REFERENCES
1. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140
patients infected with SARS-CoV-2 in Wuhan, China. Allergy.2020;75(7):1730-1741.
2. Riggioni C, Comberiati P, Giovannini M, et al. A compendium answering
150 questions on COVID-19 and SARS-CoV-2. Allergy.2020;75(10):2503-2541.
3. Klimek L, Jutel M, Bousquet J, et al. Management of patients with
chronic rhinosinusitis during the COVID-19 pandemic-An EAACI position
paper. Allergy. 2021;76(3):677-688.
4. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
Protease Inhibitor. Cell. 2020;181(2):271-280 e278.
5. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and
COVID-19. Nat Rev Microbiol. 2021;19(3):141-154.
6. Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor
for SARS-CoV-2 infection. Science. 2020;370(6518):861-865.
7. Johnson BA, Xie X, Bailey AL, et al. Loss of furin cleavage site
attenuates SARS-CoV-2 pathogenesis. Nature.2021;591(7849):293-299.
8. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147,
CD26, and other SARS-CoV-2 associated molecules in tissues and immune
cells in health and in asthma, COPD, obesity, hypertension, and COVID-19
risk factors. Allergy. 2020;75(11):2829-2845.
9. Lin DY, Gu Y, Wheeler B, et al. Effectiveness of Covid-19 Vaccines
over a 9-Month Period in North Carolina. N Engl J Med.2022;386(10):933-941.
10. Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of
Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N
Engl J Med. 2021;385(15):1355-1371.
11. Hacisuleyman E, Hale C, Saito Y, et al. Vaccine Breakthrough
Infections with SARS-CoV-2 Variants. N Engl J Med.2021;384(23):2212-2218.
12. Servellita V, Syed AM, Morris MK, et al. Neutralizing immunity in
vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta
variants. Cell. 2022;185(9):1539-1548 e1535.
13. Qiu C, Cui C, Hautefort C, et al. Olfactory and Gustatory
Dysfunction as an Early Identifier of COVID-19 in Adults and Children:
An International Multicenter Study. Otolaryngol Head Neck Surg.2020;163(4):714-721.
14. Hagemann J, Onorato GL, Jutel M, et al. Differentiation of COVID-19
signs and symptoms from allergic rhinitis and common cold: An
ARIA-EAACI-GA(2) LEN consensus. Allergy. 2021;76(8):2354-2366.
15. Marzano AV, Cassano N, Genovese G, Moltrasio C, Vena GA. Cutaneous
manifestations in patients with COVID-19: a preliminary review of an
emerging issue. Br J Dermatol. 2020;183(3):431-442.
16. Tan SW, Tam YC, Oh CC. Skin manifestations of COVID-19: A worldwide
review. JAAD Int. 2021;2:119-133.
17. Ranard BL, Megjhani M, Terilli K, et al. Identification of Endotypes
of Hospitalized COVID-19 Patients. Front Med (Lausanne).2021;8:770343.
18. Gutierrez-Gutierrez B, Del Toro MD, Borobia AM, et al.
Identification and validation of clinical phenotypes with prognostic
implications in patients admitted to hospital with COVID-19: a
multicentre cohort study. Lancet Infect Dis. 2021;21(6):783-792.
19. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19
syndrome. Nat Med. 2021;27(4):601-615.
20. Nabavi N. Long covid: How to define it and how to manage it.BMJ. 2020;370:m3489.
21. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors
with COVID-19: a longitudinal cohort study. Lancet.2021;398(10302):747-758.
22. Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children.N Engl J Med. 2020;382(17):1663-1665.
23. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory
Syndrome in U.S. Children and Adolescents. N Engl J Med.2020;383(4):334-346.
24. Chou J, Thomas PG, Randolph AG. Immunology of SARS-CoV-2 infection
in children. Nat Immunol. 2022;23(2):177-185.
25. McArdle AJ, Vito O, Patel H, et al. Treatment of Multisystem
Inflammatory Syndrome in Children. N Engl J Med.2021;385(1):11-22.
26. Son MBF, Murray N, Friedman K, et al. Multisystem Inflammatory
Syndrome in Children - Initial Therapy and Outcomes. N Engl J
Med. 2021;385(1):23-34.
27. Rodino KG, Smith KP, Pettengill MA. Novel Assays for Molecular
Detection of Severe Acute Respiratory Syndrome Coronavirus 2. Clin
Lab Med. 2022;42(2):299-307.
28. Mekonnen D, Mengist HM, Derbie A, et al. Diagnostic accuracy of
serological tests and kinetics of severe acute respiratory syndrome
coronavirus 2 antibody: A systematic review and meta-analysis. Rev
Med Virol. 2021;31(3):e2181.
29. Chiereghin A, Zagari RM, Galli S, et al. Recent Advances in the
Evaluation of Serological Assays for the Diagnosis of SARS-CoV-2
Infection and COVID-19. Front Public Health. 2020;8:620222.
30. Garcia-Finana M, Buchan IE. Rapid antigen testing in COVID-19
responses. Science. 2021;372(6542):571-572.
31. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological
assessment of asymptomatic SARS-CoV-2 infections. Nat Med.2020;26(8):1200-1204.
32. Han MS, Choi EH, Chang SH, et al. Clinical Characteristics and Viral
RNA Detection in Children With Coronavirus Disease 2019 in the Republic
of Korea. JAMA Pediatr. 2021;175(1):73-80.
33. Radermecker C, Detrembleur N, Guiot J, et al. Neutrophil
extracellular traps infiltrate the lung airway, interstitial, and
vascular compartments in severe COVID-19. J Exp Med.2020;217(12).
34. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered
neutrophil extracellular traps mediate COVID-19 pathology. J Exp
Med. 2020;217(12).
35. Zhang JJ, Dong X, Liu GH, Gao YD. Risk and Protective Factors for
COVID-19 Morbidity, Severity, and Mortality. Clin Rev Allergy
Immunol. 2022.
36. Gao YD, Ding M, Dong X, et al. Risk factors for severe and
critically ill COVID-19 patients: A review. Allergy.2021;76(2):428-455.
37. Haldane V, De Foo C, Abdalla SM, et al. Health systems resilience in
managing the COVID-19 pandemic: lessons from 28 countries. Nat
Med. 2021;27(6):964-980.
38. Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection
from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad
Sci U S A. 2020;117(30):17720-17726.
39. Miyasaka M. Is BCG vaccination causally related to reduced COVID-19
mortality? EMBO Mol Med. 2020;12(6):e12661.
40. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, et al. Activate:
Randomized Clinical Trial of BCG Vaccination against Infection in the
Elderly. Cell. 2020;183(2):315-323 e319.
41. Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andres J, et al.
Trained Immunity: a Tool for Reducing Susceptibility to and the Severity
of SARS-CoV-2 Infection. Cell. 2020;181(5):969-977.
42. Lundberg L, Bygdell M, Stukat von Feilitzen G, et al. Recent MMR
vaccination in health care workers and Covid-19: A test negative
case-control study. Vaccine. 2021;39(32):4414-4418.
43. Gold JE, Baumgartl WH, Okyay RA, et al. Analysis of
Measles-Mumps-Rubella (MMR) Titers of Recovered COVID-19 Patients.mBio. 2020;11(6).
44. Ozdemir O. Measles-Mumps-Rubella Vaccine and COVID-19 Relationship.mBio. 2020;11(5).
45. Patel AB, Verma A. Nasal ACE2 Levels and COVID-19 in Children.JAMA. 2020;323(23):2386-2387.
46. Muus C, Luecken MD, Eraslan G, et al. Single-cell meta-analysis of
SARS-CoV-2 entry genes across tissues and demographics. Nat Med.2021;27(3):546-559.
47. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation
modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy
Clin Immunol. 2020;146(1):80-88 e88.
48. Morrison CB, Edwards CE, Shaffer KM, et al. SARS-CoV-2 infection of
airway cells causes intense viral and cell shedding, two spreading
mechanisms affected by IL-13. Proc Natl Acad Sci U S A.2022;119(16):e2119680119.
49. Xu Y, Gao R, Zhu G, et al. Genetic variation of allergic disease is
associated with the susceptibility to COVID-19. J Infect.2022;84(5):e92-e93.
50. Ren J, Pang W, Luo Y, et al. Impact of Allergic Rhinitis and Asthma
on COVID-19 Infection, Hospitalization, and Mortality. J Allergy
Clin Immunol Pract. 2022;10(1):124-133.
51. Marin C, Hummel T, Liu Z, Mullol J. Chronic Rhinosinusitis and
COVID-19. J Allergy Clin Immunol Pract. 2022.
52. Takabayashi T, Yoshida K, Imoto Y, Schleimer RP, Fujieda S.
Regulation of the Expression of SARS-CoV-2 Receptor
Angiotensin-Converting Enzyme 2 in Nasal Mucosa. Am J Rhinol
Allergy. 2022;36(1):115-122.
53. Marin C, Tubita V, Langdon C, et al. ACE2 downregulation in
olfactory mucosa: Eosinophilic rhinosinusitis as COVID-19 protective
factor? Allergy. 2021;76(9):2904-2907.
54. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2
Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is
Detected in Specific Cell Subsets across Tissues. Cell.2020;181(5):1016-1035 e1019.
55. Blume C, Jackson CL, Spalluto CM, et al. A novel ACE2 isoform is
expressed in human respiratory epithelia and is upregulated in response
to interferons and RNA respiratory virus infection. Nat Genet.2021;53(2):205-214.
56. Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone
on Days Alive and Ventilator-Free in Patients With Moderate or Severe
Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized
Clinical Trial. JAMA. 2020;324(13):1307-1316.
57. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized
Patients with Covid-19. N Engl J Med. 2021;384(8):693-704.
58. Sinha S, Rosin NL, Arora R, et al. Dexamethasone modulates immature
neutrophils and interferon programming in severe COVID-19. Nat
Med. 2022;28(1):201-211.
59. Peters MC, Sajuthi S, Deford P, et al. COVID-19-related Genes in
Sputum Cells in Asthma. Relationship to Demographic Features and
Corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83-90.
60. Milne S, Li X, Yang CX, et al. Inhaled corticosteroids downregulate
SARS-CoV-2-related genes in COPD: results from a randomised controlled
trial. Eur Respir J. 2021;58(1).
61. Ramakrishnan S, Nicolau DV, Jr., Langford B, et al. Inhaled
budesonide in the treatment of early COVID-19 (STOIC): a phase 2,
open-label, randomised controlled trial. Lancet Respir Med.2021;9(7):763-772.
62. Yu LM, Bafadhel M, Dorward J, et al. Inhaled budesonide for COVID-19
in people at high risk of complications in the community in the UK
(PRINCIPLE): a randomised, controlled, open-label, adaptive platform
trial. Lancet. 2021;398(10303):843-855.
63. Baker JR, Mahdi M, Nicolau DV, Jr., et al. Early Th2 inflammation in
the upper respiratory mucosa as a predictor of severe COVID-19 and
modulation by early treatment with inhaled corticosteroids: a
mechanistic analysis. Lancet Respir Med. 2022.
64. Chang YC, Yang CF, Chen YF, et al. A siRNA targets and inhibits a
broad range of SARS-CoV-2 infections including Delta variant. EMBO
Mol Med. 2022;14(4):e15298.
65. Zhang H, Zhu W, Jin Q, et al. Inhalable nanocatchers for SARS-CoV-2
inhibition. Proc Natl Acad Sci U S A. 2021;118(29).
66. Planas D, Saunders N, Maes P, et al. Considerable escape of
SARS-CoV-2 Omicron to antibody neutralization. Nature.2022;602(7898):671-675.
67. Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in
the COVID-19 pandemic. Lancet. 2021;398(10317):2126-2128.
68. Bergwerk M, Gonen T, Lustig Y, et al. Covid-19 Breakthrough
Infections in Vaccinated Health Care Workers. N Engl J Med.2021;385(16):1474-1484.
69. Kousathanas A, Pairo-Castineira E, Rawlik K, et al. Whole genome
sequencing reveals host factors underlying critical Covid-19.Nature. 2022.
70. Buonafine CP, Paiatto BNM, Leal FB, et al. High prevalence of
SARS-CoV-2 infection among symptomatic healthcare workers in a large
university tertiary hospital in Sao Paulo, Brazil. BMC Infect
Dis. 2020;20(1):917.
71. Karampoor S, Hesamizadeh K, Maleki F, et al. A possible pathogenic
correlation between neutrophil elastase (NE) enzyme and inflammation in
the pathogenesis of coronavirus disease 2019 (COVID-19). Int
Immunopharmacol. 2021;100:108137.
72. Bouchard BA, Colovos C, Lawson MA, et al. Increased histone-DNA
complexes and endothelial-dependent thrombin generation in severe
COVID-19. Vascul Pharmacol. 2022;142:106950.
73. Arunachalam PS, Wimmers F, Mok CKP, et al. Systems biological
assessment of immunity to mild versus severe COVID-19 infection in
humans. Science. 2020;369(6508):1210-1220.
74. Zhang Q, Bastard P, Effort CHG, Cobat A, Casanova JL. Human genetic
and immunological determinants of critical COVID-19 pneumonia.Nature. 2022;603(7902):587-598.
75. Liu N, Zhang T, Ma L, et al. The impact of ABO blood group on
COVID-19 infection risk and mortality: A systematic review and
meta-analysis. Blood Rev. 2021;48:100785.
76. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated
with COVID-19-related death using OpenSAFELY. Nature.2020;584(7821):430-436.
77. Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19
pathogenesis, and exposure to air pollution: What is the connection?Ann N Y Acad Sci. 2021;1486(1):15-38.
78. Fiorito S, Soligo M, Gao Y, Ogulur I, Akdis CA, Bonini S. Is
epithelial barrier hypothesis the key to understanding the higher
incidence and excess mortality during COVID-19 pandemic? The case of
Northern Italy. Allergy. 2022.
79. Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and
epithelial interactions shape immunity in the lungs. Immunology.2020;160(2):171-182.
80. Annesi-Maesano I, Maesano CN, D’Amato M, D’Amato G. Pros and cons
for the role of air pollution on COVID-19 development. Allergy.2021;76(8):2647-2649.
81. Aghapour M, Ubags ND, Bruder D, et al. Role of air pollutants in
airway epithelial barrier dysfunction in asthma and COPD. Eur
Respir Rev. 2022;31(163).
82. Wang B, Chen H, Chan YL, Oliver BG. Is there an association between
the level of ambient air pollution and COVID-19? Am J Physiol Lung
Cell Mol Physiol. 2020;319(3):L416-L421.
83. Hammer MS, van Donkelaar A, Martin RV, et al. Effects of COVID-19
lockdowns on fine particulate matter concentrations. Sci Adv.2021;7(26).
84. Damialis A, Gilles S, Sofiev M, et al. Higher airborne pollen
concentrations correlated with increased SARS-CoV-2 infection rates, as
evidenced from 31 countries across the globe. Proc Natl Acad Sci U
S A. 2021;118(12).
85. Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links
between air pollution and COVID-19 in England. Environ Pollut.2021;268(Pt A):115859.
86. Bozack A, Pierre S, DeFelice N, et al. Long-Term Air Pollution
Exposure and COVID-19 Mortality: A Patient-Level Analysis from New York
City. Am J Respir Crit Care Med. 2022;205(6):651-662.
87. Dales R, Blanco-Vidal C, Romero-Meza R, Schoen S, Lukina A, Cakmak
S. The association between air pollution and COVID-19 related mortality
in Santiago, Chile: A daily time series analysis. Environ Res.2021;198:111284.
88. Koelle K, Martin MA, Antia R, Lopman B, Dean NE. The changing
epidemiology of SARS-CoV-2. Science. 2022;375(6585):1116-1121.
89. Starr TN, Greaney AJ, Hilton SK, et al. Deep Mutational Scanning of
SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and
ACE2 Binding. Cell. 2020;182(5):1295-1310 e1220.
90. Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility
and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science.2021;372(6538).
91. Volz E, Mishra S, Chand M, et al. Assessing transmissibility of
SARS-CoV-2 lineage B.1.1.7 in England. Nature.2021;593(7858):266-269.
92. Dhar MS, Marwal R, Vs R, et al. Genomic characterization and
epidemiology of an emerging SARS-CoV-2 variant in Delhi, India.Science. 2021;374(6570):995-999.
93. Mlcochova P, Kemp SA, Dhar MS, et al. SARS-CoV-2 B.1.617.2 Delta
variant replication and immune evasion. Nature.2021;599(7883):114-119.
94. Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the
SARS-CoV-2 Omicron variant in southern Africa. Nature.2022;603(7902):679-686.
95. Balloux F, Tan C, Swadling L, et al. The past, current and future
epidemiological dynamic of SARS-CoV-2. Oxf Open Immunol.2022;3(1):iqac003.
96. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the
risks of hospitalisation and death associated with SARS-CoV-2 omicron
(B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study.Lancet. 2022;399(10332):1303-1312.
97. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by
SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature.2022;603(7902):706-714.
98. Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant
replication in human bronchus and lung ex vivo. Nature.2022;603(7902):715-720.
99. Tegally H, Moir M, Everatt J, et al. Emergence of SARS-CoV-2 Omicron
lineages BA.4 and BA.5 in South Africa. Nat Med. 2022.
100. Wang Y, Chen R, Hu F, et al. Transmission, viral kinetics and
clinical characteristics of the emergent SARS-CoV-2 Delta VOC in
Guangzhou, China. EClinicalMedicine. 2021;40:101129.
101. Callaway E. What Omicron’s BA.4 and BA.5 variants mean for the
pandemic. Nature. 2022;606(7916):848-849.
102. Phan T, Boes S, McCullough M, et al. First detection of SARS-CoV-2
Omicron BA.4 variant in Western Pennsylvania, United States. J Med
Virol. 2022;94(9):4053-4055.
103. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape
antibodies elicited by Omicron infection. Nature. 2022.
104. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody
escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum.Cell. 2022;185(14):2422-2433 e2413.
105. Hachmann NP, Miller J, Collier AY, et al. Neutralization Escape by
SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. N Engl J
Med. 2022;387(1):86-88.
106. Gao YD, Agache I, Akdis M, et al. The effect of allergy and asthma
as a comorbidity on the susceptibility and outcomes of COVID-19.Int Immunol. 2022;34(4):177-188.
107. Bloom CI, Cullinan P, Wedzicha JA. Asthma Phenotypes and COVID-19
Risk: A Population-based Observational Study. Am J Respir Crit
Care Med. 2022;205(1):36-45.
108. Zein JG, Strauss R, Attaway AH, et al. Eosinophilia Is Associated
with Improved COVID-19 Outcomes in Inhaled Corticosteroid-Treated
Patients. J Allergy Clin Immunol Pract. 2022;10(3):742-750 e714.
109. Warner JO, Warner JA, Munblit D. Hypotheses to explain the
associations between asthma and the consequences of COVID-19 infection.Clin Exp Allergy. 2022;52(1):7-9.
110. Eggert LE, He Z, Collins W, et al. Asthma phenotypes, associated
comorbidities, and long-term symptoms in COVID-19. Allergy.2022;77(1):173-185.
111. Conway FM, Bloom CI, Shah PL. Susceptibility of Patients with
Airways Disease to SARS-CoV-2 Infection. Am J Respir Crit Care
Med. 2022.
112. Carr TF, Kraft M. Asthma and atopy in COVID-19: 2021 updates.J Allergy Clin Immunol. 2022;149(2):562-564.
113. Gaietto K, Freeman MC, DiCicco LA, et al. Asthma as a risk factor
for hospitalization in children with COVID-19: A nested case-control
study. Pediatr Allergy Immunol. 2022;33(1):e13696.
114. Han X, Xu J, Hou H, Yang H, Wang Y. Significant association of
pre-existing asthma with an increased risk for ICU admission among
COVID-19 patients: Evidence based on a meta-analysis. J Infect.2022;84(3):418-467.
115. Izquierdo JL, Soriano JB. Biologics may have a beneficial effect in
asthma patients with COVID-19. Eur Respir J. 2021;58(2).
116. Gill MA, Liu AH, Calatroni A, et al. Enhanced plasmacytoid
dendritic cell antiviral responses after omalizumab. J Allergy
Clin Immunol. 2018;141(5):1735-1743 e1739.
117. Jackson DJ, Busse WW, Bacharier LB, et al. Association of
respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor
ACE2. J Allergy Clin Immunol. 2020;146(1):203-206 e203.
118. Palmon PA, Jackson DJ, Denlinger LC. COVID-19 Infections and
Asthma. J Allergy Clin Immunol Pract. 2022;10(3):658-663.
119. Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: An overview.Diabetes Metab Syndr. 2021;15(3):869-875.
120. Montani D, Savale L, Noel N, et al. Post-acute COVID-19 syndrome.Eur Respir Rev. 2022;31(163).
121. Hayes LD, Ingram J, Sculthorpe NF. More Than 100 Persistent
Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Front Med
(Lausanne). 2021;8:750378.
122. Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications
of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1-C11.
123. Raman B, Bluemke DA, Luscher TF, Neubauer S. Long COVID: post-acute
sequelae of COVID-19 with a cardiovascular focus. Eur Heart J.2022;43(11):1157-1172.
124. Kayaaslan B, Eser F, Kalem AK, et al. Post-COVID syndrome: A
single-center questionnaire study on 1007 participants recovered from
COVID-19. J Med Virol. 2021;93(12):6566-6574.
125. Mehandru S, Merad M. Pathological sequelae of long-haul COVID.Nat Immunol. 2022;23(2):194-202.
126. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2
and mechanisms of immunopathological changes in COVID-19.Allergy. 2020;75(7):1564-1581.
127. Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19:
Mechanisms, clinical outcome, diagnostics, and perspectives-A report of
the European Academy of Allergy and Clinical Immunology (EAACI).Allergy. 2020;75(10):2445-2476.
128. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host
Response to SARS-CoV-2 Drives Development of COVID-19. Cell.2020;181(5):1036-1045 e1039.
129. Maggi E, Azzarone BG, Canonica GW, Moretta L. What we know and
still ignore on COVID-19 immune pathogenesis and a proposal based on the
experience of allergic disorders. Allergy. 2022;77(4):1114-1128.
130. Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the
pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735-2739.
131. Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and
immunopathology of COVID-19. Science. 2022;375(6585):1122-1127.
132. Yin X, Riva L, Pu Y, et al. MDA5 Governs the Innate Immune Response
to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep.2021;34(2):108628.
133. Rodrigues TS, de Sa KSG, Ishimoto AY, et al. Inflammasomes are
activated in response to SARS-CoV-2 infection and are associated with
COVID-19 severity in patients. J Exp Med. 2021;218(3).
134. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al.
Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and
Associations with Age and Disease Severity. Cell.2020;183(4):996-1012 e1019.
135. Galati D, Zanotta S, Capitelli L, Bocchino M. A bird’s eye view on
the role of dendritic cells in SARS-CoV-2 infection: Perspectives for
immune-based vaccines. Allergy. 2022;77(1):100-110.
136. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon
activity and inflammatory responses in severe COVID-19 patients.Science. 2020;369(6504):718-724.
137. Bastard P, Rosen LB, Zhang Q, et al. Auto-antibodies against type I
IFNs in patients with life-threatening COVID-19. Science. 2020.
138. Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies
in patients with COVID-19. Nature. 2021;595(7866):283-288.
139. Garcia-Beltran WF, Lam EC, Astudillo MG, et al.
COVID-19-neutralizing antibodies predict disease severity and survival.Cell. 2021;184(2):476-488 e411.
140. Ungar B, Lavin L, Golant AK, et al. The impact of dupilumab
treatment on severe acute respiratory syndrome coronavirus 2-coronavirus
disease 2019 antibody responses in patients with atopic dermatitis.Ann Allergy Asthma Immunol. 2022;128(6):734-736.
141. Sananez I, Raiden SC, Algieri SC, et al. A poor and delayed
anti-SARS-CoV2 IgG response is associated to severe COVID-19 in
children. EBioMedicine. 2021;72:103615.
142. Ozge Ardicli TC, Pattraporn Satitsuksanoa, Anita Dreher, Alexia
Cusini, Sandra Hutter, David Mirer, Beate R¨uckert, Hulda R. Jonsdottir,
Benjamin Weber, Carlo Cervia, Mubeccel Akdis, Onur Boyman, Alexander
Eggel, Marie-Charlotte, Br¨uggen CA, and Willem van de Veen. Exposure to
avian coronavirus vaccines is associated with increased levels of
SARS-CoV-2-cross-reactive antibodies. Authorea 2022.
143. Plassmeyer M, Alpan O, Corley MJ, et al. Caspases and therapeutic
potential of caspase inhibitors in moderate-severe SARS-CoV-2 infection
and long COVID. Allergy. 2022;77(1):118-129.
144. Rodda LB, Netland J, Shehata L, et al. Functional
SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19.Cell. 2021;184(1):169-183 e117.
145. Sokal A, Chappert P, Barba-Spaeth G, et al. Maturation and
persistence of the anti-SARS-CoV-2 memory B cell response. Cell.2021;184(5):1201-1213 e1214.
146. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological
dysfunction persists for 8 months following initial mild-to-moderate
SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-216.
147. Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings
GJ. Mast cell activation symptoms are prevalent in Long-COVID. Int
J Infect Dis. 2021;112:217-226.
148. Knight JS, Caricchio R, Casanova JL, et al. The intersection of
COVID-19 and autoimmunity. J Clin Invest. 2021;131(24).
149. Cheon IS, Li C, Son YM, et al. Immune signatures underlying
post-acute COVID-19 lung sequelae. Sci Immunol.2021;6(65):eabk1741.
150. Sumi T, Harada K. Immune response to SARS-CoV-2 in severe disease
and long COVID-19. iScience. 2022;25(8):104723.
151. Yong SJ. Long COVID or post-COVID-19 syndrome: putative
pathophysiology, risk factors, and treatments. Infect Dis (Lond).2021;53(10):737-754.
152. Pattini S, Malizia V, Travaglini A, et al. Telemedicine for
allergic patients during COVID-19. Pediatr Allergy Immunol.2020;31 Suppl 26:102-104.
153. Bousquet J, Akdis CA, Jutel M, et al. Intranasal corticosteroids in
allergic rhinitis in COVID-19 infected patients: An ARIA-EAACI
statement. Allergy. 2020;75(10):2440-2444.
154. Strauss R, Jawhari N, Attaway AH, et al. Intranasal Corticosteroids
Are Associated with Better Outcomes in Coronavirus Disease 2019. J
Allergy Clin Immunol Pract. 2021;9(11):3934-3940 e3939.
155. Webster KE, O’Byrne L, MacKeith S, Philpott C, Hopkins C, Burton
MJ. Interventions for the prevention of persistent post-COVID-19
olfactory dysfunction. Cochrane Database Syst Rev.2021;7:CD013877.
156. Morisada MV, Hwang J, Gill AS, Wilson MD, Strong EB, Steele TO.
Telemedicine, Patient Satisfaction, and Chronic Rhinosinusitis Care in
the Era of COVID-19. Am J Rhinol Allergy. 2021;35(4):494-499.
157. Beaney T, Salman D, Samee T, Mak V. Assessment and management of
adults with asthma during the covid-19 pandemic. BMJ.2020;369:m2092.
158. Ari A. Use of aerosolised medications at home for COVID-19.Lancet Respir Med. 2020;8(8):754-756.
159. Adir Y, Saliba W, Beurnier A, Humbert M. Asthma and COVID-19: an
update. Eur Respir Rev. 2021;30(162).
160. Klimek L, Pfaar O, Worm M, et al. Allergen immunotherapy in the
current COVID-19 pandemic: A position paper of AeDA, ARIA, EAACI, DGAKI
and GPA: Position paper of the German ARIA Group(A) in cooperation with
the Austrian ARIA Group(B), the Swiss ARIA Group(C), German Society for
Applied Allergology (AEDA)(D), German Society for Allergology and
Clinical Immunology (DGAKI)(E), Society for Pediatric Allergology
(GPA)(F) in cooperation with AG Clinical Immunology, Allergology and
Environmental Medicine of the DGHNO-KHC(G) and the European Academy of
Allergy and Clinical Immunology (EAACI)(H). Allergol Select.2020;4:44-52.
161. Compalati E, Erlewyn-Lajeunesse M, Runa Ali F, et al. Allergen
Immunotherapy in the Era of SARS-CoV-2. J Investig Allergol Clin
Immunol. 2020;30(6):459-461.
162. Martinez-Lopez A, Cuenca-Barrales C, Montero-Vilchez T,
Molina-Leyva A, Arias-Santiago S. Review of adverse cutaneous reactions
of pharmacologic interventions for COVID-19: A guide for the
dermatologist. J Am Acad Dermatol. 2020;83(6):1738-1748.
163. Dordal Culla MT, Herrera-Lasso Regas V, Marti-Garrido J, Rodriguez
Cumplido D, Vazquez-Revuelta P, Lleonart Bellfill R. Treating COVID-19:
Review of Drug Hypersensitivity Reactions. J Investig Allergol
Clin Immunol. 2020;30(6):385-399.
164. Manjaly Thomas ZR, Leuppi-Taegtmeyer A, Jamiolkowski D, et al.
Emerging treatments in COVID-19: Adverse drug reactions including drug
hypersensitivities. J Allergy Clin Immunol. 2020;146(4):786-789.
165. Virant FS, Randolph C, Nanda A, et al. Pulmonary Procedures During
the COVD-19 Pandemic: A Workgroup Report of the American Academy of
Allergy, Asthma, and Immunology (AAAAI) Asthma Diagnosis and Treatment
(ADT) Interest Section. J Allergy Clin Immunol Pract. 2022.
166. McGowan A, Laveneziana P, Bayat S, et al. International consensus
on lung function testing during the COVID-19 pandemic and beyond.ERJ Open Res. 2022;8(1).
167. Oreskovic NM, Kinane TB, Aryee E, Kuhlthau KA, Perrin JM. The
Unexpected Risks of COVID-19 on Asthma Control in Children. J
Allergy Clin Immunol Pract. 2020;8(8):2489-2491.
168. Hernandez N, Sanclemente G, Tamayo L, Lopez A, Seidel A, Colombian
Atopic Dermatitis Research Group M. Atopic dermatitis in the COVID-19
era: Results from a web-based survey. World Allergy Organ J.2021;14(8):100571.
169. El-Qushayri AE, Mahmoud MA, Salman S, Sarsik S, Nardone B.
Dupilumab therapy in atopic dermatitis is safe during COVID-19 infection
era: A systematic review and meta-analysis of 1611 patients.Dermatol Ther. 2022:e15476.
170. Pfaar O, Hamelmann E, Klimek L, et al. Allergen immunotherapy
during the COVID-19 pandemic-A survey of the German Society for Allergy
and Clinical Immunology. Clin Transl Allergy. 2022;12(3):e12134.
171. Rodriguez Del Rio P, Caimmi D, Rico P, et al. Real-life report of
allergen immunotherapy management during the COVID-19 outbreak in France
and Spain. Clin Exp Allergy. 2022;52(1):167-170.
172. Akca HM, Tuncer Kara K. Evaluation of urticaria patients before and
during the period of the COVID-19 pandemic: A retrospective study.Dermatol Ther. 2021;34(2):e14800.
173. Kulu H, Atasoy M, Ozyurt K, et al. The COVID-19 Pandemic Affects
Male Patients With Chronic Spontaneous Urticaria More Than Female
Patients. Front Immunol. 2021;12:722406.
174. Mitamura Y, Schulz D, Oro S, et al. Cutaneous and systemic
hyperinflammation drives maculopapular drug exanthema in severely ill
COVID-19 patients. Allergy. 2022;77(2):595-608.
175. Boyton RJ, Altmann DM. Risk of SARS-CoV-2 reinfection after natural
infection. Lancet. 2021;397(10280):1161-1163.
176. Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for
emerging infectious diseases. Nat Med. 2021;27(4):591-600.
177. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of
the COVID-19 vaccine effort: viruses, vaccines and variants versus
efficacy, effectiveness and escape. Nat Rev Immunol.2021;21(10):626-636.
178. Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD.
SARS-CoV-2 breakthrough infections in vaccinated individuals:
measurement, causes and impact. Nat Rev Immunol.2022;22(1):57-65.
179. Gattinger P, Niespodziana K, Stiasny K, et al. Neutralization of
SARS-CoV-2 requires antibodies against conformational receptor-binding
domain epitopes. Allergy. 2022;77(1):230-242.
180. Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der
Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and
its ligand, the human ACE2 receptor on binding affinity and kinetics.Elife. 2021;10.
181. Vogel M, Augusto G, Chang X, et al. Molecular definition of severe
acute respiratory syndrome coronavirus 2 receptor-binding domain
mutations: Receptor affinity versus neutralization of receptor
interaction. Allergy. 2022;77(1):143-149.
182. Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing
antibodies by SARS-CoV-2 spike protein variants. Elife. 2020;9.
183. Cele S, Jackson L, Khoury DS, et al. Omicron extensively but
incompletely escapes Pfizer BNT162b2 neutralization. Nature.2022;602(7898):654-656.
184. Carreno JM, Alshammary H, Tcheou J, et al. Activity of convalescent
and vaccine serum against SARS-CoV-2 Omicron. Nature.2022;602(7898):682-688.
185. Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, et al. Efficacy and
safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries
in Europe and Latin America (HERALD): a randomised, observer-blinded,
placebo-controlled, phase 2b/3 trial. Lancet Infect Dis.2022;22(3):329-340.
186. Gebre MS, Rauch S, Roth N, et al. Optimization of non-coding
regions for a non-modified mRNA COVID-19 vaccine. Nature.2022;601(7893):410-414.
187. Badano MN, Sabbione F, Keitelman I, et al. Humoral response to the
BBIBP-CorV vaccine over time in healthcare workers with or without
exposure to SARS-CoV-2. Mol Immunol. 2022;143:94-99.
188. Kaewborisuth C, Wanitchang A, Koonpaew S, et al. Chimeric
Virus-like Particle-Based COVID-19 Vaccine Confers Strong Protection
against SARS-CoV-2 Viremia in K18-hACE2 Mice. Vaccines (Basel).2022;10(5).
189. Volkmann A, Koopman G, Mooij P, et al. A Capsid Virus-Like
Particle-Based SARS-CoV-2 Vaccine Induces High Levels of Antibodies and
Protects Rhesus Macaques. Front Immunol. 2022;13:857440.
190. Gattinger P, Kratzer B, Tulaeva I, et al. Vaccine based on folded
RBD-PreS fusion protein with potential to induce sterilizing immunity to
SARS-CoV-2 variants. Allergy. 2022.
191. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the
BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med.2020;383(27):2603-2615.
192. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the
mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416.
193. Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273
Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med.2020;383(16):1544-1555.
194. Guebre-Xabier M, Patel N, Tian JH, et al. NVX-CoV2373 vaccine
protects cynomolgus macaque upper and lower airways against SARS-CoV-2
challenge. Vaccine. 2020;38(50):7892-7896.
195. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose
administration and the influence of the timing of the booster dose on
immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a
pooled analysis of four randomised trials. Lancet.2021;397(10277):881-891.
196. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and
efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost
COVID-19 vaccine: an interim analysis of a randomised controlled phase 3
trial in Russia. Lancet. 2021;397(10275):671-681.
197. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of
Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med.2021;384(23):2187-2201.
198. Bos R, Rutten L, van der Lubbe JEM, et al. Ad26 vector-based
COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike
immunogen induces potent humoral and cellular immune responses.NPJ Vaccines. 2020;5:91.
199. Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine
protects against SARS-CoV-2 in rhesus macaques. Nature.2020;586(7830):583-588.
200. Sadoff J, Le Gars M, Shukarev G, et al. Interim Results of a Phase
1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med.2021;384(19):1824-1835.
201. Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase
3 trials. Nat Med. 2021;27(2):205-211.
202. Ella R, Reddy S, Jogdand H, et al. Safety and immunogenicity of an
inactivated SARS-CoV-2 vaccine, BBV152: interim results from a
double-blind, randomised, multicentre, phase 2 trial, and 3-month
follow-up of a double-blind, randomised phase 1 trial. Lancet
Infect Dis. 2021;21(7):950-961.
203. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and
immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults
aged 18-59 years: a randomised, double-blind, placebo-controlled, phase
1/2 clinical trial. Lancet Infect Dis. 2021;21(2):181-192.
204. Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity
of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged
60 years and older: a randomised, double-blind, placebo-controlled,
phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(6):803-812.
205. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and
immunogenicity of a recombinant adenovirus type-5 vectored COVID-19
vaccine: a dose-escalation, open-label, non-randomised, first-in-human
trial. Lancet. 2020;395(10240):1845-1854.
206. Wu S, Huang J, Zhang Z, et al. Safety, tolerability, and
immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19
vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and
randomised phase 1 clinical trial. Lancet Infect Dis.2021;21(12):1654-1664.
207. Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of
NVX-CoV2373 Covid-19 Vaccine. N Engl J Med.2021;385(13):1172-1183.
208. Keech C, Albert G, Cho I, et al. Phase 1-2 Trial of a SARS-CoV-2
Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med.2020;383(24):2320-2332.
209. Falsey AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 Safety and
Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N Engl J
Med. 2021;385(25):2348-2360.
210. Bogdanov G, Bogdanov I, Kazandjieva J, Tsankov N. Cutaneous adverse
effects of the available COVID-19 vaccines. Clin Dermatol.2021;39(3):523-531.
211. de Vrieze J. Pfizer’s vaccine raises allergy concerns.Science. 2021;371(6524):10-11.
212. Alhumaid S, Al Mutair A, Al Alawi Z, et al. Anaphylactic and
nonanaphylactic reactions to SARS-CoV-2 vaccines: a systematic review
and meta-analysis. Allergy Asthma Clin Immunol. 2021;17(1):109.
213. Klein NP, Lewis N, Goddard K, et al. Surveillance for Adverse
Events After COVID-19 mRNA Vaccination. JAMA.2021;326(14):1390-1399.
214. Maltezou HC, Anastassopoulou C, Hatziantoniou S, Poland GA, Tsakris
A. Anaphylaxis rates associated with COVID-19 vaccines are comparable to
those of other vaccines. Vaccine. 2022;40(2):183-186.
215. Haaf P, Kuster GM, Mueller C, et al. The very low risk of
myocarditis and pericarditis after mRNA COVID-19 vaccination should not
discourage vaccination. Swiss Med Wkly. 2021;151:w30087.
216. Lau CL, Galea I. Risk-benefit analysis of COVID-19 vaccines - a
neurological perspective. Nat Rev Neurol. 2022;18(2):69-70.
217. Bellanti JA. COVID-19 vaccines and vaccine hesitancy: Role of the
allergist/immunologist in promotion of vaccine acceptance. Allergy
Asthma Proc. 2021;42(5):386-394.
218. Barbaud A, Garvey LH, Arcolaci A, et al. Allergies and COVID-19
vaccines: An ENDA/EAACI Position paper. Allergy. 2022.
219. Garvey LH, Nasser S. Anaphylaxis to the first COVID-19 vaccine: is
polyethylene glycol (PEG) the culprit? Br J Anaesth.2021;126(3):e106-e108.
220. Turner PJ, Ansotegui IJ, Campbell DE, et al. COVID-19
vaccine-associated anaphylaxis: A statement of the World Allergy
Organization Anaphylaxis Committee. World Allergy Organ J.2021;14(2):100517.
221. Stone CA, Jr., Liu Y, Relling MV, et al. Immediate Hypersensitivity
to Polyethylene Glycols and Polysorbates: More Common Than We Have
Recognized. J Allergy Clin Immunol Pract. 2019;7(5):1533-1540
e1538.
222. Bigini P, Gobbi M, Bonati M, et al. The role and impact of
polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines.Nat Nanotechnol. 2021;16(11):1169-1171.
223. Troelnikov A, Perkins G, Yuson C, et al. Basophil reactivity to
BNT162b2 is mediated by PEGylated lipid nanoparticles in patients with
PEG allergy. J Allergy Clin Immunol. 2021;148(1):91-95.
224. Zhou ZH, Stone CA, Jr., Jakubovic B, et al. Anti-PEG IgE in
anaphylaxis associated with polyethylene glycol. J Allergy Clin
Immunol Pract. 2021;9(4):1731-1733 e1733.
225. Erdeljic Turk V. Anaphylaxis associated with the mRNA COVID-19
vaccines: Approach to allergy investigation. Clin Immunol.2021;227:108748.
226. Caballero ML, Quirce S. Excipients as Potential Agents of
Anaphylaxis in Vaccines: Analyzing the Formulations of Currently
Authorized COVID-19 Vaccines. J Investig Allergol Clin Immunol.2021;31(1):92-93.
227. Sokolowska M, Eiwegger T, Ollert M, et al. EAACI statement on the
diagnosis, management and prevention of severe allergic reactions to
COVID-19 vaccines. Allergy. 2021;76(6):1629-1639.
228. Pitlick MM, Sitek AN, Kinate SA, Joshi AY, Park MA. Polyethylene
glycol and polysorbate skin testing in the evaluation of coronavirus
disease 2019 vaccine reactions: Early report. Ann Allergy Asthma
Immunol. 2021;126(6):735-738.
229. Warren CM, Snow TT, Lee AS, et al. Assessment of Allergic and
Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory
Testing in a US Regional Health System. JAMA Netw Open.2021;4(9):e2125524.
230. Wolfson AR, Robinson LB, Li L, et al. First-Dose mRNA COVID-19
Vaccine Allergic Reactions: Limited Role for Excipient Skin Testing.J Allergy Clin Immunol Pract. 2021;9(9):3308-3320 e3303.
231. Kohli-Pamnani A, Zapata K, Gibson T, Kwittken PL. Coronavirus
disease 2019 messenger RNA vaccine skin tests and serum histamine levels
in allergic reactions. Ann Allergy Asthma Immunol.2022;128(3):339.
232. Aurich S, Dolle-Bierke S, Francuzik W, et al. Anaphylaxis in
Elderly Patients-Data From the European Anaphylaxis Registry.Front Immunol. 2019;10:750.
233. Albery GF, Becker DJ, Brierley L, et al. The science of the
host-virus network. Nat Microbiol. 2021;6(12):1483-1492.
234. Kucharski AJ, Cohen C. Effective surveillance of variants.Science. 2022;375(6587):1349-1350.
235. Telenti A, Arvin A, Corey L, et al. After the pandemic:
perspectives on the future trajectory of COVID-19. Nature.2021;596(7873):495-504.
236. Altmann DM, Boyton RJ. COVID-19 vaccination: The road ahead.Science. 2022;375(6585):1127-1132.