References
1. Dakka, J., Z. Amikam, and Y. Sasson, Process for the manufacture of benzoic acid and salts thereof. US patent US4965406A, 1989.
2. Silva-Rocha, R. and V. de Lorenzo, The pWW0 plasmid imposes a stochastic expression regime to the chromosomal ortho pathway for benzoate metabolism in Pseudomonas putida. FEMS Microbiol Lett, 2014.356 (2): p. 176-83.
3. Noda, S., et al., Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus. Microb Cell Fact, 2012. 11 : p. 49-49.
4. Hertweck, C. and B.S. Moore, A plant-like biosynthesis of benzoyl-CoA in the marine bacterium ‘Streptomyces maritimus’.Tetrahedron, 2000. 56 (46): p. 9115-9120.
5. Wynands, B., et al., Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production. Metab Eng, 2018. 47 : p. 121-133.
6. Lenzen, C., et al., High-yield production of 4-hydroxybenzoate from glucose or glycerol by an engineered Pseudomonas taiwanensis VLB120. Front Bioeng Biotechnol, 2019. 7 : p. 130.
7. Wynands, B., et al., Streamlined Pseudomonas taiwanensis VLB120 chassis strains with improved bioprocess features. ACS Synth Biol, 2019. 8 (9): p. 2036-2050.
8. Otto, M., et al., Rational engineering of phenylalanine accumulation in Pseudomonas taiwanensis to enable high-yield production of trans-cinnamate. Front Bioeng Biotechnol, 2019. 7 : p. 312.
9. Hartmans, S., et al., Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol, 1989. 55 (11): p. 2850-5.
10. Martinez-Garcia, E. and V. de Lorenzo, Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440.Environ Microbiol, 2011. 13 (10): p. 2702-16.
11. Zobel, S., et al., Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol, 2015. 4 (12): p. 1341-51.
12. Kallscheuer, N., et al., Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2016. 100 (4): p. 1871-1881.
13. Balderas-Hernandez, V.E., et al., Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. Microb Cell Fact, 2014. 13 : p. 136.
14. Sun, X., et al., A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl Environ Microbiol, 2013. 79 (13): p. 4024-30.
15. Johnson, C.W., et al., Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun, 2016.3 : p. 111-119.
16. Jha, R.K., et al., Sensor-enabled alleviation of product inhibition in chorismate pyruvate-lyase. ACS Synth Biol, 2019.8 (4): p. 775-786.
17. Thompson, B., et al., Muconic acid production via alternative pathways and a synthetic ”metabolic funnel”. ACS Synth Biol, 2018.7 (2): p. 565-575.
18. Schweigert, N., A.J. Zehnder, and R.I. Eggen, Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol, 2001.3 (2): p. 81-91.
19. Kohlstedt, M., et al., From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng, 2018. 47 : p. 279-293.
20. Balla, J., T. Kiss, and R.F. Jameson, Copper(II)-catalyzed oxidation of catechol by molecular oxygen in aqueous solution. Inorg Chem, 1992. 31 (1): p. 58-62.
21. Carraher, J.M., et al., cis,cis-Muconic acid isomerization and catalytic conversion to biobased cyclic-C6-1,4-diacid monomers. Green Chem, 2017. 19 (13): p. 3042-3050.
22. Johnson, C.W., et al., Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab Eng Commun, 2017. 5 : p. 19-25.
23. Jiménez, J.I., et al., Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol, 2002. 4 (12): p. 824-41.