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Abstract: First principles calculations by using of projected augmented plane-wave method have been per-

formed to investigate the structural, elastic and electronic properties of MgB2C2 under different pressures. The

results indicate that the ternary compound of MgB2C2 remains mechanically stable under pressure ranging

from 0 to 50 GPa. Elastic analysis is performed and it is found that MgB2C2 always shows obvious intrinsic

brittleness under pressure, although an increasing trend of the ductility both from BH/GH and νH with increas-

ing pressure. (100), (010) and (110) planes show strong anisotropy and the degree of anisotropy decreases with

increasing pressure, in the meantime, it is interesting to find that the degree of anisotropy is reduced in order of

planes (110)→ (100)→ (010) under the same pressure.
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1. Introduction

In 2001, the discovery of superconductivity in MgB2 at 36 K [1] triggered an enormous interest in de-

tecting superconductivity in related compounds. The technical performance of the MgB2 superconductor can

be improved through doping [2]. For example, doping carbon into MgB2 can drastically increase the resis-

tivity and upper critical field at the cost of decreasing the transition temperature Tc [3]. As reported in the

literature [4–7], mainly six binary compounds (MgB2, MgB4, MgB7, MgC2, Mg2C3 and B4C) and one ternary

compound (MgB2C2) exist in the Mg-B-C phase system. Of these, MgB2C2, the first borocarbide of magne-

sium, belongs to the orthorhombic system, Cmca-D2h
18 space group (No. 64), and figure 1 presents its crystal
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structure. There are eight formula units (40 atoms) and eight symmetrically independent in the unit cell. The

structure of MgB2C2 is similar to graphite. The main distinction between graphite and MgB2C2 is that the

borocarbide hexagonal layer in MgB2C2 is slightly puckered with a maximum deviation of 20 pm from the

optimized plane. The charge of puckered 2
∞[BC]− layers is counterbalanced by the Mg2+ cations. Each Mg

cation is coordinated by six boron atoms and six carbon atoms, forming a slightly distorted hexagonal prism.

Structurally compared with graphite, MgB2C2 has a larger average layer distance, which may be explained by

the less effective shielding of the negative charge owing to the reduced number of cations between the layers.

Experimentally, Wörle reported the high-pressure modifications of MgB2C2 using the high resolution

transmission electron microscopy (HRTEM) image, the electron energy loss spectrum (EELS), and energy-

dispersive X-ray spectrum (EDXS) [8]. Susner et al. used high-pressure, high-temperature apparatus at 1500-

1700 oC and 10 MPa to synthesize large-grained MgB2 and MgB2C2 [9]. Theoretically, Ravindran et al.

investigated the electronic ground state properties of MgB4, MgB2C2, and LiBC using the TB-LMTO method

of Andersen [10]. Harima calculated the energy band structures of MgB2, LiBC, and MgB2C2 using the LDA

and first-principles full potential linearized augmented plane wave (FPLAPW) method [11]. Verma calcu-

lated the electronic band structure of the compound MgB2C2 and its hole-doped derivatives Mg0.5Li0.5B2C2,

Mg0.5Na0.5B2C2, Mg0.9Na0.1B2C2 and Mg0.5K0.5B2C2 using the FPLAPW calculations [12]. Spanò found that

hole-doped MgB2C2 has a large electron-phonon coupling constant according to the density functional pertur-

bation theory [13]. Lebègue studied the chemical bonding of MgB2C2 via the Projector Augmented Plane wave

method together with the crystal orbital overlap population (COOP) technique [14]. Obviously, all these results

predominantly concentrate on the electronic and band structure.

The elastic properties are closely linked with many fundamental phenomena such as equation of state

(EOS), interatomic bonding and phonon spectra, melting point, specific heat, thermal expansion, Debye tem-

perature and Grüneisen parameter. To our knowledge, the elastic constants of MgB2C2 as a function of temper-

ature were studied via the first-principles phonon [15], but the related properties are never explored. Further,

elastic constants under high pressure are crucial for understanding strength, mechanical stability and phase

transition of materials. Therefore, in the present work, the elastic constants and some related properties of

MgB2C2 in the pressure range of 0-50 GPa are studied by using the first-principles calculations, to provide new

insights on structural, elastic anisotropy, acoustic and electronic properties under pressure. We hope that this

work promotes researches on the pressure dependence of elastic and electronic properties for MgB2-related

materials. The rest of the paper is organized as follow. The computational details are described in Section 2.

Some results and discussion are presented in Section 3. Finally, a brief summary and conclusions are given in

Section 4.
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2. Computational details

Herein, Vienna ab-initio simulation package (VASP) code based on the density functional theory (DFT)

was conducted [16–18]. Perdew-Burke-Ernzerhof (PBE) functional parameterization was implemented within

the generalized gradient approximation (GGA) [19, 20] as well as projector augmented wave (PAW) method

[21, 22]. Appropriate pseudopotentials for Mg 2p63s2, B 2s22p1 and C 2s22p2 configurations as valence elec-

trons were selected to achieve the higher convergence rate. A plane wave cut-off energy value of 600 eV was

used and the Monkhorst-Pack scheme with 4×4×5 grids was adopted [23] to calculate the lattice and elastic pa-

rameters under different pressures within the atomic forces became less than 0.01 eV/Å to ensure the accuracy

of the calculations. The stress-strain relationship method was used to determine the elastic constants. Because

of the large size of MgB2C2, full relaxation was taken into account of all the calculations.

3. Results and discussion

3.1. Structural properties

Tables 1 and 2 list the calculated lattice parameters of MgB2C2 at 0 GPa together with the experimental

[24] and theoretical [25] results. One can find that the lattice parameters we calculated do not differ from the

experimental values by more than 0.23% and the difference between our result and Spanò’s reported data is

less than 1.53%. Besides, the corrugation of the borocarbide planes is 0.207 Å, which agree well with the

experimental data 0.207 Å and Spanò’s reported value 0.194 Å. Therefore, our calculations are correct. To

study the influence of external pressure on the crystal structure of MgB2C2, figure 2 shows the normalized

lattice parameters a/a0, b/b0, c/c0 and the normalized volume V/V0 under different pressures, where a0, b0,

c0 and V0 refer to the equilibrium lattice parameters and the volume at 0 GPa, respectively. Obviously, the

lattice parameters and volume automatically decrease with pressure. The axial and volume compression can be

accurately described by fitting the data under different pressures with a second-order polynomial

a/a0 = 0.99979 − 1.22 × 10−3 × P + 7.89 × 10−6 × P2

b/b0 = 0.99982 − 1.23 × 10−3 × P + 9.08 × 10−6 × P2

c/c0 = 0.99874 − 3.86 × 10−3 × P + 1.93 × 10−5 × P2

V/V0 = 0.99814 − 6.17 × 10−3 × P + 3.91 × 10−5 × P2

(1)

where the Adj. R2 value is the correlation coefficient. The Adj. R2 values are 0.999, 0.999, 0.998 and 0.998

for a/a0, b/b0, c/c0, and V/V0, respectively. All values are close to 1, revealing that the fit is a good one. The

reduction in atomic distance and the increase in inter-atomic repulsive force renders compression difficult under

pressure. Figure 2 shows that the compression capabilities of different axes are different, and the compression
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capability along the c axis is significantly bigger than that along the a or b axis.

3.2. Pressure dependent elastic properties

Elastic constants are important properties of solids that are useful for understanding mechanical properties

and structural stability. Table 3 presents the elastic constants of MgB2C2 under different pressures. However,

no other experimental and theoretical values are available. All elastic constants, excluding C33, continuously

increase with the pressure. The orthorhombic structure of MgB2C2 under different pressures will become

mechanically stable when its elastic constants satisfy the following inequalities [26]:

C̃11 + C̃22 − 2C̃12 > 0, C̃11 + C̃33 − 2C̃13 > 0, C̃22 + C̃33 − 2C̃23 > 0

C̃11 > 0, C̃22 > 0, C̃33 > 0, C̃44 > 0, C̃55 > 0, C̃66 > 0

C̃11 + C̃22 + C̃33 + 2C̃12 + 2C̃13 + 2C̃23 > 0

(2)

where C̃α = Cαα − P(α = 1 ∼ 6), C̃12 = C12 + P, C̃13 = C13 + P, and C̃23 = C23 + P. Through calculations, it is

not difficult to find that the orthorhombic structure of MgB2C2 is mechanically stable in the pressure range of

0-50 GPa.

With the knowledge of single-crystal elastic constants, the polycrystalline elastic moduli are estimated by

several methods, including Voigt’s, Reuss’s and Hill’s approximation [27–29]. For the orthorhombic phase, the

Voigt’s and Reuss’s moduli are estimated by [30]

BV =
1
9

[
C11 + C12 + C33 + 2(C11 + C13 + C23)

]
BR =

1
S 11 + S 22 + S 33

+ 2(S 12 + S 13 + S 23)

GV =
1
15

[
C11 + C22 + C33 + 3(C44 + C55 + C66) − (C12 + C13 + C23)

]
GR =

15
4(S 11 + S 22 + S 33) − 4(S 12 + S 13 + S 23) + 3(S 44 + S 55 + S 66)

(3)

Let S i j be the elastic compliance constants

S 11 =
C22C33 −C2

23

∆
, S 22 =

C11C33 −C2
13

∆
, S 33 =

C11C22 −C2
12

∆

S 12 =
C13C23 −C12C23

∆
, S 13 =

C11C23 −C13C22

∆
, S 23 =

C12C23 −C11C23

∆

S ii =
1

Cii
(i = 4, 5, 6), ∆ = C13(C12C23 −C13C22) + C23(C12C13 −C23C11) + C33(C11C22 −C2

12)

(4)

and Hill’s bulk (BH) and shear (GH) moduli by [27]

BH =
BV + BR

2
, GH =

GV + GR

2
(5)
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Hill’s Young’s modulus (EH) and Hill’s Poisson’s ratio (νH) are further written by [27]

EH =
9BHGH

3BH + GH
, νH =

3BH − 2GH

6BH + 2GH
(6)

Figure 3(a) shows BH , GH and EH of MgB2C2 as a function of pressure. It is obvious that BH , GH and EH

increase continuously with pressure and EH exhibits the biggest changes. These results imply that the covalent

bonding property of MgB2C2 becomes more dominant with increasing pressure. Figure 3(b) shows the BH/GH

and νH under different pressures. Both BH/GH and νH values can be employed to evaluate the ductile/brittle

behaviour of a material. As suggested by Pugh [31], the materials with a higher BH/GH ratio than 1.75 exhibit

ductile behaviour, otherwise behaves in a brittle manner. All values of BH/GH are less than 1.75 here, thus,

MgB2C2 is brittle within 50 GPa. The BH/GH ratio increases as pressure increases, indicating that its brittleness

decreases with increasing pressure. In contrast, νH is larger or less than 1/3 for ductile and brittle materials,

respectively [32]. Therefore, the conclusion obtained from Poisson’s ratio is identical to that obtained from the

BH/GH ratio.

3.3. Pressure dependent elastic anisotropy

Crystals are seldom elastically isotropic and their anisotropy is crucial in engineering science because it

can potentially induce microcracks in materials [33]. The shear anisotropy factor of MgB2C2 along the {100}

plane between < 011 > and < 010 > directions is [34]

A{100} =
4C44

C11 + C33 − 2C13
(7)

For the {010} plane between < 101 > and < 001 > directions, it can be expressed as [34]

A{010} =
4C55

C22 + C33 − 2C23
(8)

and for the {001} plane between < 110 > and < 010 > directions, it can be written as [34]

A{001} =
4C66

C11 + C22 − 2C12
(9)

The deviation of A{100}, A{010} and A{001} from one represents the degree of its shear anisotropy. Figure 4(a)

presents the anisotropic factors of MgB2C2 under different pressures. Moreover, A{100} and A{010} are much less

than 1 and increase by 56.1% and 55.7%, respectively, whereas A{001} decreases by approximately 23.5% and

A{001} has the biggest values compared with A{100} and A{010} over the whole pressure range investigated. These

results demonstrate that the shear anisotropy of the {100} and {010} planes decrease and that of the {001} plane

shows an opposite trend with increasing pressure. Furthermore, the shear plane {001} exhibits more isotropic

properties than the {100} and {010} shear planes over the entire pressure range.
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In polycrystals, the percentage anisotropy in bulk (AB) and shear (AG) moduli are [35]

AB =
BV − BR

BV + BR
, AG =

GV −GR

GV + GR
(10)

The universal elastic anisotropy parameter AU is defined as [36]

AU =
BV

BR
+ 5

GV

GR
− 6 (11)

Furthermore, the log-Euclidean anisotropy parameter is defined as [37]

AL =

√[
ln(

BV

BR
)
]2

+ 5
[
ln(

GV

GR
)
]2

(12)

For these four anisotropic indexes, positive non-zero values correspond to the degree of anisotropy. Figure

4 presents the relationship between the anisotropic indexes and pressure up to 50 GPa. AB increases slightly

and AG decreases sharply with increasing pressure. In addition, the values of AG are greater than those of AB

under the same pressure. This indicates that the anisotropy in compressibility is significantly weaker than that

in shear. As the pressure increases, both AU and AL have the same change trend with AG.

With the knowledge of compliance constants, Young’s modulus (E) and shear modulus (G) can be calcu-

lated as a function of orientation. For the orthorhombic system, the directional dependence in the (001) plane

are [38]:
E−1 = S 11cos4α + S 22sin4α + 2S 12sin2αcos2α + S 66sin2αcos2α

G−1 = S 55 + (S 44 − S 55)sin2α
(13)

and in the (100) plane [38]:

E−1 = S 22sin4α + S 33cos4α +
1
4

(2S 23 + S 44)sin22α

G−1 = S 55 + (S 66 − S 55)sin2α

(14)

and in the (010) plane [38]:

E−1 = S 11sin4α + S 33cos4α +
1
4

(2S 13 + S 55)sin22α

G−1 = S 44 + (S 66 − S 44)sin2α

(15)

and in the (110) plane [38]:

E−1 =
sin4α

(a2 + b2)2

[
a4S 11 + b4S 12 + a2b2(2S 12 + S 66)

]
+ S 33cos4α +

sin2αcos2α

a2 + b2

[
a2(2S 13 + S 55) + b2(2S 23 + S 44)

]
G−1 =

sin2α

(a2 + b2)2

[
a2b2(4S 11 + 4S 22 − 8S 12) + (b2 − a2)2S 66

]
+

cos2α

a2 + b2 (a2S 44 + b2S 55)

(16)

where α is made with the [001] direction.
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Variations of Young’s modulus and shear modulus with orientation in the (100), (010), (001) and (110)

planes under different pressures are displayed in figure 5 and figure 6, respectively. At 0 GPa, the shapes

of Young’s modulus and shear modulus in the (001) plane are nearly round, implying that they are nearly

isotropic. The finding agree well with the result obtained from the above shear anisotropy factor A{001}. The

Young’s modulus and shear modulus in the (100), (010) and (110) planes under different pressures show strong

anisotropy and their degree of anisotropy decrease with increasing pressure. Taking the shear modulus as an

example, the minimum and maximum in the (100) plane correspond to 32.68 and 229.51 GPa for 0 GPa, 64.17

and 258.21 GPa for 30 GPa, as well as 79.35 and 270.46 GPa for 60 GPa; its minimum and maximum in the

(010) plane correspond to 38.16 and 229.52 GPa for 0 GPa, 75.08 and 258.21 GPa for 30 GPa, as well as

101.73 and 270.46 GPa for 50 GPa; and its minimum and maximum in the (110) plane correspond to 35.60

and 252.54 GPa for 0 GPa, 69.98 and 325.55 GPa for 30 GPa, as well as 90.71 and 365.54 GPa for 50 GPa.

The ratios of the maximum and the corresponding minimum in the (100) ((010), (110)) are 7.02 (6.01, 7.09),

4.02 (3.44, 4.65) and 3.41 (2.66, 4.03) for 0 GPa, 30 GPa and 50 GPa, respectively. Obviously, the ratios of

the maximum and the corresponding minimum decrease with pressure. Besides, it is interesting to find that the

degree of anisotropy is reduced in order of planes (110)→ (100)→ (010) under different pressures.

3.4. Pressure dependent acoustic and related properties

Debye temperature (ΘD) is an important physical quantity of solids. It often occurs in equation describing

properties which arises from lattice vibrations. One way to calculate the ΘD is as follows [39]:

ΘD = h
kB

[
3n
4π

(
NAρ
M

)] 1
3 VM (17)

where h/kB are the usual meanings of quantum mechanics, NA is the Avogadro’s number, M is the molecular

weight and n is the number of atoms in the unit cell. The expression for the mean acoustic velocity Vm is [39]

VM =
[

1
3

(
1

V3
L

+ 2
V3

T

)]− 1
3 (18)

where VL and VT are the longitudinal and transverse elastic wave velocities, respectively. Using the Navier’s

equation [40], they are

VL =

√
3BH+4GH

3ρ , VT =

√
GH
ρ

(19)

Table 4 lists the calculated ρ and various acoustic velocities under different pressures. Unfortunately, no exper-

imental and theoretical values are available for comparison. It can be seen from Table 4 that all the calculated

values increase with increasing pressure. Furthermore, the Debye temperature represents interatomic force,

hence, higher Debye temperatures represent stronger bonds. The results obtained from the Debye temperature

are consistent with the behavior from the Young’s modulus results described above.
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In anisotropic single-crystals, the propagation of elastic waves is governed by the famous Christoffel’s

equation [41]. The elements of the Christoffel determinants are given on the basis of mass density and elastic

constants

(
3∑

k=1

3∑
m=1

Cik jmlklm − ρv2δi j)u j = 0 (20)

where Cik jm is the stiffness matrix, lk and lm are the directional cosines, ρ is the density, v is the sound velocity

and u j represents the displacement vector. The wave velocities along the different propagating directions can

be formulated by solving the eigenvalues of the following eigenfunction:
α − ρv2 δ ζ

δ β − ρv2 ε

ζ ε γ − ρv2




u1

u2

u3

 = 0 (21)

with



α = C11l21 + C66l22 + C55l23

β = C66l21 + C22l22 + C44l23

γ = C55l21 + C44l22 + C33l23

σ = (C12 + C66)l1l2

ε = (C23 + C44)l2l3

ζ = (C13 + C55)l3l1

(22)

The longitudinal (vl), first transverse (vt1) and second transverse (vt2) wave velocities for MgB2C2 along the six

principal axes containing [100], [010], [001], [110], [101] and [011] directions are obtained as follows

[100]vl =

√
C11
ρ , [010]vl =

√
C22
ρ , [001]vl =

√
C33
ρ

[100]vt1 = [010]vt1 =

√
C66
ρ , [100]vt2 = [001]vt1 =

√
C55
ρ , [010]vt2 = [001]vt2 =

√
C44
ρ

[110]vl =

√
C44+C55

2ρ , [110]vt1 =[110]vt2 =

√
C11+C22+2C66

4ρ

[101]vl =

√
C44+C66

2ρ , [101]vt1 =[101]vt2 =

√
C11+C33+2C55

4ρ

[011]vl =

√
C55+C66

2ρ , [011]vt1 =[011]vt2 =

√
C22+C33+2C44

4ρ

(23)

Table 4 presents the various acoustic velocities of MgB2C2 in the pressure range of 0-50 GPa. Generally, the

elastic anisotropy of a crystalline material can be characterized by its acoustic velocity anisotropy. Two pure

transverse modes exist along the [100], [010] and [001] directions, however, two degenerate transverse waves

exist along the [110], [101] and [011] directions. Under different pressures, the longitudinal sound velocity

satisfies the relation [100]vl >[010]vl >[001]vl >[101]vl >[011]vl >[110]vl.
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Thermal conductivity is an intrinsic property of a material, which depends on the composition and temper-

ature of the material. Several existing empirical methods can calculate the thermal conductivity of a material

at a temperature higher than the Debye temperature: Clarke’s model [42] and Cahill’s model [43, 44]. When

the temperature increases, the thermal conductivity decreases to a certain point called minimum thermal con-

ductivity (kmin). According to the Cahill’s model [43, 44], kmin is estimated from the terms of vl, vt1 and vt2

by

kmin =
kB

2.48

(
nρNA

M

) 2
3 (vl + vt1 + vt2) (24)

Compared with Clarke’s model, Cahill’s model can more accurately quantify the anisotropy of thermal con-

ductivity because it contains the three acoustic velocities (vl, vt1 and vt2). Table 6 lists the kmin and the thermal

conductivity along the longitudinal and transverse acoustic branches (kl, kt1 and kt2) in the different propagation

directions under different pressures, wherein, the calculated thermal conductivities exhibit anisotropic proper-

ties under different pressures owing to their anisotropic sound velocities, and kmin is reduced in the order of

direction [110] → [010] → [100] → [101] → [011] → [001]. Moreover, kmin automatically increases with

increasing pressure, which exhibits the same trend as that of the Debye temperature. The same change trend of

the minimum thermal conductivity and the Debye temperature with pressure satisfy the Callaway-Debye theory

[45].

3.5. Effect of pressure on electronic properties

Electronic structures are essential to understand the conducting, semiconducting, and insulating properties

of materials. These properties are determined by electronic structures near the Fermi level (EF). Figure 7

presents the calculated total and partial densities of states (DOSs) of MgB2C2 under different pressures. At

zero pressure (0 GPa), an energy gap of 1.064 eV can be found in the total DOS near the EF, showing that

MgB2C2 is a semiconductor as reported in the literature [7, 15]. The gap’s value agrees well with previous

calculations [15]. All atoms contribute to the semiconductivity of the compound. According to figure 10(a),

all DOS peaks at 30 GPa and 50 GPa have a tendency close to the EF, that is, the valance bands shift to the

high energy zone whereas the conduction bands move to the low energy zone. This tendency implies that

the semiconductor band gap of MgB2C2 can narrow as the pressure increases from 0 to 50 GPa. Thus, its

semiconductivity reduces with increasing pressure. Similar to that observed at 0 GPa, all atoms contribute to

the semiconductivity observed at 50 GPa.

4. Conclusions

The structural, elastic, anisotropy, acoustic, thermal, and electronic properties of MgB2C2 under different
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pressures have been investigated by using the first principles calculations. The lattice constants at 0 GPa agree

well with the previous experimental and theoretical values. Both elastic and compliance constants of MgB2C2

under different pressures are further calculated, along with some related properties including bulk, shear and Y-

oung’s moduli, Poisson’s ratio, anisotropic factors, sound velocities, Debye temperature and minimum thermal

conductivity. The compound is found to have mechanical stability and intrinsical brittle in the pressure range of

0-50 GPa, but its ductility increase with pressure. {001} plane is nearly isotropic at 0 GPa from shear anisotropy

factor, Young’s modulus and shear modulus. However, the Young’s modulus and shear modulus in the (100),

(010) and (110) planes under different pressures show strong anisotropy and their degree of anisotropy decrease

with increasing pressure. Besides, it is interesting to find that the degree of anisotropy is reduced in order of

planes (110) → (100) → (010) under different pressures. Further, it is found that the Debye temperature and

the minimum thermal conductivity increase with increasing pressure.
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Table 1. The present calculated structure parameters a, b, c (in Å) and cell volume (in Å3) for MgB2C2 at 0 GPa compared with the

experimental data [24] and previous theoretical results [25].

a b c V0

This work 10.923 9.464 7.442 769.32

Experiment 10.922 9.461 7.459 770.83

Previous study 10.89 9.42 7.33 751.94

Table 2. The calculated coordinates of the eight atoms independent by symmetry in MgB2C2 at 0 GPa compared with the available

experimental measurements [24] and the previous calculations [25].

x y z

Atom(site) This work Cal. Exp. This work Cal. Exp. This work Cal. Exp.

Mg(8d) 0.1522 0.1532 0.1534 0 0 0 0 0 0

Mg(8f) 0 0 0 0.2787 0.2769 0.2798 -0.0104 -0.0110 -0.0113

B1(8e) 0.2500 0.2500 0.2500 0.0938 0.0934 0.0946 0.2500 0.2500 0.2500

B2(8f) 0 0 0 0.5883 0.5879 0.5886 0.2754 0.2741 0.2760

B3(16g) 0.1276 0.1275 0.1278 0.3406 0.3404 0.3415 0.2451 0.2433 0.2438

C1(8e) 0.2500 0.2500 0.2500 0.9265 0.9263 0.9271 0.2500 0.2500 0.2500

C2(8f) 0 0 0 -0.0795 -0.0797 -0.0792 0.2309 0.2342 0.2314

C3(16g) 0.1245 0.1245 0.1245 0.1744 0.1740 0.1750 0.2247 0.2239 0.2231

Table 3. Calculated elastic constants Ci j (in GPa) of MgB2C2 under different pressures.

Pressure C11 C12 C13 C22 C23 C33 C44 C55 C66

0 574.2 75.8 27.3 566.5 29.2 201.6 38.2 32.7 229.5

10 639.2 84.5 45.3 627.4 51.1 229.9 50.5 44.7 244.1

20 695.4 91.6 64.8 679.3 76.2 249.0 62.7 55.1 253.1

30 746.1 97.9 85.5 726.6 103.6 258.9 75.1 64.2 258.2

40 794.4 105.5 105.8 774.8 131.9 258.5 87.9 72.2 262.6

50 843.7 117.8 123.3 830.9 157.1 246.6 101.7 79.4 270.5

Table 4. The calculated density (ρ in g/cm3), longitudinal, transverse and average sound velocities (VL, VT , VM in m/s) and the Debye

temperature (ΘD in K) of MgB2C2 under different pressures.
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Pressure ρ VL VT VM ΘD

0 2.416 11.09 6.57 7.28 1019.2

10 2.577 11.59 6.86 7.59 1086.6

20 2.716 11.95 7.04 7.79 1135.3

30 2.843 12.20 7.14 7.92 1171.0

40 2.961 12.37 7.21 7.99 1197.8

50 3.075 12.45 7.24 8.04 1219.5

Table 5. The calculated acoustic velocities (vl, vt1 and vt2 in m/s) in [100], [010], [001], [110], [101] and [011] directions of MgB2C2

under pressure up to 50 GPa.

[100] [010] [001]

Pressure vl vt1 vt2 vl vt1 vt2 vl vt1 vt2

0 15.42 9.75 3.68 15.31 9.75 3.97 9.14 3.68 3.97

10 15.75 9.73 4.17 15.60 9.73 4.43 9.45 4.17 4.43

20 15.99 9.65 4.50 15.81 9.65 4.80 9.57 4.50 4.80

30 16.19 9.53 4.75 15.99 9.53 5.14 9.54 4.75 5.14

40 16.38 9.42 4.94 16.18 9.42 5.45 9.34 4.94 5.45

50 16.56 9.38 5.08 16.44 9.38 5.75 8.96 5.08 5.75

[110] [101] [011]

Pressure vl vt1(vt2) vl vt1(vt2) vl vt1(vt2)

0 3.83 12.87 7.44 9.33 7.37 9.35

10 4.30 13.05 7.56 9.64 7.49 9.64

20 4.66 13.16 7.62 9.85 7.54 9.85

30 4.95 13.22 7.66 9.98 7.53 9.99

40 5.20 13.29 7.69 10.05 7.52 10.10

50 5.43 13.42 7.78 10.08 7.54 10.20

Table 6. The calculated thermal conductivities (kmin, kl, kt1 and kt2 in W·m−1·K−1) in [100], [010], [001], [110], [101] and [011]

directions of MgB2C2 under pressure up to 50 GPa.
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[100] [010] [001]

Pressure kmin kl kt1 kt2 kmin kl kt1 kt2 kmin kl kt1 kt2

0 2.068 1.105 0.699 0.264 2.082 1.098 0.699 0.285 1.204 0.655 0.264 0.285

10 2.349 1.248 0.771 0.330 2.359 1.237 0.771 0.351 1.429 0.749 0.330 0.351

20 2.579 1.368 0.825 0.385 2.589 1.352 0.825 0.411 1.615 0.819 0.385 0.411

30 2.771 1.473 0.866 0.432 2.787 1.453 0.866 0.467 1.767 0.867 0.432 0.467

40 2.941 1.567 0.901 0.472 2.970 1.548 0.901 0.522 1.888 0.894 0.472 0.522

50 3.078 1.640 0.943 0.494 3.109 1.619 0.943 0.546 1.976 0.936 0.494 0.546

[110] [101] [011]

Pressure kmin kl kt1 kt2 kmin kl kt1 kt2 kmin kl kt1 kt2

0 2.119 0.275 0.923 0.923 1.871 0.534 0.669 0.669 1.869 0.528 0.670 0.670

10 2.409 0.341 1.034 1.034 2.128 0.599 0.764 0.764 2.122 0.593 0.764 0.764

20 2.648 0.398 1.125 1.126 2.337 0.652 0.843 0.842 2.328 0.644 0.842 0.842

30 2.855 0.449 1.202 1.202 2.511 0.696 0.907 0.907 2.502 0.684 0.908 0.908

40 3.043 0.498 1.272 1.272 2.660 0.736 0.962 0.962 2.653 0.719 0.967 0.967

50 3.184 0.521 1.331 1.331 2.784 0.771 1.007 1.007 2.777 0.753 1.012 1.012
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Figure 1: (Color online) Crystal structure of MgB2C2. Magnesium atoms are represented as green spheres,

boron atoms as pink spheres, and carbon atoms as gray spheres.
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Figure 2: (Color online) The variations of structural parameters a/a0, b/b0, c/c0 and cell volume V/V0 of

MgB2C2 with pressure range from 0 to 50 GPa. The discrete points and the solid lines denote the results from

the first-principles calculations and the polynomial fitting, respectively.
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Figure 3: (Color online) Bulk (BH), shear (GH) and Young’s (EH) moduli (a) and Poisson’s ratio νH and BH/GH

ratio (b) as a function of pressure for MgB2C2.
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Figure 4: (Color online) Pressure dependence of various elastic anisotropies for MgB2C2: (a) the shear

anisotropic factors A{100}, A{010} and A{001}, (b) the percentage anisotropy in compressibility AB and shear AG,

(c) the universal elastic anisotropy AU and the scalar log-Euclidean anisotropy AL.
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Figure 5: (Color online) The plane projections of the directional dependence of the Young’s modulus in (100)

(a), (010) (b), (001) (c) and (110) (d) planes under different pressures.
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Figure 6: (Color online) The plane projections of the directional dependence of the shear modulus in (100) (a),

(010) (b), (001) (c) and (110) (d) planes under different pressures.
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Figure 7: (Color online) Total and partial density of states of MgB2C2 under different pressures.
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