References
Alonso, A., Della Martina, A., Stroick, M., Fatar, M., Griebe, M., Pochon, S., et al. (2007). Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 38 : 1508–1514.
Alonso, A., Dempfle, C.-E., Della Martina, A., Stroick, M., Fatar, M., Zohsel, K., et al. (2009). In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thromb. Res.124 : 70–74.
Andia, M.E., Saha, P., Jenkins, J., Modarai, B., Wiethoff, A.J., Phinikaridou, A., et al. (2014). Fibrin-targeted magnetic resonance imaging allows in vivo quantification of thrombus fibrin content and identifies thrombi amenable for thrombolysis. Arterioscler. Thromb. Vasc. Biol. 34 : 1193–1198.
Ardipradja, K., Yeoh, S.D., Alt, K., O’Keefe, G., Rigopoulos, A., Howells, D.W., et al. (2014). Detection of activated platelets in a mouse model of carotid artery thrombosis with 18 F-labeled single-chain antibodies. Nucl. Med. Biol. 41 : 229–237.
Ay, I., Blasi, F., Rietz, T.A., Rotile, N.J., Kura, S., Brownell, A.L., et al. (2014). In Vivo Molecular Imaging of Thrombosis and Thrombolysis Using a Fibrin-binding Positron Emission Tomography Probe. Circ Cardiovasc Imaging 7 : 697–705.
Behravesh, S., Hoang, P., Nanda, A., Wallace, A., Sheth, R.A., Deipolyi, A.R., et al. (2017). Pathogenesis of Thromboembolism and Endovascular Management. Thrombosis 2017 : 3039713.
Blasi, F., Oliveira, B.L., Rietz, T.A., Rotile, N.J., Naha, P.C., Cormode, D.P., et al. (2015). Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arterioscler. Thromb. Vasc. Biol. 35 : 2114–2121.
Botnar, R.M., Perez, A.S., Witte, S., Wiethoff, A.J., Laredo, J., Hamilton, J., et al. (2004). In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109 : 2023–2029.
Carretta, R.F., Streek, P.V., and Weiland, F.L. (1999). Optimising images of acute deep-vein thrombosis using technetium-99m-apcitide. J Nucl Med Technol 27 : 271–275.
Coller, B.S. (1999). Binding of abciximab to alpha V beta 3 and activated alpha M beta 2 receptors: with a review of platelet-leukocyte interactions. Thromb. Haemost. 82 : 326–336.
Davidson, B.P., Chadderdon, S.M., Belcik, J.T., Gupta, S., and Lindner, J.R. (2014). Ischemic memory imaging in non-human primates with echocardiographic molecular imaging of selectin expression. J Am Soc Echocardiogr 27 : 786-793.e2.
Davidson, B.P., Kaufmann, B.A., Belcik, J.T., Xie, A., Qi, Y., and Lindner, J.R. (2012). Detection of Antecedent Myocardial Ischemia With Multiselectin Molecular Imaging. J Am Coll Cardiol 60 : 1690–1697.
Elverfeldt, D. von, Maier, A., Duerschmied, D., Braig, M., Witsch, T., Wang, X., et al. (2014). Dual-contrast molecular imaging allows noninvasive characterisation of myocardial ischemia/reperfusion injury after coronary vessel occlusion in mice by magnetic resonance imaging. Circulation 130 : 676–687.
Furie, B., and Furie, B.C. (2004). Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 10 : 171–178.
Golestani, R., Mirfeizi, L., Zeebregts, C.J., Westra, J., Haas, H.J. de, Glaudemans, A.W.J.M., et al. (2015). Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of αvβ3 integrin expression. J Nucl Cardiol 22 : 1179–1186.
Guo, S., Shen, S., Wang, J., Wang, H., Li, M., Liu, Y., et al. (2015). Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets. Theranostics 5 : 418–430.
Hagemeyer, C.E., Alt, K., Johnston, A.P.R., Such, G.K., Ta, H.T., Leung, M.K.M., et al. (2014). Particle generation, functionalisation and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nature Protocols10 : 90–105.
Hara, T., Bhayana, B., Thompson, B., Kessinger, C.W., Khatri, A., McCarthy, J.R., et al. (2012). Molecular imaging of fibrin deposition in deep vein thrombosis using fibrin-targeted near-infrared fluorescence. JACC Cardiovasc Imaging 5 : 607–615.
Hara, T., Ughi, G.J., McCarthy, J.R., Erdem, S.S., Mauskapf, A., Lyon, S.C., et al. (2015). Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur. Heart J.
Heidt, T., Deininger, F., Peter, K., Goldschmidt, J., Pethe, A., Hagemeyer, C.E., et al. (2011). Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody. PLoS ONE 6 : e18446.
Heidt, T., Ehrismann, S., Hövener, J.-B., Neudorfer, I., Hilgendorf, I., Reisert, M., et al. (2016). Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging. Sci Rep 6 :.
Hu, G., Liu, C., Liao, Y., Yang, L., Huang, R., Wu, J., et al. (2012). Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb. Haemost.107 : 172–183.
Kang, C.M., Koo, H.-J., An, G.I., Choe, Y.S., Choi, J.Y., Lee, K.-H., et al. (2015). Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a (64)Cu-labeled streptavidin/biotin-based dimeric RGD peptide. EJNMMI Res 5 : 60.
Klem, J.A., Schaffer, J.V., Crane, P.D., Barrett, J.A., Henry, G.A., Canestri, L., et al. (2000). Detection of deep venous thrombosis by DMP 444, a platelet IIb/IIIa antagonist: a preliminary report. J Nucl Cardiol 7 : 359–364.
Klink, A., Lancelot, E., Ballet, S., Vucic, E., Fabre, J.-E., Gonzalez, W., et al. (2010). Magnetic Resonance Molecular Imaging of Thrombosis in an Arachidonic Acid Mouse Model Using an Activated Platelet Targeted Probe. Arterioscler Thromb Vasc Biol 30 : 403–410.
Lanza, G.M., Cui, G., Schmieder, A.H., Zhang, H., Allen, J.S., Scott, M.J., et al. (2019). An unmet clinical need: The history of thrombus imaging. J Nucl Cardiol 26 : 986–997.
Laslett, L.J., Alagona, P., Clark, B.A., Drozda, J.P., Saldivar, F., Wilson, S.R., et al. (2012). The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy IssuesA Report From the American College of Cardiology. J Am Coll Cardiol 60 : S1–S49.
Lele, M., Sajid, M., Wajih, N., and Stouffer, G.A. (2001). Eptifibatide and 7E3, but not tirofiban, inhibit alpha(v)beta(3) integrin-mediated binding of smooth muscle cells to thrombospondin and prothrombin. Circulation 104 : 582–587.
Li, B., Aid-Launais, R., Labour, M.-N., Zenych, A., Juenet, M., Choqueux, C., et al. (2019). Functionalised polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 194 : 139–150.
Lim, B., Yao, Y., Yap, M., Huang, A., Flierl, U., Palasubramaniam, J., et al. (2017). A unique three-dimensional fluorescence emission computed tomography technology: In vivo detection of arterial thrombosis and pulmonary embolism. Theranostics 7 : 1047–1061.
Lister-James, J., Knight, L.C., Maurer, A.H., Bush, L.R., Moyer, B.R., and Dean, R.T. (1996). Thrombus imaging with a technetium-99m-labeled activated platelet receptor-binding peptide. J. Nucl. Med. 37 : 775–781.
Melemenidis, S., Jefferson, A., Ruparelia, N., Akhtar, A.M., Xie, J., Allen, D., et al. (2015). Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 5 : 515–529.
Montague, S.J., Lim, Y.J., Lee, W.M., and Gardiner, E.E. (2020). Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 11 : 78.
Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., et al. (2016). Heart Disease and Stroke Statistics—2016 Update. Circulation 133 : e38–e360.
Muhlen, C. von zur, Elverfeldt, D. von, Moeller, J.A., Choudhury, R.P., Paul, D., Hagemeyer, C.E., et al. (2008). Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation118 : 258–267.
Muto, P., Lastoria, S., Varrella, P., Vergara, E., Salvatore, M., Morgano, G., et al. (1995). Detecting deep venous thrombosis with technetium-99m-labeled synthetic peptide P280. J. Nucl. Med. 36 : 1384–1391.
Oliveira, B.L., Blasi, F., Rietz, T.A., Rotile, N.J., Day, H., and Caravan, P. (2015). Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. J. Nucl. Med. 56 : 1587–1592.
Oliveira, B.L., and Caravan, P. (2017). Peptide-Based Fibrin-Targeting Probes for Thrombus Imaging. Dalton Trans 46 : 14488–14508.
Overoye-Chan, K., Koerner, S., Looby, R.J., Kolodziej, A.F., Zech, S.G., Deng, Q., et al. (2008). EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of thrombus. J. Am. Chem. Soc.130 : 6025–6039.
Peter, K., Kohler, B., Straub, A., Ruef, J., Moser, M., Nordt, T., et al. (2000). Flow cytometric monitoring of glycoprotein IIb/IIIa blockade and platelet function in patients with acute myocardial infarction receiving reteplase, abciximab, and ticlopidine: continuous platelet inhibition by the combination of abciximab and ticlopidine. Circulation102 : 1490–1496.
Pietersz, G.A., Wang, X., Yap, M.L., Lim, B., and Peter, K. (2017). Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 12 : 1873–1889.
Rix, A., Fokong, S., Heringer, S., Pjontek, R., Kabelitz, L., Theek, B., et al. (2016). Molecular Ultrasound Imaging of αvβ3-Integrin Expression in Carotid Arteries of Pigs After Vessel Injury. Invest Radiol.
Rouzet, F., Bachelet-Violette, L., Alsac, J.-M., Suzuki, M., Meulemans, A., Louedec, L., et al. (2011). Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J. Nucl. Med. 52 : 1433–1440.
Saboural, P., Chaubet, F., Rouzet, F., Al-Shoukr, F., Azzouna, R.B., Bouchemal, N., et al. (2014). Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction. Mar Drugs12 : 4851–4867.
Schumann, P.A., Christiansen, J.P., Quigley, R.M., McCreery, T.P., Sweitzer, R.H., Unger, E.C., et al. (2002). Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol37 : 587–593.
Schwarz, M., Meade, G., Stoll, P., Ylanne, J., Bassler, N., Chen, Y.C., et al. (2006). Conformation-specific blockade of the integrin GPIIb/IIIa: a novel anti-platelet strategy that selectively targets activated platelets. Circ. Res. 99 : 25–33.
Schwarz, M., Nordt, T., Bode, C., and Peter, K. (2002). The GP IIb/IIIa inhibitor abciximab (c7E3) inhibits the binding of various ligands to the leukocyte integrin Mac-1 (CD11b/CD18, alphaMbeta2). Thromb. Res.107 : 121–128.
Spuentrup, E., Botnar, R.M., Wiethoff, A.J., Ibrahim, T., Kelle, S., Katoh, M., et al. (2008). MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol18 : 1995–2005.
Spuentrup, E., Buecker, A., Katoh, M., Wiethoff, A.J., Parsons, E.C., Botnar, R.M., et al. (2005a). Molecular Magnetic Resonance Imaging of Coronary Thrombosis and Pulmonary Emboli With a Novel Fibrin-Targeted Contrast Agent. Circulation 111 : 1377–1382.
Spuentrup, E., Fausten, B., Kinzel, S., Wiethoff, A.J., Botnar, R.M., Graham, P.B., et al. (2005b). Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112 : 396–399.
Starmans, L.W.E., Duijnhoven, S.M.J. van, Rossin, R., Aime, S., Daemen, M.J.A.P., Nicolay, K., et al. (2013). SPECT imaging of fibrin using fibrin-binding peptides. Contrast Media Mol Imaging 8 : 229–237.
Starmans, L.W.E., Moonen, R.P.M., Aussems-Custers, E., Daemen, M.J.A.P., Strijkers, G.J., Nicolay, K., et al. (2015). Evaluation of Iron Oxide Nanoparticle Micelles for Magnetic Particle Imaging (MPI) of Thrombosis. PLoS One 10 :.
Sun Yoo, J., Lee, J., Ho Jung, J., Seok Moon, B., Kim, S., Chul Lee, B., et al. (2015). SPECT/CT Imaging of High-Risk Atherosclerotic Plaques using Integrin-Binding RGD Dimer Peptides. Scientific Reports 5 : 11752.
Suzuki, M., Bachelet-Violette, L., Rouzet, F., Beilvert, A., Autret, G., Maire, M., et al. (2015). Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine (Lond) 10 : 73–87.
Ta, H.T., Li, Z., Hagemeyer, C.E., Cowin, G., Zhang, S., Palasubramaniam, J., et al. (2017). Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 134 : 31–42.
Ta, H.T., Prabhu, S., Leitner, E., Jia, F., Elverfeldt, D. von, Jackson, K.E., et al. (2011). Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ. Res. 109 : 365–373.
Taillefer, R., Edell, S., Innes, G., and Lister-James, J. (2000). Acute thromboscintigraphy with (99m)Tc-apcitide: results of the phase 3 multicenter clinical trial comparing 99mTc-apcitide scintigraphy with contrast venography for imaging acute DVT. Multicenter Trial Investigators. J. Nucl. Med. 41 : 1214–1223.
Taillefer, R., Thérasse, E., Turpin, S., Lambert, R., Robillard, P., and Soulez, G. (1999). Comparison of early and delayed scintigraphy with 99mTc-apcitide and correlation with contrast-enhanced venography in detection of acute deep vein thrombosis. J. Nucl. Med. 40 : 2029–2035.
Unger, E., Porter, T., Lindner, J., and Grayburn, P. (2014). Cardiovascular drug delivery with ultrasound and microbubbles. Adv. Drug Deliv. Rev. 72 : 110–126.
Uppal, R., Catana, C., Ay, I., Benner, T., Sorensen, A.G., and Caravan, P. (2011). Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a Fibrin-targeted Dual PET/MR Probe—Feasibility Study in Rat Model. Radiology 258 : 812–820.
Vymazal, J., Spuentrup, E., Cardenas-Molina, G., Wiethoff, A.J., Hartmann, M.G., Caravan, P., et al. (2009). Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Invest Radiol 44 : 697–704.
Wang, X., Gkanatsas, Y., Palasubramaniam, J., Hohmann, J.D., Chen, Y.C., Lim, B., et al. (2016). Thrombus-Targeted Theranostic Microbubbles: A New Technology towards Concurrent Rapid Ultrasound Diagnosis and Bleeding-free Fibrinolytic Treatment of Thrombosis. Theranostics6 : 726–738.
Wang, X., Hagemeyer, C.E., Hohmann, J.D., Leitner, E., Armstrong, P.C., Jia, F., et al. (2012). Novel Single-Chain Antibody-Targeted Microbubbles for Molecular Ultrasound Imaging of Thrombosis: Validation of a Unique Noninvasive Method for Rapid and Sensitive Detection of Thrombi and Monitoring of Success or Failure of Thrombolysis in Mice. Circulation 125 : 3117–3126.
Wang, X., Palasubramaniam, J., Gkanatsas, Y., Hohmann, J.D., Westein, E., Kanojia, R., et al. (2014). Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ. Res. 114 : 1083–1093.
Wang, X., and Peter, K. (2017). Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arterioscler. Thromb. Vasc. Biol.37 : 1029–1040.
Wendelboe, A.M., and Raskob, G.E. (2016). Global Burden of Thrombosis: Epidemiologic Aspects. Circ. Res. 118 : 1340–1347.
Withofs, N., Signolle, N., Somja, J., Lovinfosse, P., Nzaramba, E.M., Mievis, F., et al. (2015). 18F-FPRGD2 PET/CT imaging of integrin αvβ3 in renal carcinomas: correlation with histopathology. J. Nucl. Med.56 : 361–364.
Yap, M.L., McFadyen, J.D., Wang, X., Zia, N.A., Hohmann, J.D., Ziegler, M., et al. (2017). Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. Theranostics7 : 2565–2574.
Zhou, Y., Chakraborty, S., and Liu, S. (2011). Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostics 1 : 58–82.
Ziegler, M., Alt, K., Paterson, B.M., Kanellakis, P., Bobik, A., Donnelly, P.S., et al. (2016). Highly Sensitive Detection of Minimal Cardiac Ischemia using Positron Emission Tomography Imaging of Activated Platelets. Sci Rep 6 : 38161.
Ziegler, M., Wang, X., and Peter, K. (2019). Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res 115 : 1178–1188.