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This study investigates the application of a recently devel-
oped construct, the Uniform Trigonometrization Method
(UTM), to the singular control problems in chemical engi-
neering. The UTM involves minimal modifications to the
original problem, thereby generating near-singular control
solutions that can be used for conceptual design and serve
as an alternate to direct techniques like nested and simulta-
neous approaches. Eight classical singular control problems
with known analytical solutions and three complex singu-
lar control problems from chemical engineering domain are
solved in this study. The results obtained using the UTM for
these problems are found tomatch well with the literature
and are of higher resolution as compared to the results ob-
tainedusing adirect pseudospectral based solver. The ability
of the UTM to handle complex chemical engineering prob-
lemswith both singular controls and state path constraints
has also been demonstrated in this study.
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1 | INTRODUCTION

OPTIMIZATION is important for process modeling, process equipment designing, optimum economic operations,
synthesis and retrofitting of chemical, petrochemical, pharmaceutical, energy and related processes [1]. In

industry, chemical engineers optimize the process operation and design usually for improving the performance, cost,
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sustainability, reliability and safety of systems [1, 2]. In the field of chemical engineering, the major application is
minimizing the energy consumption [2]. All the aforementioned factors eventually affect the estimation of the overall
cost for any plant design [2].

Singular control plays a vital role in process engineering, including optimal operation of batch and semi-batch
reactions [3, 4, 5]. The singular control could be mainly in the form of catalyst distribution along the reactor [6] or
temperature profile of the reactor with the ultimate goal of maximizing the product yield without investing capital [7].
Singular control problems have various applications ranging from optimization of reactors, i.e., plug flow reactors [8, 9],
stirred tank reactors [10], and tubular reactors [9] to optimization of distillation columns [11], from batch processes
[12] to semi-batch processes [13], from singular bed problems to multiple-bed problems [14]. However, for several
practical applications, accurate solution of singular control profiles is still not resolved, in particular, for processes with
highly non-linear dynamics.

Computational methods for solving optimal control problems (OCPs) can be classified as directmethods and indirect
methods, where the solution is sought by various iteration procedures [15]. Singular control problems have very few
computational methods due to the complexity in programming. Pseudospectral methods (PSMs) are popular direct
methods that can simultaneously solveOCPs comprising control and state path constraints. However, the PSMs yield
jittery control solutions while solving singular control problems, which is shown later in this study. A nested direct
transcription optimizationmethod [16] was devised by Chen and Biegler in which inner and outer problems need to
be solved to obtain singular controls. In this nested approach, the discretized Euler-Lagrange equations [17] of the
singular control problem are satisfied. The nested approachwas found to be computationally slow due to the complexity
involved in its algorithm.

Chen and Biegler improved upon the nested optimization method and devised a more efficient simultaneous
approach [18], which includes a heuristic approach for the outer problem of the nested approach. The simultaneous
approach comprises three stages: stage 1 comprises coarse distribution of finite elements with sufficiently many finite
elements over instances with steep control profiles and insertion of fixed grid points based on errors in state profiles.
Stage 2 inserts moving grid points where themodified switching conditions are violated to yield an initial solution. In
stage 3, accuracy of the switching points is improved by spike removal, switching point detection, and moving grid
updates until themodified switching conditions are satisfied. The simultaneous approach, although very accurate and
computationally fast, requires users to implement the complicated algorithm involved. Furthermore, the simultaneous
approach is devoid of more insightful, analytical expressions for the control law.

Silva and Trélat [19] developed an indirect smoothing technique based on polynomial functions to regularize
singular control problems and to obtain unique singular control law for such problems. To improve upon the smooth-
ing technique, Mall and Grant [20, 21] devised the Epsilon-Trig Regularization Method (ETRM) using trigonometric
functions in the indirect formalism. The principal idea in Refs. [19, 20, 21] is to regularize the problem by introducing
small error parameters and error-control terms. Mall et al. recently presented a new technique, named as Uniform
TrigonometrizationMethod (UTM), with the ability to solve various types of OCPswith control and state constraints
using an indirect methodology [22, 23]. The UTM ismore advanced than the ETRMand requires minimal changes to
the original problem formulation. PSMwas found deficient in solving the complicated problem ofmaximizing energy
obtained from the waves in Ref. [24], whereas UTM yielded high-quality solution for the same. The UTMhas also been
employed in solving complicated problems from the atmospheric flight mechanics domain [22, 25]. The UTM can thus
be considered as an alternative for existing numerical methods like the simultaneous approach used to obtain singular
control solutions for OCPs.

The first contribution of this study is showcasing the ability of the UTM in solving complicated singular control
problems in the chemical engineering domain. The UTMutilizes built-in functions ode45 and bvp4c ofMATLAB, which
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makes the UTM accessible to a broader range of users due to the availability of such tools to the scientific community.
The second contributionmade by this study is solving singular control problems that are subject to state path constraints
in a simultaneous manner using the UTM. The presence of state path constraints is a challenge to the application of
indirect optimization methods, but the UTM is capable of handling such constraints that may arise in formulating
chemical engineering problems in realistic settings.

The remaining sections of this article are organized as follows. Section 2 contains a brief description about the
singular control problems and the traditional indirect approach for solving such problems. Section 3 presents the
recently developed UTM construct that can efficiently solve singular control problems and OCPs with state path
constraints. Section 4 showcases the application of the UTM to 11 singular control problems including three complex
chemical engineering problems. The results obtained using the UTM for these problems are compared with the
corresponding solutions obtained using the PSM and the literature. This study is concluded in Section 5.

2 | PRELIMINARIES

2.1 | Formulation of Optimal Control Problems

Letx ∈ Òn andu ∈ Òm denote the state and control vectors, respectively. The cost functional, J , for a standardOCP
can bewritten in Bolza form as

J = φ(x(tf ), tf ,x(t0), t0) +
∫ tf

t0

L(x(t ),u(t ), t )d t , (1)

whereφ is the scalar terminal cost, L is the path cost, t0 and tf denote the initial and final limits of time, respectively.
The cost functional is subject to a number of constraints usually written as

Differential equations: Ûx(t ) = f (x(t ),u(t ), t ), (2a)
Boundary constraints:Ψ(x(tf ), tf ,x(t0), t0) = 0, (2b)
State path constraints:xMIN ≤ x(t ) ≤ xMAX, (2c)
Control constraints:uMIN ≤ u(t ) ≤ uMAX, (2d)

wherexMIN,xMAX,uMIN, anduMAX denote the specified lower and upper bounds for the states and controls, respec-
tively. Also, Ψ ∈ Òp for p < n . The differential equations of motion play the role of constraints between the time
derivative of the states and a vector-valued function space at any time instance along the trajectory.

2.2 | First-Order Necessary Conditions of Optimality

A brief review of first-order necessary conditions of optimality is given since these conditions are extensively used in
this paper. A mathematical quantity called the Hamiltonian simplifies the derivation of the necessary conditions of
optimality and is defined as

H = L(x,u, t ) + λT f (x,u, t ), (3)
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whereλ ∈ Òn is the costate vector associatedwith the state vector. Costates have their corresponding dynamics, which
are obtained through Euler-Lagrange equations given as

Ûλ = −
[
∂H

∂x

]T
. (4)

Let Φ = φ + νTΨ where ν ∈ Òp denote the vector of constant Lagrange multipliers, which are used to adjoin
the boundary conditions to the cost functional. Equation (5a) shows the optimal control law,u(t ), as a function of the
states and costates, which is also known as the strong form of optimal control. Equations (5b) and (5c) specify the initial
and terminal boundary conditions on the costates, collectively known as the transversality conditions. It is possible
for the final time, tf , to be a parameter that has to be optimized. The free final time condition, shown by Eqs. (5d) and
(5e), define conditions that have to be taken into account for free-final-time problems. These equations are known as
the stationary conditions. Equations (4)–(5e) form awell-defined TPBVP and define the set of first-order necessary
conditions of optimality, which any extremal solution to the cost functional has to satisfy. BVP solvers such asMATLAB’s
bvp4c can solve such a TPBVP.

∂H

∂u
= 0, (5a)

λ(t0)T +
∂Φ

∂x(t0)
= 0, (5b)

λ(tf )T −
∂Φ

∂x(tf )
= 0, (5c)(

H +
∂Φ

∂t

)
t=tf

= 0, (5d)(
H − ∂Φ

∂t

)
t=t0

= 0. (5e)

Equation (5a) applies to problems in which the control is unbounded and the Hamiltonian is a non-linear function of
the control input. There are cases that the strong form of optimality does not apply. Whenmore than one option exists
after solving Eq. (5a), PMP helps select the optimal control as shown in Eq. (6), where superscript ‘*’ refers to the optimal
value [17]. It states that the optimal control will minimize the Hamiltonian,H , for all admissible values of control [17].
For all OCPs in this paper, it is assumed that t0 = 0 s and is fixed.

H (t ,x∗(t ),u∗(t ),λ∗(t )) ≤ H (t ,x∗(t ),u(t ),λ∗(t )). (6)

2.3 | Bang-Bang Control and Singular Arcs

Suppose a boundedOCPwith a scalar control, u , has a Hamiltonian,H , as shown in Eq. (7) [17]. The control is allowed to
take values between its admissible lower and upper limits denoted by uMIN and uMAX , respectively. SinceH is linear in u ,
Eq. (5a) results in Eq. (8).

H = H0(t ,x(t ),λ(t )) + H1(t ,x(t ),λ(t ))u, (7)

∂H

∂u
= H1 . (8)
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In Eq. (7) the Hamiltonian is written as two terms: 1) H0 that denotes the collection of all terms that does not
depend on control input and 2)H1 that denotes a coefficient multiplied with the control input. The choice of u cannot
influenceH0(t ,x∗(t ),λ(t )), so the solution process ignores this term. IfH1 is positive, then the solution process should
take the lowest value of u tominimizeH according to the PMP. Similarly, ifH1 is non-positive, the process should take
themaximum value of u . In summary, the PMP gives the control law as

u∗ =


uMIN, ifH1 > 0,
∈ [uMIN,uMAX], ifH1 = 0,
uMAX, ifH1 < 0.

(9)

The coefficient H1(t ,x∗(t ),λ(t )) is known as the switching function. When H1 alternates between positive and
negative values, the control law switches back and forth between its lower and upper bounds, attaining a profile known
as “bang-bang". WhenH1 ≡ 0 during one (or multiple) non-zero time interval(s), say t0 ≤ t1 < t2 ≤ tf , then the subarc
[t1,t2] is characterized as a singular subarc and the control no longer influencesH , leading to non-uniqueness issues.
To determine unique candidate singular controls, the traditional approach differentiates Eq. (5a) with respect to time
as shown in Eq. (10). The last term in Eq. (10) vanishes because the derivative of the Hamiltonianwith respect to the
control,Hu , does not contain u and ∂Hu

∂u becomes 0 as a result.

ÛHu = 0 =
∂Hu
∂t

+

[
∂Hu
∂x

]T
Ûx +

[
∂Hu
∂λ

]T
Ûλ +

[
∂Hu
∂u

]T
Ûu. (10)

The solution process forms d2

d t 2
Hu ≡ 0, and if u appears explicitly, the process uses the condition specified in Eq. (10)

along with the Kelley’s condition, which is given as

(−1)q ∂
∂u

(
d 2qH ∗u
d t 2q

)
≥ 0, (11)

to determine the singular control law. If u does not appear explicitly, the solution process takes even time derivatives of
Hu until the process satisfies Kelley’s condition along with the conditions specified by odd time-derivatives ofHu [17] to
obtain the singular control law. For certain singular control problems, the value of q may become very large, leading to
longer problem formulation and problem solving times. In addition, for problems with complex non-linear dynamics, the
resulting algebraic expressions can become lengthy and hard to derive.

TheOCPs involving state path constraints require solving amulti-point boundary value problem (MPBVP), which is
very complicated to solve and formulate. Furthermore, a priori information about the location and the sequence of the
constraint arcs is required to formulate and solve the state constraint problems [26].

3 | UNIFORM TRIGONOMETRIZATION METHOD

Instead of solving singular control problems in a tedious manner using Kelley’s condition or solving a complicated
MPBVP for incorporating path constraints while using traditional indirect methods, a much simpler technique could be
adopted to simultaneously solve for several control and state path constraints. This section contains a brief description
of the simplermethodology based on trigonometric functions, dubbed as theUTM, for solving singular control problems
along with state path constraints [22]. The UTM also has the ability to solve OCPs with control constraints upon
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non-linear controls, which is excluded from discussion in this section for brevity.
Consider a general OCP comprising m linear controls with constraints of the form uiMIN ≤ ui ≤ uiMAX (for i ∈

{1, . . . ,m }) and n along-the-path state constraints of the form SjMIN ≤ Sj ≤ SjMAX (for j ∈ {1, . . . , n }). For simplicity of
discussion, it is assumed that each control appears in only one state dynamics.

All indirect optimizationmethods ultimately require minimizing (or maximizing) the Hamiltonian, which is written
for the given control and state constraints as

H = H0(t ,x,λ) +
m∑
i=1

H1i (t ,x,λ)ui , (12)

whereH0 denotes set of terms that are independent of control inputs;H1i denotes the switching function corresponding
to the i -th control input. TheOCP can then be described as

minimize J̃ = φ(x(tf ), tf ,x(t0), t0) +
∫ tf

t0

L̃(x,u, t ) dt , (13a)
subject to Ûxi = fi (t ,x) + gi (t ,x)ui , (13b)

where L̃ = L +
m∑
i=1

εi cosuiTRIG +
n∑
j=1

εj sec
(
π

2

(
2Sj − SjMAX − SjMIN
SjMAX − SjMIN

))
, (13c)

where J̃ is the modified cost functional; the state EOMs, comprising the bounded controls, are shown in Eq. (13c). L̃
consists of the terms εi cosuiTRIG that account for regularizingm bang-bang and singular controls, where εi is an error
parameter and cosuiTRIG is an error control corresponding to the i -th control. The secant terms in L̃ act as penalties for
violation of the n state constraints, Sj , where εj is the error parameter corresponding to the j -th state constraint. For
dimensional consistency, εi has units equal to units of Lunits of ui while εk has the same units as L.All bounded linear controls, ui , are specified in trigonometric forms in the UTM as

ui = c1i sinuiTRIG + c0i , (14a)
where c0i =

uiMAX + uiMIN
2

, c1i =
uiMAX − uiMIN

2
. (14b)

Observe that ui is substituted in the right-hand side of Eq. (13b). Thus, ui is mapped into uiTRIG , which is the argument of
the sine term. Using Eqs. (5a), (12), and (14), the strong form of optimality can be written for this regularized problem as

∂H

∂uiTRIG
= −εi sinuiTRIG + c1i H1i cosuiTRIG = 0 [ i ∈ {1, · · · ,m }. (15)

Since the Hamiltonian is now a non-linear function of control inputs, the optimal control options for them bang-bang
and singular controls are thereby obtained using Eq. (15) and are shown as

u∗iTRIG =


arctan

(
c1i H1i
εi

)
,

arctan
(
c1i H1i
εi

)
+ π,

(16)

where H1i is the switching function for the i -th control input (for i = 1, · · · ,m). During the numerical simulations,
at each time instant, PMP is used to select the optimal control from among the options listed in Eq. (16). The use of
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trigonometric functions alongwith aminuscule error in theUTMenables generating a closed-form, analytical expression
for the near-singular control law, which ismore insightful. The secant terms in Eq. (4) result inmodified costate dynamics
obtained using Eq. (13a).

As a consequence of applying the abovemappings, the structure of the original problem is altered using the UTM.
The original, difficult-to-solve OCP is transformed into amany-parameter family of neighboring OCPs. Thus, in order to
recover the solution for the original OCP, the value of εi has to be exactly 0. However, near-zero values are sufficient to
obtain a solution that is nearly optimal for all engineering problems [27]. Numerical issues will arise if εi has an exact 0
value, which is therefore avoidedwithout sacrificing optimality. Note that the UTMuses different ε for different control
and state constraints; each ε has units, which ensures dimensional consistency. In the literature, ε is usually considered
as a dimensionless parameter, which could lead to dimensional inconsistency issues.

The differences between the approaches mentioned in this study to solve the singular control problems are
summarized in Table 1. Note that the accuracy of the PSM is described as variable because many times the singular
solutions obtained using the PSM are very close to the actual solutions, but many other times the control solutions are
quite jittery. Table 1 also shows that all the fourmethods have their own pros and cons, but overall the UTM is a good
alternate. Solving same problem using different existingmethods also helps in gaining enough confidence about the
optimality of the solutions.

TABLE 1 Comparison between different approaches to solve singular control problems.

Attribute PSM [28] Nested Approach [16] Simultaneous Approach [18] UTM [22]

Type Direct Direct Direct Indirect
Accuracy Variable High Very High High
Computation Time Small Large Very Small Medium
Incorporate Path Constraints Yes No No Yes

4 | NUMERICAL RESULTS

Eight benchmark examples with known analytical solutions and three complex problems from chemical engineering
domain [16, 18] are solved using the UTM in the following sub-sections. A comparison is drawn between the solutions
obtained using the UTM and the PSM. Default setup of GPOPS-II [28] was used along with a tolerance value of 1×10-8.

For each problem, while using the UTM, a numerical continuation strategy [29] is employed in which a very simple
version of the problem is first solved. The solution to the simple problem is then used as a guess for the subsequent
complex version of the problem. This process is continued until the original complex problem is solved that correspond
to small values for all continuation parameters, i.e., ε values that are introduced in the previous section.

For brevity, this study excludes the analytical solutions, the dynamics for the costates, the Hamiltonian time-history
plots, and the objective functional vs. the error parameter plots for examples 2-12. Shorthand notations of B- and S- are
used for characterizing bang and singular parts of the control solution in the results. Recall that for each problem, PMP
is used at each instant to select the best control from the available control options stated in the control law. All the
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additional equations such as theHamiltonian expression, the switching functions, the dynamics for the costates, the
boundary equations for the costates and the Hamiltonian, and the control laws are generated in an automatedmanner
using the UTM framework.

4.1 | Aly Chan Problem

Aly and Chan proposed a problem in Ref. [30] to demonstrate the utility of amethod that they developed for solving
singular control problems. This method is an extension of amodified quasi-linearization technique, which belongs to the
category of indirect methods. The control solution for this problem is entirely singular, which can be obtained using the
UTM as follows.

4.1.1 | Mathematical Problem Statement and Solution Process

The Aly problem is expressed as

minimize J = z3(t f) +
∫ t f
0
ε cosuTRIGdt , (17a)

subject to Ûz1 = z2, (17b)
Ûz2 = u, (17c)
Ûz3 =

1

2
(z 21 − z

2
2 ), (17d)

Ût = 1, (17e)

where the UTMappends a small error, ε cosuTRIG, into the functional, J , and converts the control, u , to sinuTRIG such
that |u | ≤ 1 is satisfied. The equations of motion for the states are shown in Eqs. (17b)–(17e). The initial values for the
states, x1(0) and x2(0), are 1 unit and 0 units, respectively. The Hamiltonian for this problem is given as

H = 0.5(z 21 + z
2
2 ) + ε cosuTRIG + λz1 z2 + λz2 sinuTRIG + λt , (18)

which yields the switching function,H1, as λz2 . The optimal control law generated using the UTM is

u∗TRIG =

arctan

(
H1
ε

)
,

arctan
(
H1
ε

)
+ π,

(19)

which depends on the switching function,H1 . PMP is used to select the optimal control at each instance from among the
two options listed in Eq. (19).

A numerical continuation approach with eight continuation sets is employed while using the UTM to solve this
problem. In the first continuation set, the final value of the time is brought to π/2 s. Continuation sets 2-7 are used to
lower the value of ε from 0.1 to 1×10-7. The final continuation set is used to reduce the tolerance value for bvp4c from
1×10-4 to 1×10-6.
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4.1.2 | Results

The control solution obtained using the UTM is entirely singular andmatches well with the analytical control solution
as shown in the left subplot of Fig. 1. The switching function, shown in the right subplot of Fig. 1, stays at 0 value
throughout, which further validates that the entire solution is singular. The results obtained using the PSM are full of
jitters and not practical to implement in a real world scenario as shown in Fig. 1.
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F IGURE 1 Control and switching function time-history plots for the Aly Chan problem.

SinceH is not an explicit function of time,H is a constant. Additionally, using the final time condition [17], the final
value ofH is 0. Therefore,H has a constant value of 0 throughout, which is captured well by both the analytical method
and the UTM as shown in the left subplot of Fig. 2. The PSM is unable to estimate the costates well and therefore yields
a jittery Hamiltonian time-history solution.

0 0.5 1 1.5

Time [s]

-30

-20

-10

0

H
a
m

il
to

n
ia

n
 X

 1
0

6

PSM

Analytical

UTM

10
-6

10
-4

10
-2

 [Error Parameter]

0

1

2

3

4

5

6

7

O
b

je
c

ti
v

e
 F

u
n

c
ti

o
n

 X
 1

0
-3

F IGURE 2 Hamiltonian time-history and cost history plots for the Aly Chan problem.

Decreasing ε beyond a certain low value does not improve the objective value as shown in the right subplot of Fig. 2.
In this problem, ε < 1.0×10−4 will result in very accurate solution. The optimal objective value obtained for this problem
using the UTM is -5.9876×10-6, whichmatches well with the literature. For the remaining problems in this paper, the
values of ε are decreased only to an extent beyondwhich no further improvement in the objective value was found.

4.2 | CatalystMixing Problem

OCPs for tubular reactors can be solved for getting a catalyst distribution and temperature profile. The optimization of
catalyst profile along the reactor would, in turn, control the final product yield in case of amultiple-steps reaction [6].
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The catalyst mixing can be in any form, i.e., catalyst I at the beginning with catalyst II toward the end. The switching
point and amount of catalyst coverage would depend on the reaction.

In the catalyst mixing problem [31], the reactions A<=>B->C take place in a tubular reactor at a constant tempera-
ture. The first reaction is reversible and is catalyzed by Catalyst I, while the second irreversible reaction is catalyzed by
Catalyst II. The goal of this problem is to determine the optimal mixture of catalysts along the length t of the reactor to
maximize the amount of product C. The production of final product C is limited by equilibrium of the reversible reaction.

4.2.1 | Mathematical Problem Statement and Solution Process

The catalyst mixing problem [31], while using the UTM, is expressed as

minimize J = −(1 − af − bf ) +
∫ tf

0
ε cosuTRIGdt , (20a)

subject to Ûa = −u(k1a − k2b), (20b)
Ûb = u(k1a − k2b) − (1 − u)k3b, (20c)
Ût = 1, (20d)

where u = 1 + sinuTRIG
2

. (20e)

The dynamics for the states are shown in Eqs. (20b)–(20d). The UTM converts the control, u , to the form shown in
Eq. (20e), such that 0 ≤ u ≤ 1. The known boundary values for this problem are a(0) = 1, b(0) = 0, and t f = 4 s. The
constants used are k 1 = 1, k 2 = 10, and k 3 = 1.

The Hamiltonian and the switching function,H1, for this problem are given as

H = ε cosuTRIG − λau(k1a − k2b) + λb (u(k1a − k2b) − (1 − u)k3b) + λt , (21a)
H1 = −λa (k1a − k2b) + λb ((k1a − k2b) + k3b). (21b)

The optimal control law, based on the switching function,H1, is given as

u∗TRIG =

arctan

(
H1
2ε

)
,

arctan
(
H1
2ε

)
+ π,

(22)

A numerical continuation strategy with seven continuation sets is employed while using the UTM to solve this
problem. The final value of the time is brought to 4 s in the first continuation set. Continuation sets 2-6 are used to
bring down the value of ε from 0.1 to 1×10-6 . In the final continuation set, the tolerance value for bvp4c is reduced from
1×10-4 to 1×10-6.

4.2.2 | Results

AB-S-B type control solution is obtained using the UTM as shown in Fig. 3, whichmatches well with the literature [31].
The PSM yields a jittery solution for this problem. The switching function time history, shown in the right subplot of
Fig. 3, is consistent with a B-S-B type control solution. The optimal objective value for this problem obtained using the
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UTM is -0.19181.
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F IGURE 3 Control and switching function time-history plots for the catalyst mixing problem.

4.3 | Aly Problem

This is a linear-quadratic regulator problem presented by Aly [32] to demonstrate the utility of quasi-linearization
technique for solving singular control problems. Aly andChandeveloped anextensionof themodifiedquasi-linearization
method for the problem demonstrated in Ref. [30]; this problem is an extended version of the same. The objective of
this problem is to minimize the integral of the sum of squares of the position and speed of a mobile unit over a fixed time
interval.

4.3.1 | Mathematical Problem Statement and Solution Process

The Aly problem is described using the UTM as

minimize J =
∫ tf

0
(0.5(x21 + x

2
2 ) + ε cosuTRIG)dt , (23a)

subject to Ûx1 = x2, (23b)
Ûx2 = u, (23c)
Ût = 1, (23d)

where Eqs. (23b)–(23d) are the dynamics for the states. Similar to the Aly Chan problem, the UTM converts the control,
u , to sinuTRIG such that |u | ≤ 1. The initial values for the states, x1(0) and x2(0), are 1 unit and 0 units, respectively. The
value of tf for this problem is 5 s. The Hamiltonian for this problem is given by

H = 0.5(x21 + x
2
2 ) + ε cosuTRIG + λx1x2 + λx2 sinuTRIG + λt . (24)

The optimal control law obtained using the UTM and the switching function,H1, for this problem are the same as
that for the Aly Chan problem. Thus, the control law for this problem is given by Eq. (19). A numerical continuation
strategy with five continuation sets is employedwhile using the UTM to solve this problem. The final value of time is
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brought to 5 s in the first continuation set. The value of ε is brought down from 0.1 to 1×10-4 using continuation sets
2-4. The final continuation set reduces the tolerance value for bvp4c from 1×10-4 to 1×10-6.

4.3.2 | Results

AB-S type control solution is obtained using the UTM as shown in Fig. 4, where the control stays at its lower bound and
then switches to the singular arc. This is consistent with the results obtained in the literature for this problem. The PSM
yields a solution with very few jitters for this problem. The switching function time history shown in the right subplot of
Fig. 4 is consistent with a B-S type control solution. The optimal objective value for this problem obtained using the
UTM is 0.37699.
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F IGURE 4 Control and switching function time-history plots for the Aly problem.

4.4 | Fishing Problem

ColinW. Clark described a fishing problem inMathematical Bioeconomics chapter of Ref. [33]. For this fishing problem,
the objective is to maximize the net revenue of fishing over a fixed time interval. This problem is mathematically
described as follows.

4.4.1 | Mathematical Problem Statement and Solution Process

The fishing problem is expressed as

minimize J =
∫ tf

0

(
−

[
E − c

x

]
uUMAX + ε cosuTRIG

)
dt , (25a)

subject to Ûx = r x
(
1 − x

k

)
− uUMAX, (25b)

Ût = 1, (25c)

where the coefficient, E − c/x , accounts the greater fishing cost for a low fish population [34]. The dynamics for the
states are shown in Eq. (25b) and Eq. (25c), where x is the fish population and u is the fishing activity. The UTM converts
the control u to 0.5(1 + sinuTRIG) such that 0 ≤ u ≤ 1. The known boundary values for this problem are x (0) = 70 and t f
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= 10 s. The constants used are E = 1, c = 17.5, r = 0.71, k = 80.5, andUMAX = 20.

The Hamiltonian and the switching function (H1) for this problem are

H = −
(
E − c

x

)
uUMAX + ε cosuTRIG + λx

(
r x

[
1 − x

k

]
− uUMAX

)
+ λt , (26a)

H1 = UMAX
( c
x
− E − λx

)
. (26b)

The optimal control law for this problem has the same form as Eq. (16) from the catalyst mixing problemwithH1
given by Eq. (16). The numerical continuation approach with six continuation sets is used to solve this problem. The first
continuation set solves for the final time as 10 s. Continuation sets 2-4 bring down the value of ε from 0.1 to 1×10-5. In
the final continuation set, bvp4c’s tolerance value is reduced from 1×10-4 to 1×10-6.

4.4.2 | Results

AB-S-B type control solution is obtained using the UTM and is shown in Fig. 5, which is in excellent agreement with the
solution reported in the literature [33]. The PSM yields a jittery solution for this problem as well. The switching function
time history shown in the right subplot of Fig. 5 further validates a B-S-B type control solution. The optimal objective
value for this problem found using the UTM is -106.906.
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F IGURE 5 Control and switching function time-history plots for the fishing problem.

4.5 | Bryson Problem

Bryson andHo [26] described an autonomous linear system of second order with one control variable and a quadratic
performance index in state variables only, popularly known as the Bryson problem. Themathematical problem state-
ment, solution process using the UTM, and the corresponding results obtained are discussed as follows.
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4.5.1 | Mathematical Problem Statement and Solution Process

Bryson problem is written as

minimize J =
∫ tf

0
(0.5z 21 + ε cosuTRIG)dt , (27a)

subject to Ûz1 = u + z2, (27b)
Ûz2 = −u, (27c)
Ût = 1, (27d)

where Eqs. (27b)–(27d) describe the dynamics for the states. The UTM converts the control u to sinuTRIG such that
|u | ≤ 1. The known boundary values for this problem are z1(0) = 0.5, z2(0) = z1(t f) = z2(t f) = 0, and t f = 1.5 s. The
Hamiltonian for this problem is given by

H = 0.5z 21 + ε cosuTRIG + λz1 (u + z2) − λz2u + λt . (28)

The optimal control law is based on the switching function,H1 = λz1 − λz2 , and has the same form as the Aly Chan
and Aly problems. Thus, Eq. (19) can be used as the optimal control law for this problem. A numerical continuation
strategywith seven continuation sets is employedwhile using the UTM to solve this problem. The final values of the two
states and time are brought to values of 0, 0, and 1.5 s, respectively, in the first continuation set. Continuation sets 2-4
are used to bring down the value of ε from 0.1 to 1×10-4.

4.5.2 | Results

The control solution obtained using the UTM for this problem is of B-S-B type as shown in Fig. 6, which is in excellent
agreement with the literature [26]. The PSM yields a slight jittery solution for this problem. The switching function time
history shown in the right subplot of Fig. 6 is consistent with a B-S-B type control solution. The optimal objective value
for this problem obtained using the UTM is 0.29945.
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F IGURE 6 Control and switching function time-history plots for the Bryson problem.
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4.6 | Luus Problem

In Ref. [35], Luus described a singular control problem that has an easy analytical solution, but also has a difficult
numerical solution while employing iterative dynamic programming. Themathematical problem statement, solution
process using the UTM, and the results for this problem are discussed as follows.

4.6.1 | Mathematical Problem Statement and Solution Process

Luus problem is expressed as

minimize J =
∫ tf

0
(0.5z 2 + ε cosuTRIG)dt , (29a)

subject to Ûz = u, (29b)
Ût = 1, (29c)

where dynamics for the states are shown in Eq. (29b) and Eq. (29c). The UTM converts the control u to sinuTRIG such
that |u | ≤ 1. The initial value of the state, z (0), is 1 unit and the final value of time, tf , is 2 s. The Hamiltonian for this
problem is

H = 0.5z 2 + ε cosuTRIG + λz sinuTRIG + λt . (30)

The optimal control law for this problem has the same form as Aly Chan and Aly problems, which is given by Eq. (19).
For this problem, the switching function,H1 is λz . A numerical continuation strategy comprising 10 continuation sets is
used to solve this problem. In the first continuation set, the final time is brought to 2 s. Continuation sets 2-10 are used
to bring down the value of ε from 0.1 to 1×10-10.

4.6.2 | Results

A B-S type control solution is obtained using the UTM and is shown in Fig. 3, which matches well with the literature
[35]. The PSM yields a slight jittery solution for the singular control phase of this problem. The switching function time
history shown in the right subplot of Fig. 3 is consistent with a B-S-B type control solution. The optimal objective value
for this problem obtained using the UTM is 0.1667.
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F IGURE 7 Control and switching function time-history plots for the Luus problem.
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4.7 | Jennings Problem

Jennings et al. described a minimum-time problem in Ref. [36] to demonstrate an optimal control software called
MISER3. The mathematical problem statement, solution strategy using the UTM, and the results obtained for this
problem are discussed as follows.

4.7.1 | Mathematical Problem Statement and Solution Process

Jennings problem is described as

minimize J = tf +
∫ tf

0
ε cosuTRIGdt , (31a)

subject to Ûz1 = u, (31b)
Ûz2 = cos z1, (31c)
Ûz3 = sin z1, (31d)
u = 2 sinuTRIG, (31e)

where Eqs. (31b)–(31d) represent the dynamics for the states. The UTM converts the control u to 2 sinuTRIG such that
|u | ≤ 2. The known boundary values for this problem include z1(0) = π/2, z2(0) = 4, and z3(0) = z2(t f) = z3(t f) = 0. The
Hamiltonian can then bewritten as

H = ε cosuTRIG + λz1u + λz2 cos z1 + λz3 sin z1 + λt . (32)

The optimal control law obtained using the UTM is

u∗TRIG =

arctan

(
2H1
ε

)
,

arctan
(
2H1
ε

)
+ π,

(33)

where the switching function,H1 = λz1 . A numerical continuation strategy with three continuation sets is used to solve
this problem. The final values of z2 and z3 are brought to 0 in the first continuation set. Continuation sets 2-3 bring
down the value of ε from 0.1 to 1×10-3.

4.7.2 | Results

AB-S type control solution is obtained using the UTM as shown in Fig. 8, where the control stays at its upper bound and
then switches to the singular arc. The result obtained using the UTMmatches very well with the results obtained in
the literature [36]. The PSM yields a solution with very few jitters for this problem around the switching junction. The
switching function time history shown in the right subplot of Fig. 8 is consistent with a B-S type control solution. The
optimal objective value for this problem obtained using the UTM is 4.3212 s.
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F IGURE 8 Control and switching function time-history plots for the Jennings problem.

4.8 | Bressan Problem

This problem is included in Ref. [37] for demonstration of the complicated traditional indirect methodology to obtain
the singular control law. Themathematical problem statement, UTM based solution approach, and the results obtained
for this problem are discussed as follows.

4.8.1 | Mathematical Problem Statement and Solution Process

The Bressan problem is described as

minimize J = −z3f +
∫ tf

0
ε cosuTRIGdt , (34a)

subject to Ûz1 = u, (34b)
Ûz2 = −z1, (34c)
Ûz3 = z2 − z 21 , (34d)
Ût = 1, (34e)

where the dynamics for the states are shown in Eqs. (34b)–(34e). The UTM converts the control, u , to sinuTRIG such
that |u | ≤ 1. The known boundary values for this problem are z1(0) = z2(0) = z3(0) = 0, and t f = 10 s. The Hamiltonian
for this problem is

H = ε cosuTRIG + λz1u − λz2 z1 + λz3 (z2 − z 21 ) + λt . (35)

The optimal control law for this problem has the same form as the control law for the Aly Chan problem, which is
given by Eq. (19). The switching function used in this problem isH1 = λz1 .

A numerical continuation approach with five continuation sets is employed while using the UTM to solve this
problem. In the first continuation set, the final value of the time is brought to 10 s. Continuation sets 2-4 are used to
bring down the value of ε from 0.1 to 1×10-4. The final continuation set reduces error tolerance of bvp4c from 1×10-4
to 1×10-6.
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4.8.2 | Results

AB-S type control solution is obtained using the UTM as shown in Fig. 9, where the control stays at its lower bound and
then switches to the singular arc. This is consistent with the results obtained in the literature [37]. The PSM yields few
jitters in the singular part of the solution. In the right subplot of Fig. 9, the switching function time history is shown,
which is consistent with a B-S type control solution. The optimal objective value for this problem obtained using the
UTM is -55.5556.
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F IGURE 9 Control and switching function time-history plots for the Bressan problem.

4.9 | Two-Stage Continuous Stirred-Tank Reactor Problem

In a continuous stirred tank reactor (CSTR), the temperature is controlled using jacketed cooling. It is a tricky task to
find an optimal control signal for a CSTR. The temperature in the tank influences the reaction rate and kinetics (and vice
versa), while the temperature in the cooling jacket acts a control signal [38].

4.9.1 | Mathematical Problem Statement and Solution Process

A two stage CSTR system is considered here [39, 40]. A first order reversible reaction is carried out in a two-stage,
four-state-variable system. The reaction initiates from a state of equilibrium and reaches a state withmaximum rate
with respect to the temperature. This problem is described as

minimize J = x1(t f)2 + x2(t f)2 + x3(t f)2 + x4(t f)2 +
∫ t f
0
(ε1 cosu1TRIG + ε2 cosu2TRIG )dt, (36a)

subject to Ûx1 = −3x1 + g1, (36b)
Ûx2 = −11.1558x2 + g1 − 8.1558(x2 + 0.1592)u1, (36c)
Ûx3 = 1.5(0.5x1 − x3) + g2, (36d)
Ûx4 = 0.75x2 − 4.9385x4 + g2 − 3.4385(x4 + 0.122)u2, (36e)
Ût = 1, (36f)
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where g1 = 1.5X 107(0.5251 − x1)e
−10

x2+0.6932 − 1.5X 1010(0.4748 + x1)e
−15

x2+0.6932 − 1.428,

g2 = 1.5X 10
7(0.4236 − x2)e

−10
x4+0.656 − 1.5X 1010(0.5764 + x3)e

−15
x4+0.656 − 0.5086,

u1 = sinu1TRIG ,u2 = sinu2TRIG .

The dynamics for the states are shown in Eqs. (36b)–(36f). The known boundary values for this problem are given as
x1(0) = 0.1962, x2(0) = -0.0372, x3(0) = 0.0946,x4(0) = 0, and t f = 0.32353 s.

The form of the optimal control law for both the controls in this problem, u1 and u2, is the same as that for the Aly
Chan problem. Thus, Eq. (19) is used for both the controls, with switching function values,H11 andH12 as

H11 = −8.1558λx2 (x2 + 0.1592), (38a)
H12 = −3.4385λx4 (x4 + 0.122). (38b)

A numerical continuation with seven continuation sets is used to solve this problem. Continuation sets 1-7 are used
to bring down the value of ε1 and ε2 from 1 to 1×10-6. The final continuation set is used to reduce the tolerance value
for bvp4c from 1×10-4 to 1×10-6.

4.9.2 | Results

AB-S-B type control solution is obtained for u1 using the UTM and is shown in the left subplot of Fig. 3. The u1 solution
obtained using the UTM is of higher resolution than the corresponding solutions obtained using the PSM and Ref.
[39]. A B-B type solution is obtained using the UTM for u2, as shown in the right subplot of Fig. 3, which is in excellent
agreement with the solutions obtained using the PSM and Ref. [39] (indicated as Luus in the legend of the plot). The
optimal objective value for this problem obtained using the UTM is 1.2985 × 10-8.
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F IGURE 10 Controls time-history plots for the CSTR problem.
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4.10 | Distillation Problem

Static and dynamic characteristic behaviour of high-purity distillation columns is challenging to control. The behavior
of such columns is intrinsically non-linear. Thus, since linear control methods often become inadequate, non-linear
control strategies or logarithmic variable transformations are used [41]. A distillation problem from the literature [11]
is discussed as follows.

4.10.1 | Mathematical Problem Statement and Solution Process

A distillation column with 30 trays for separation of a binary mixture is considered in this problem with 32 states
[11]. The operating region for this problemwas chosen to be ± 10% around the steady state values. This problem is
mathematically described as

minimize J =
∫ tf

0
(x1 − 0.995)2 + ε cosuTRIGdt, (39a)

subject to Ûx1 = 1

MCOND
V (y2 − x1), (39b)

Ûxj =
1

MTRAY
(L(xj−1 − xj ) −V (yj − xj+1)) j = 2, · · · , 16, (39c)

Ûx17 =
1

MTRAY
(F xFEED + Lx16 − (F + L)x17 −V (y17 − x18)), (39d)

Ûxk =
1

MTRAY
((F + L)(xj−1 − xj ) −V (yj − xj+1)) k = 18..31, (39e)

Ûx32 =
1

MREB
((F + L)x31 − (F − D )x32 −V y32), (39f)

Ût = 1, (39g)

where γAi = exp
(
−l og (xi + L12(1 − xi )) +

L12(1 − xi )
xi + L12(1 − xi )

− L21
L21xi + (1 − xi )

)
,

γBi = exp

(
−l og ((1 − xi ) + L21xi ) +

L21xi
L21xi + (1 − xi )

− L12
xi + L12(1 − xi )

)
,

vol i =
γAi
γBi
, y =

1.7xivol i
1 + (vol i − 1)xi

, [i ∈ [1, 32], L = Du,V = L + D .

In the above equations,V and L are vapor and liquid flow rates, respectively; x and y are liquid and vapor mole
fractions, respectively; themolar holdup for tray i ,MTRAY, is 0.25; themolar holdup for condenser,MCOND, is 0.5; the
molar holdup for reboiler,MREB, is 1; the distillate flowrate,D , is 0.2; the feed flow rate, F , is 0.4; the constant relative
volatility is 1.6. The feed stream is introduced at themiddle of the column on stage 17 and has a composition of xF = 0.5.
Wilson activity coefficient model parameters, L12 and L21 are 1.618147731 and 0.50253532, respectively.

The UTM converts the control u to 4 sinuTRIG + 6 such that 2 ≤ u ≤ 10. The control law obtained using the UTM is

u∗TRIG =

arctan

(
4H1
ε

)
,

arctan
(
4H1
ε

)
+ π,

(40)

The switching function used in the control law is very long and has been excluded from this paper for brevity.



KSHITIJMALL, EHSAN TAHERI, AND PRATHAMESH PRABHU 21

The known boundary values are x1(0) = 0.97339252747326, x2(0) = 0.95790444111368, x3(0) = 0.93963386412300,
x4(0) = 0.91821664141445, x5(0) = 0.89334470835687, x6(0) = 0.86483847458375, x7(0) = 0.83273815158540, x8(0) =
0.79739606050503, x9(0) = 0.75953677930557, x10(0) = 0.72024599485005, x11(0) = 0.68086442052299,
x12(0) = 0.64280066114073, x13(0) = 0.60731690633284, x14(0) = 0.57535610831821, x15(0) = 0.54745802413982,
x16(0) = 0.52377039366803, x17(0) = 0.50412746272762, x18(0) = 0.49037636253375, x19(0) = 0.47205010235430,
x20(0) = 0.44820197086528, x21(0) = 0.41811322760501, x22(0) = 0.38159643880344, x23(0) = 0.33930475369667,
x24(0) = 0.29288862241213, x25(0) = 0.24483954092739, x26(0) = 0.19799745874320, x27(0) = 0.15490859777720,
x28(0) = 0.11732282321971, x29(0) = 0.08601628593205, x30(0) = 0.06092130595344, x31(0) = 0.04141387478979,
x32(0) = 0.02660747253544, and tf = 240 s.

A numerical continuation approachwith 10 continuation sets is employedwhile using theUTMto solve this problem.
In the first continuation set, the final time is brought to 240 s. Continuation sets 2-10 are used to bring down the value
of ε from 0.1 to 2×10-10.

4.10.2 | Results

The control solution obtained using the UTMmatches well with the results reported in Ref. [16], both of which are
shown in Fig. 11. The initial part of u is an upper bang followed by a singular arc. Despite numerous efforts, no results
could be generated using the PSM for this problem.
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F IGURE 11 Comparison of the control time history plot for the distillation problemwith 32 states between the
UTM and the Nested Approach [16].

4.11 | Williams-Otto Problem

This problem deals with aWilliams-Otto semi-batch reactor introduced by Forbes and comprises two bounded controls
and a scalar state constraint [7]. Three irreversible reactions take place in a reactor in which one reactant is already
present and the second reactant is continuously fed. The bounded controls for this problem are inlet flow rate of
the continuously fed reactant and the scaled cooling water temperature. The state constraint is upon the reactor
temperature. The objective is tomaximize the conversion to the desired products.
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4.11.1 | Mathematical Problem Statement and Solution Process

TheWilliams-Otto problem is mathematically described using the UTM as

minimize J = x9(t f) +
∫ t f
0

[
ε1 cosu1TRIG + ε2 cosu2TRIG + ε3 sec

(
π

2

(
2x7 − x7MAX − x7MIN
x7MAX − x7MIN

))]
dt, (41a)

subject to Ûx1 = − x1u2
1000x8

− k1η1x1x2, (41b)

Ûx2 =
u2(1 − x2)
1000x8

− k1η1x1x2 − k2η2x2x3, (41c)
Ûx3 = −

x3u2
1000x8

+ k7η1x1x2 − k3η2x2x3 − k6η3x3x4, (41d)
Ûx4 = −

x4u2
1000x8

+ k2η2x2x3 − k4η3x3x4, (41e)
Ûx5 = −

x5u2
1000x8

+ k3η2x2x3, (41f)
Ûx6 = −

x6u2
1000x8

+ k5η3x3x4, (41g)

Ûx7 =
u2(TIN − x7)
1000x8

+ k8η1x1x2 + k9η2x2x3 + k10η3x3x4 − l1x7 + l2u1, (41h)
Ûx8 =

u2
1000

, (41i)
Ûx9 = −5554.1(k2η2x2x3 − k4η3x3x4)x8 − k11η2x2x3x8, (41j)
Ût = 1, (41k)

where η1 = e
( −1000b2
x7+273.15

)
, η2 = e

(
−8333.3
x7+273.15

)
, η3 = e

(
−11111

x7+273.15

)
,u1 = 0.04 sinu2TRIG + 0.06,u2 = 2.892(1 + sinu1TRIG ).

The UTM is thus able to impose the control constraints: 0.02 ≤ u1 ≤ 0.1 and 0 ≤ u2 ≤ 5.784, and the path constraint:
60 ≤ x7 ≤ 90with x7MIN and x7MAX as 60 and 90, respectively. The optimal control law obtained using the UTM is

u∗1TRIG =


arctan

(
0.04H11

ε

)
,

arctan
(
0.04H11

ε

)
+ π,

(42a)

u∗2TRIG =


arctan

(
2.892H12

ε

)
,

arctan
(
2.892H12

ε

)
+ π,

(42b)

where

H11 = 0.04l2λx7 , H12 =
2.892(−λx1x1 + λx2 (1 − x2) − λx3x3 − λx4x4 − λx5x5 − λx6x6 + λx7 (TIN − x6) + λx8x8)

1000x8
. (43a)

To implement the state path constraint on x7, the objective functional, J , is modified by adding a secant term inside the
integral. Themodified J leads to amodifiedHamiltonian, which ultimately leads to amodification in the dynamics for
λx7 while using Eq. (4). The newmodified and complicated dynamics for λx7 is excluded from this study for brevity.

The known boundary values for this problem are x1(0) = 1, x2(0) = x3(0) = x4(0) = x5(0) = x6(0) = x9(0) = 0, x7(0) =
65, x8(0) = 2, and tf = 1000 s. The constants used in this problem are k1 = 1659900, k2 = 721170000, k3 = 1442340000,
k4 = 1337250000000, k5 = 4011750000000, k6 = 2674500000000, k7 = 3319800, k8 = 104656218.9, k9 = 27285184270,
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k10 = 144655676400000, k11 = 181605029400, l1 = 0.0002434546857, l2 = 0.24345468574,T IN = 35, and b2 = 6.6667.
A numerical continuation techniquewith 14 continuation sets is adoptedwhile using theUTM to solve this problem.

In the first continuation set, the final values of the time and x8 are brought to 1000 s and 5, respectively. Continuation
sets 2-7 are used to bring down the values of ε1 and ε2 (corresponding to the constraints on u1 and u2, respectively)
from 0.1 to 2×10-7. Similarly, continuation sets 8-13 are used to bring down the values of ε3 (corresponding to the
constraint on x7) from 0.1 to 1×10-6.

4.11.2 | Results

AB-B-S-B-B-B type control solution is obtained for u1 using the UTM and is shown in the left subplot of Fig. 12. The u1
solution obtained using the UTMmatches well with the corresponding solutions obtained using the PSMwithout the
spikes that exist in the PSM solution. A B-B type solution is obtained using the UTM for u2 as shown in the right subplot
of Fig. 12, which is in excellent agreement with the solutions obtained using the PSM.
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F IGURE 12 Controls time-history plots for theWilliams-Otto problem.

Fig. 13 depicts the time history for x7, which clearly shows that the lower bound on x7 is active. The UTM is able
to capture the lower constraint on x7 while simultaneously solving for the singular control. These solutions showcase
the ability of the UTM to handle several control and state constraints simultaneously, which has been traditionally a
daunting task while using indirect methods. The optimal objective value for this problem obtained using the UTM is
-4768.271, which is very close to the solutions obtained in the literature.
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F IGURE 13 x7 time-history plots for theWilliams-Otto problem.
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4.12 | Summary of Results

All computations for the UTMwere performed on a personal computer with a 2.6 GHz Intel® Core™ i7 processor and
16GB RAMusingMATLAB 2019a built-in BVP solver, bvp4c. The objective values and computation times obtained
for the 11 problems solved in this study using the nested and simultaneous approaches, a PSM (GPOPS-II), and the
UTM are summarized in Table 2. Note that in Table 2, εc and εs are error parameters corresponding to control and state
constraints, respectively.

The nested approach, the simultaneous approach, and the PSM are direct methods whereas the UTM is an indirect
method. Although the computation times required for the simultaneous approach is very small compared to the UTM,
vectorization and customizing the codewhile usingMATLAB’s bvp4cwould result in much lesser computation times
while employing the UTM. Future work includes implementing vectorization of the UTM code and creating a custom
bvp4c code that would take substantially lesser time than indicated in this study.

TABLE 2 Results summary.
Problem

Nested Approach Simultaneous Approach PSM UTM

Objective Time (s) Objective Time (s) Objective Time (s) Objective Time (s) εc εs

Aly-Chan [30] 0 60.30 0 0.78 3.3180 × 10-7 3.77 -5.9876 × 10-6 10.50 1 × 10-7 -
CatalystMixing [31] -0.19181 22.50 -0.19181 0.90 -0.19181 20.04 -0.19181 19.23 1 × 10-6 -
Aly [32] 0.37699 132.03 0.37699 0.33 0.37699 0.29 0.37699 3.53 1 × 10-7 -
Fishing [34] -106.9060 123.20 -106.9060 0.49 -106.9067 31.43 -106.9060 6.00 1 × 10-4 -
Bryson [26] 0.29945 32.30 0.29945 0.48 0.29945 3.20 0.29945 12.04 1 × 10-4 -
Luus [35] 0.1667 23.10 0.1667 0.17 0.1667 0.43 0.1667 12.21 1 × 10-10 -
Jennings [36, 42] 4.3212 17.50 4.3212 0.22 4.3212 0.48 4.3212 6.659 1 × 10-3 -
Bressan [37] -55.5556 24.80 -55.5556 0.33 -55.5556 5.88 -55.5556 5.62 1 × 10-4 -
Two-Stage CSTR [39, 40] - - 2.3350 × 10-9 2.05 1.38512 × 10-9 4.80 1.2985 × 10-8 28.10 1 × 10-6 -
Distillation [11] 6.4538 × 10-4 1579.1 6.4540 × 10-4 84.21 - - 6.4386 × 10-4 319.40 2 × 10-10 -
Williams-Otto [7] - - -4768.314 34.45 -4768.313 7.18 -4768.271 165.13 2 × 10-7 1 × 10-6

5 | CONCLUSIONS

In this study, eight classical singular control problems with known analytical solutions and three complex problems
from the chemical engineering domain comprising singular controls were solved using the Uniform Trigonometrization
Method (UTM). The UTM generates analytical singular control laws and offers an alternative to the existing direct
methods in the literature that are devised to numerically solve for the singular control. The results obtained using
the UTM in this study were found to be in excellent match with the results obtained in the literature. Furthermore,
the results obtained using the UTMwere found to be of higher resolution than the jittery solutions obtained using
a pseudo-spectral method (PSM) based solver for many problems in this study. Unlike certain other methods in the
literature that are only devised to solve singular control problems, the UTM is able to handle bang-bang and singular
controls along with state path constraints in a simultaneousmanner. This utility of the UTM is demonstrated through
theWilliams-Otto problem in this study. The UTM is shown capable of solving problems that consist of control inputs
with their distinct bang-bang or singular arcs.
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