and water vapor resistance.AIChE J. 2016;62:3730-3738.
  6. Yu H, Tan Z, Thé J, Feng X, Croiset E, Anderson WA. Kinetics of the absorption of carbon dioxide into aqueous ammonia solutions.AIChE J. 2016;62:3673-3684.
  7. Khalilpour R, Abbas A, Lai Z, Pinnau I. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas. AIChE J. 2012;58:1550-1561.
  8. Qiao Z. Sheng M, Wang J, Zhao S, Wang Z. Metal-induced polymer framework membrane with high performance for CO2separation. AIChE J. 2019;65:239-249.
  9. Li W. Zhang G, Zhang C, Meng Q, Fan Z, Gao C. Synthesis of trinity metal-organic framework membranes for CO2 capture.Chem Commun . 2014;50:3214-3216.
  10. Lima FV, Daoutidis P, Tsapatsis M. Modeling, optimization, and cost analysis of an IGCC plant with a membrane reactor for carbon capture.AIChE J . 2016;62:1568-1580.
  11. Cai L, Wu X, Zhu X, Ghoniem AF, Yang W. High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture.AIChE J . 2020;66:e16427.
  12. Robeson LM. The upper bound revisited. J Membr Sci . 2008;320:390-400.
  13. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science . 2017;356:eaab0530.
  14. Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Mixed-matrix membranes. Angew Chem Int Ed . 2017;56:9292-9310.
  15. Bachman JE, Smith ZP, Li T, Xu T, Long JR. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat Mater . 2016;15:845-849.
  16. Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation.AIChE J . 2016;62:2843-2852.
  17. Zhang J, Schott JA, Li Y, Zhan W, Mahurin SM, Nelson K, Sun XG, Paranthaman MP, Dai S. Membrane-based gas separation accelerated by hollow nanosphere architectures. Adv Mater . 2017;29:1603797.
  18. Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani AP, Song QL, Doitomi K, Furukawa S, Hirao H, Kusuda H, Kitagawa S, Sivaniah E. Enhanced selectivity in mixed matrix membranes for CO2capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy . 2017;2:17086.
  19. Zhang W, Liu D, Guo X, Huang H, Zhong C. Fabrication of mixed-matrix membranes with MOF-derived porous carbon for CO2separation. AIChE J . 2018;64:3400-3408.
  20. Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application. Chem Soc Rev . 2014;43:6116-6140.
  21. Li W, Zhang Y, Li Q, Zhang G. Metal-organic framework composite membranes: synthesis and separation applications. Chem Eng Sci . 2015;135:232-257.
  22. Rui Z, James JB, Kasik A, Lin YS. Metal-organic framework membrane process for high purity CO2 production. AIChE J . 2016;62:3836-3841.
  23. Liu Y, Ban Y, Yang W. Microstructural engineering and architectural design of metal-organic framework membranes. Adv Mater . 2017;29:1606949.
  24. Li W. Metal-organic framework membranes: production, modification, and applications. Prog Mater Sci . 2019;100:21-63.
  25. Wu W, Li Z, Chen Y, Li W. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture.Environ Sci Technol . 2019;53:3764-3772.
  26. Hou J, Hong X, Zhou S, Wei Y, Wang H. Solvent-free route for metal-organic framework membranes growth aiming for efficient gas separation. AIChE J . 2019;65:712-722.
  27. Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation.J Membr Sci . 2016;513:155-165.
  28. Marti AM, Wickramanayake W, Dahe G, Sekizkardes A, Bank TL, Hopkinson DP, Venna SR. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2capture. ACS Appl Mater Interfaces . 2017;9:5678-5682.
  29. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Xamena FXL, Gascon J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater . 2015;14:48-55.
  30. Wu X, Ren Y, Sui G, Wang G, Xu G, Yang L, Wu Y, He G, Nasir N, Wu H, Jiang Z. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AIChE J . 2020;66:e16800.
  31. Lin R, Hernandez BV, Ge L, Zhu Z. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J Mater Chem A . 2018;6:293-312.
  32. Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J Membr Sci . 2012;389:34-42.
  33. Rodenas T, van Dalen M, García-Pérez E, Serra-Crespo P, Zornoza B, Kapteijn F, Gascon J. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv Funct Mater . 2014;24:249-256.
  34. Japip S, Xiao Y, Chung TS. Particle size effects on gas transport properties of 6FDA-Durene/ZIF-71 mixed matrix membranes. Ind Eng Chem Res . 2016;55:9507-9517.
  35. Ma X, Wu X, Caro J, Huang A. Polymer composite membrane with penetrating ZIF-7 sheets displays high hydrogen permselectivity.Angew Chem Int Ed . 2019;58:16156-16160.
  36. Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Guillouzer CL, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J Membr Sci . 2016;515:45-53.
  37. Denny MS, Moreton JC, Benz L, Cohen SM. Metal-organic frameworks for membrane-based separations. Nat Rev Mater . 2016;1:16078.
  38. Venna SR, Lartey M, Li T, Spore A, Kumar S, Nulwala HB, Luebke DR, Rosi NL, Albenze E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J Mater Chem A . 2015;3:5014-5022.
  39. Wang Z, Wang D, Zhang S, Hu L, Jin J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv Mater . 2016;28:3399-3405.
  40. Lin R, Ge L, Diao H, Rudolph V, Zhu Z. Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation.ACS Appl Mater Interfaces . 2016;8:32041-32049.
  41. Molavi H, Shojaei A, Mousavi SA. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2-UiO-66. J Mater Chem A . 2018;6:2775-2791.
  42. Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv Mater . 2017;29:1606999.
  43. Qian Q, Wu AX, Chi WS, Asinger PA, Lin S, Hypsher A, Smith ZP. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility.ACS Appl Mater Interfaces . 2019;11:31257-31269.
  44. Sun D, Li Z. Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2-Uio-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J Phys Chem C . 2016;120:19744-19750.
  45. Vieth WR, Howell JM, Hsieh JH. Dual sorption theory. J Membr Sci . 1976;1:177-220.
  46. Scholes CA, Stevens GW, Kentish SE. Permeation through CO2 selective glassy polymeric membranes in the presence of hydrogen sulfide. AIChE J. 2012;58:967-973.
  47. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc . 2008;130:13850-13851.
  48. Guo X, Liu D, Han T, Huang H, Yang Q, Zhong C. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration. AIChE J. 2017;63:1303-1312.
  49. Chun J, Kang S, Park N, Park EJ, Jin X, Kim KD, Seo HO, Lee SM, Kim HJ, Kwon WH, Park YK, Kim JM, Kim YD, Son SU. Metal-organic framework@microporous organic network: hydrophobic adsorbents with a crystalline inner porosity. J Am Chem Soc . 2014;136:6786-6789.
  50. Guo X, Huang H, Ban Y, Yang Q, Xiao Y, Li Y, Yan W, Zhong C. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4separation. J Membr Sci . 2015;478:130-139.
  51. Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C, Yang W. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angew Chem Int Ed . 2015;54:15483-15487.
  52. Li H, Meng F, Zhang S, Wang L, Li M, Ma L, Zhang W, Zhang W, Yang Z, Wu T, Lee S, Huo F, Lu J. Crystal-growth-dominated fabrication of metal-organic frameworks with orderly distributed hierarchical porosity. Angew Chem Int Ed . 2020;59:2457-2464.
  53. Zhang Z, Nguyen HTH, Miller SA, Cohen SM. PolyMOFs: a class of interconvertible polymer-metal-organic-framework hybrid materials.Angew Chem Int Ed . 2015;54:6152-6157.
  54. Tien-Binh N, Rodrigue D, Kaliaguine S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. J Membr Sci . 2018;548:429-438.
  55. Jiang Y, Liu C, Caro J, Huang A. A new UiO-66-NH2based mixed-matrix membranes with high CO2/CH4 separation performance.Micropor Mesopor Mat . 2019;274:203-211.
  56. Molavi H, Eskandari A, Shojaei A, Mousavi SA. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr).Micropor Mesopor Mat . 2018;257:193-201.
  57. Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2separation. J Mater Chem A . 2017;5:10968-10977.
  58. Xiong C, Wang S, Hu P, Huang L, Xue C, Yang Z, Zhou X, Wang Y, Ji H. Efficient selective removal of Pb(II) by using 6-aminothiouracil-modified Zr-based organic frameworks: from experiments to mechanisms. ACS Appl Mater Interfaces . 2020;12:7162-7178.
  59. Kim S, Marand E. Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation. Chem Mater . 2006;18:1149-1155.
  60. Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, Christopher MP, Long S, Wang Y, Zhao D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4separation. J Membr Sci . 2019;573:97-106.