References
Alonso, A., Della Martina, A., Stroick, M., Fatar, M., Griebe, M.,
Pochon, S., et al. (2007). Molecular imaging of human thrombus with
novel abciximab immunobubbles and ultrasound. Stroke 38 :
1508–1514.
Alonso, A., Dempfle, C.-E., Della Martina, A., Stroick, M., Fatar, M.,
Zohsel, K., et al. (2009). In vivo clot lysis of human thrombus with
intravenous abciximab immunobubbles and ultrasound. Thromb. Res.124 : 70–74.
Andia, M.E., Saha, P., Jenkins, J., Modarai, B., Wiethoff, A.J.,
Phinikaridou, A., et al. (2014). Fibrin-targeted magnetic resonance
imaging allows in vivo quantification of thrombus fibrin content and
identifies thrombi amenable for thrombolysis. Arterioscler. Thromb.
Vasc. Biol. 34 : 1193–1198.
Ardipradja, K., Yeoh, S.D., Alt, K., O’Keefe, G., Rigopoulos, A.,
Howells, D.W., et al. (2014). Detection of activated platelets in a
mouse model of carotid artery thrombosis with 18 F-labeled single-chain
antibodies. Nucl. Med. Biol. 41 : 229–237.
Ay, I., Blasi, F., Rietz, T.A., Rotile, N.J., Kura, S., Brownell, A.L.,
et al. (2014). In Vivo Molecular Imaging of Thrombosis and Thrombolysis
Using a Fibrin-binding Positron Emission Tomography Probe. Circ
Cardiovasc Imaging 7 : 697–705.
Behravesh, S., Hoang, P., Nanda, A., Wallace, A., Sheth, R.A., Deipolyi,
A.R., et al. (2017). Pathogenesis of Thromboembolism and Endovascular
Management. Thrombosis 2017 : 3039713.
Blasi, F., Oliveira, B.L., Rietz, T.A., Rotile, N.J., Naha, P.C.,
Cormode, D.P., et al. (2015). Multisite Thrombus Imaging and Fibrin
Content Estimation With a Single Whole-Body PET Scan in Rats.
Arterioscler. Thromb. Vasc. Biol. 35 : 2114–2121.
Botnar, R.M., Perez, A.S., Witte, S., Wiethoff, A.J., Laredo, J.,
Hamilton, J., et al. (2004). In vivo molecular imaging of acute and
subacute thrombosis using a fibrin-binding magnetic resonance imaging
contrast agent. Circulation 109 : 2023–2029.
Carretta, R.F., Streek, P.V., and Weiland, F.L. (1999). Optimising
images of acute deep-vein thrombosis using technetium-99m-apcitide. J
Nucl Med Technol 27 : 271–275.
Coller, B.S. (1999). Binding of abciximab to alpha V beta 3 and
activated alpha M beta 2 receptors: with a review of platelet-leukocyte
interactions. Thromb. Haemost. 82 : 326–336.
Davidson, B.P., Chadderdon, S.M., Belcik, J.T., Gupta, S., and Lindner,
J.R. (2014). Ischemic memory imaging in non-human primates with
echocardiographic molecular imaging of selectin expression. J Am Soc
Echocardiogr 27 : 786-793.e2.
Davidson, B.P., Kaufmann, B.A., Belcik, J.T., Xie, A., Qi, Y., and
Lindner, J.R. (2012). Detection of Antecedent Myocardial Ischemia With
Multiselectin Molecular Imaging. J Am Coll Cardiol 60 :
1690–1697.
Elverfeldt, D. von, Maier, A., Duerschmied, D., Braig, M., Witsch, T.,
Wang, X., et al. (2014). Dual-contrast molecular imaging allows
noninvasive characterisation of myocardial ischemia/reperfusion injury
after coronary vessel occlusion in mice by magnetic resonance imaging.
Circulation 130 : 676–687.
Furie, B., and Furie, B.C. (2004). Role of platelet P-selectin and
microparticle PSGL-1 in thrombus formation. Trends Mol Med 10 :
171–178.
Golestani, R., Mirfeizi, L., Zeebregts, C.J., Westra, J., Haas, H.J. de,
Glaudemans, A.W.J.M., et al. (2015). Feasibility of [18F]-RGD for ex
vivo imaging of atherosclerosis in detection of αvβ3 integrin
expression. J Nucl Cardiol 22 : 1179–1186.
Guo, S., Shen, S., Wang, J., Wang, H., Li, M., Liu, Y., et al. (2015).
Detection of high-risk atherosclerotic plaques with ultrasound molecular
imaging of glycoprotein IIb/IIIa receptor on activated platelets.
Theranostics 5 : 418–430.
Hagemeyer, C.E., Alt, K., Johnston, A.P.R., Such, G.K., Ta, H.T., Leung,
M.K.M., et al. (2014). Particle generation, functionalisation and
sortase A–mediated modification with targeting of single-chain
antibodies for diagnostic and therapeutic use. Nature Protocols10 : 90–105.
Hara, T., Bhayana, B., Thompson, B., Kessinger, C.W., Khatri, A.,
McCarthy, J.R., et al. (2012). Molecular imaging of fibrin deposition in
deep vein thrombosis using fibrin-targeted near-infrared fluorescence.
JACC Cardiovasc Imaging 5 : 607–615.
Hara, T., Ughi, G.J., McCarthy, J.R., Erdem, S.S., Mauskapf, A., Lyon,
S.C., et al. (2015). Intravascular fibrin molecular imaging improves the
detection of unhealed stents assessed by optical coherence tomography in
vivo. Eur. Heart J.
Heidt, T., Deininger, F., Peter, K., Goldschmidt, J., Pethe, A.,
Hagemeyer, C.E., et al. (2011). Activated platelets in carotid artery
thrombosis in mice can be selectively targeted with a radiolabeled
single-chain antibody. PLoS ONE 6 : e18446.
Heidt, T., Ehrismann, S., Hövener, J.-B., Neudorfer, I., Hilgendorf, I.,
Reisert, M., et al. (2016). Molecular Imaging of Activated Platelets
Allows the Detection of Pulmonary Embolism with Magnetic Resonance
Imaging. Sci Rep 6 :.
Hu, G., Liu, C., Liao, Y., Yang, L., Huang, R., Wu, J., et al. (2012).
Ultrasound molecular imaging of arterial thrombi with novel microbubbles
modified by cyclic RGD in vitro and in vivo. Thromb. Haemost.107 : 172–183.
Kang, C.M., Koo, H.-J., An, G.I., Choe, Y.S., Choi, J.Y., Lee, K.-H., et
al. (2015). Hybrid PET/optical imaging of integrin αVβ3 receptor
expression using a (64)Cu-labeled streptavidin/biotin-based dimeric RGD
peptide. EJNMMI Res 5 : 60.
Klem, J.A., Schaffer, J.V., Crane, P.D., Barrett, J.A., Henry, G.A.,
Canestri, L., et al. (2000). Detection of deep venous thrombosis by DMP
444, a platelet IIb/IIIa antagonist: a preliminary report. J Nucl
Cardiol 7 : 359–364.
Klink, A., Lancelot, E., Ballet, S., Vucic, E., Fabre, J.-E., Gonzalez,
W., et al. (2010). Magnetic Resonance Molecular Imaging of Thrombosis in
an Arachidonic Acid Mouse Model Using an Activated Platelet Targeted
Probe. Arterioscler Thromb Vasc Biol 30 : 403–410.
Lanza, G.M., Cui, G., Schmieder, A.H., Zhang, H., Allen, J.S., Scott,
M.J., et al. (2019). An unmet clinical need: The history of thrombus
imaging. J Nucl Cardiol 26 : 986–997.
Laslett, L.J., Alagona, P., Clark, B.A., Drozda, J.P., Saldivar, F.,
Wilson, S.R., et al. (2012). The Worldwide Environment of Cardiovascular
Disease: Prevalence, Diagnosis, Therapy, and Policy IssuesA Report From
the American College of Cardiology. J Am Coll Cardiol 60 :
S1–S49.
Lele, M., Sajid, M., Wajih, N., and Stouffer, G.A. (2001). Eptifibatide
and 7E3, but not tirofiban, inhibit alpha(v)beta(3) integrin-mediated
binding of smooth muscle cells to thrombospondin and prothrombin.
Circulation 104 : 582–587.
Li, B., Aid-Launais, R., Labour, M.-N., Zenych, A., Juenet, M.,
Choqueux, C., et al. (2019). Functionalised polymer microbubbles as new
molecular ultrasound contrast agent to target P-selectin in thrombus.
Biomaterials 194 : 139–150.
Lim, B., Yao, Y., Yap, M., Huang, A., Flierl, U., Palasubramaniam, J.,
et al. (2017). A unique three-dimensional fluorescence emission computed
tomography technology: In vivo detection of arterial thrombosis and
pulmonary embolism. Theranostics 7 : 1047–1061.
Lister-James, J., Knight, L.C., Maurer, A.H., Bush, L.R., Moyer, B.R.,
and Dean, R.T. (1996). Thrombus imaging with a technetium-99m-labeled
activated platelet receptor-binding peptide. J. Nucl. Med. 37 :
775–781.
Melemenidis, S., Jefferson, A., Ruparelia, N., Akhtar, A.M., Xie, J.,
Allen, D., et al. (2015). Molecular magnetic resonance imaging of
angiogenesis in vivo using polyvalent cyclic RGD-iron oxide
microparticle conjugates. Theranostics 5 : 515–529.
Montague, S.J., Lim, Y.J., Lee, W.M., and Gardiner, E.E. (2020). Imaging
Platelet Processes and Function-Current and Emerging Approaches for
Imaging in vitro and in vivo. Front Immunol 11 : 78.
Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J.,
Cushman, M., et al. (2016). Heart Disease and Stroke Statistics—2016
Update. Circulation 133 : e38–e360.
Muhlen, C. von zur, Elverfeldt, D. von, Moeller, J.A., Choudhury, R.P.,
Paul, D., Hagemeyer, C.E., et al. (2008). Magnetic resonance imaging
contrast agent targeted toward activated platelets allows in vivo
detection of thrombosis and monitoring of thrombolysis. Circulation118 : 258–267.
Muto, P., Lastoria, S., Varrella, P., Vergara, E., Salvatore, M.,
Morgano, G., et al. (1995). Detecting deep venous thrombosis with
technetium-99m-labeled synthetic peptide P280. J. Nucl. Med. 36 :
1384–1391.
Oliveira, B.L., Blasi, F., Rietz, T.A., Rotile, N.J., Day, H., and
Caravan, P. (2015). Multimodal Molecular Imaging Reveals High Target
Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes
for Thrombus Detection in Rats. J. Nucl. Med. 56 : 1587–1592.
Oliveira, B.L., and Caravan, P. (2017). Peptide-Based Fibrin-Targeting
Probes for Thrombus Imaging. Dalton Trans 46 : 14488–14508.
Overoye-Chan, K., Koerner, S., Looby, R.J., Kolodziej, A.F., Zech, S.G.,
Deng, Q., et al. (2008). EP-2104R: a fibrin-specific gadolinium-Based
MRI contrast agent for detection of thrombus. J. Am. Chem. Soc.130 : 6025–6039.
Peter, K., Kohler, B., Straub, A., Ruef, J., Moser, M., Nordt, T., et
al. (2000). Flow cytometric monitoring of glycoprotein IIb/IIIa blockade
and platelet function in patients with acute myocardial infarction
receiving reteplase, abciximab, and ticlopidine: continuous platelet
inhibition by the combination of abciximab and ticlopidine. Circulation102 : 1490–1496.
Pietersz, G.A., Wang, X., Yap, M.L., Lim, B., and Peter, K. (2017).
Therapeutic targeting in nanomedicine: the future lies in recombinant
antibodies. Nanomedicine (Lond) 12 : 1873–1889.
Rix, A., Fokong, S., Heringer, S., Pjontek, R., Kabelitz, L., Theek, B.,
et al. (2016). Molecular Ultrasound Imaging of αvβ3-Integrin Expression
in Carotid Arteries of Pigs After Vessel Injury. Invest Radiol.
Rouzet, F., Bachelet-Violette, L., Alsac, J.-M., Suzuki, M., Meulemans,
A., Louedec, L., et al. (2011). Radiolabeled fucoidan as a p-selectin
targeting agent for in vivo imaging of platelet-rich thrombus and
endothelial activation. J. Nucl. Med. 52 : 1433–1440.
Saboural, P., Chaubet, F., Rouzet, F., Al-Shoukr, F., Azzouna, R.B.,
Bouchemal, N., et al. (2014). Purification of a low molecular weight
fucoidan for SPECT molecular imaging of myocardial infarction. Mar Drugs12 : 4851–4867.
Schumann, P.A., Christiansen, J.P., Quigley, R.M., McCreery, T.P.,
Sweitzer, R.H., Unger, E.C., et al. (2002). Targeted-microbubble binding
selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol37 : 587–593.
Schwarz, M., Meade, G., Stoll, P., Ylanne, J., Bassler, N., Chen, Y.C.,
et al. (2006). Conformation-specific blockade of the integrin
GPIIb/IIIa: a novel anti-platelet strategy that selectively targets
activated platelets. Circ. Res. 99 : 25–33.
Schwarz, M., Nordt, T., Bode, C., and Peter, K. (2002). The GP IIb/IIIa
inhibitor abciximab (c7E3) inhibits the binding of various ligands to
the leukocyte integrin Mac-1 (CD11b/CD18, alphaMbeta2). Thromb. Res.107 : 121–128.
Spuentrup, E., Botnar, R.M., Wiethoff, A.J., Ibrahim, T., Kelle, S.,
Katoh, M., et al. (2008). MR imaging of thrombi using EP-2104R, a
fibrin-specific contrast agent: initial results in patients. Eur Radiol18 : 1995–2005.
Spuentrup, E., Buecker, A., Katoh, M., Wiethoff, A.J., Parsons, E.C.,
Botnar, R.M., et al. (2005a). Molecular Magnetic Resonance Imaging of
Coronary Thrombosis and Pulmonary Emboli With a Novel Fibrin-Targeted
Contrast Agent. Circulation 111 : 1377–1382.
Spuentrup, E., Fausten, B., Kinzel, S., Wiethoff, A.J., Botnar, R.M.,
Graham, P.B., et al. (2005b). Molecular magnetic resonance imaging of
atrial clots in a swine model. Circulation 112 : 396–399.
Starmans, L.W.E., Duijnhoven, S.M.J. van, Rossin, R., Aime, S., Daemen,
M.J.A.P., Nicolay, K., et al. (2013). SPECT imaging of fibrin using
fibrin-binding peptides. Contrast Media Mol Imaging 8 : 229–237.
Starmans, L.W.E., Moonen, R.P.M., Aussems-Custers, E., Daemen, M.J.A.P.,
Strijkers, G.J., Nicolay, K., et al. (2015). Evaluation of Iron Oxide
Nanoparticle Micelles for Magnetic Particle Imaging (MPI) of Thrombosis.
PLoS One 10 :.
Sun Yoo, J., Lee, J., Ho Jung, J., Seok Moon, B., Kim, S., Chul Lee, B.,
et al. (2015). SPECT/CT Imaging of High-Risk Atherosclerotic Plaques
using Integrin-Binding RGD Dimer Peptides. Scientific Reports 5 :
11752.
Suzuki, M., Bachelet-Violette, L., Rouzet, F., Beilvert, A., Autret, G.,
Maire, M., et al. (2015). Ultrasmall superparamagnetic iron oxide
nanoparticles coated with fucoidan for molecular MRI of intraluminal
thrombus. Nanomedicine (Lond) 10 : 73–87.
Ta, H.T., Li, Z., Hagemeyer, C.E., Cowin, G., Zhang, S.,
Palasubramaniam, J., et al. (2017). Molecular imaging of activated
platelets via antibody-targeted ultra-small iron oxide nanoparticles
displaying unique dual MRI contrast. Biomaterials 134 : 31–42.
Ta, H.T., Prabhu, S., Leitner, E., Jia, F., Elverfeldt, D. von, Jackson,
K.E., et al. (2011). Enzymatic single-chain antibody tagging: a
universal approach to targeted molecular imaging and cell homing in
cardiovascular disease. Circ. Res. 109 : 365–373.
Taillefer, R., Edell, S., Innes, G., and Lister-James, J. (2000). Acute
thromboscintigraphy with (99m)Tc-apcitide: results of the phase 3
multicenter clinical trial comparing 99mTc-apcitide scintigraphy with
contrast venography for imaging acute DVT. Multicenter Trial
Investigators. J. Nucl. Med. 41 : 1214–1223.
Taillefer, R., Thérasse, E., Turpin, S., Lambert, R., Robillard, P., and
Soulez, G. (1999). Comparison of early and delayed scintigraphy with
99mTc-apcitide and correlation with contrast-enhanced venography in
detection of acute deep vein thrombosis. J. Nucl. Med. 40 :
2029–2035.
Unger, E., Porter, T., Lindner, J., and Grayburn, P. (2014).
Cardiovascular drug delivery with ultrasound and microbubbles. Adv. Drug
Deliv. Rev. 72 : 110–126.
Uppal, R., Catana, C., Ay, I., Benner, T., Sorensen, A.G., and Caravan,
P. (2011). Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a
Fibrin-targeted Dual PET/MR Probe—Feasibility Study in Rat Model.
Radiology 258 : 812–820.
Vymazal, J., Spuentrup, E., Cardenas-Molina, G., Wiethoff, A.J.,
Hartmann, M.G., Caravan, P., et al. (2009). Thrombus imaging with
fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of
a phase II clinical study of feasibility. Invest Radiol 44 :
697–704.
Wang, X., Gkanatsas, Y., Palasubramaniam, J., Hohmann, J.D., Chen, Y.C.,
Lim, B., et al. (2016). Thrombus-Targeted Theranostic Microbubbles: A
New Technology towards Concurrent Rapid Ultrasound Diagnosis and
Bleeding-free Fibrinolytic Treatment of Thrombosis. Theranostics6 : 726–738.
Wang, X., Hagemeyer, C.E., Hohmann, J.D., Leitner, E., Armstrong, P.C.,
Jia, F., et al. (2012). Novel Single-Chain Antibody-Targeted
Microbubbles for Molecular Ultrasound Imaging of Thrombosis: Validation
of a Unique Noninvasive Method for Rapid and Sensitive Detection of
Thrombi and Monitoring of Success or Failure of Thrombolysis in Mice.
Circulation 125 : 3117–3126.
Wang, X., Palasubramaniam, J., Gkanatsas, Y., Hohmann, J.D., Westein,
E., Kanojia, R., et al. (2014). Towards effective and safe thrombolysis
and thromboprophylaxis: preclinical testing of a novel antibody-targeted
recombinant plasminogen activator directed against activated platelets.
Circ. Res. 114 : 1083–1093.
Wang, X., and Peter, K. (2017). Molecular Imaging of Atherothrombotic
Diseases: Seeing Is Believing. Arterioscler. Thromb. Vasc. Biol.37 : 1029–1040.
Wendelboe, A.M., and Raskob, G.E. (2016). Global Burden of Thrombosis:
Epidemiologic Aspects. Circ. Res. 118 : 1340–1347.
Withofs, N., Signolle, N., Somja, J., Lovinfosse, P., Nzaramba, E.M.,
Mievis, F., et al. (2015). 18F-FPRGD2 PET/CT imaging of integrin αvβ3 in
renal carcinomas: correlation with histopathology. J. Nucl. Med.56 : 361–364.
Yap, M.L., McFadyen, J.D., Wang, X., Zia, N.A., Hohmann, J.D., Ziegler,
M., et al. (2017). Targeting Activated Platelets: A Unique and
Potentially Universal Approach for Cancer Imaging. Theranostics7 : 2565–2574.
Zhou, Y., Chakraborty, S., and Liu, S. (2011). Radiolabeled Cyclic RGD
Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT.
Theranostics 1 : 58–82.
Ziegler, M., Alt, K., Paterson, B.M., Kanellakis, P., Bobik, A.,
Donnelly, P.S., et al. (2016). Highly Sensitive Detection of Minimal
Cardiac Ischemia using Positron Emission Tomography Imaging of Activated
Platelets. Sci Rep 6 : 38161.
Ziegler, M., Wang, X., and Peter, K. (2019). Platelets in cardiac
ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc
Res 115 : 1178–1188.