REFERENCES
1. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy.2020;75(7):1730-1741.
2. Riggioni C, Comberiati P, Giovannini M, et al. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy.2020;75(10):2503-2541.
3. Klimek L, Jutel M, Bousquet J, et al. Management of patients with chronic rhinosinusitis during the COVID-19 pandemic-An EAACI position paper. Allergy. 2021;76(3):677-688.
4. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280 e278.
5. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-154.
6. Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861-865.
7. Johnson BA, Xie X, Bailey AL, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature.2021;591(7849):293-299.
8. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829-2845.
9. Lin DY, Gu Y, Wheeler B, et al. Effectiveness of Covid-19 Vaccines over a 9-Month Period in North Carolina. N Engl J Med.2022;386(10):933-941.
10. Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med. 2021;385(15):1355-1371.
11. Hacisuleyman E, Hale C, Saito Y, et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. N Engl J Med.2021;384(23):2212-2218.
12. Servellita V, Syed AM, Morris MK, et al. Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell. 2022;185(9):1539-1548 e1535.
13. Qiu C, Cui C, Hautefort C, et al. Olfactory and Gustatory Dysfunction as an Early Identifier of COVID-19 in Adults and Children: An International Multicenter Study. Otolaryngol Head Neck Surg.2020;163(4):714-721.
14. Hagemann J, Onorato GL, Jutel M, et al. Differentiation of COVID-19 signs and symptoms from allergic rhinitis and common cold: An ARIA-EAACI-GA(2) LEN consensus. Allergy. 2021;76(8):2354-2366.
15. Marzano AV, Cassano N, Genovese G, Moltrasio C, Vena GA. Cutaneous manifestations in patients with COVID-19: a preliminary review of an emerging issue. Br J Dermatol. 2020;183(3):431-442.
16. Tan SW, Tam YC, Oh CC. Skin manifestations of COVID-19: A worldwide review. JAAD Int. 2021;2:119-133.
17. Ranard BL, Megjhani M, Terilli K, et al. Identification of Endotypes of Hospitalized COVID-19 Patients. Front Med (Lausanne).2021;8:770343.
18. Gutierrez-Gutierrez B, Del Toro MD, Borobia AM, et al. Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19: a multicentre cohort study. Lancet Infect Dis. 2021;21(6):783-792.
19. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615.
20. Nabavi N. Long covid: How to define it and how to manage it.BMJ. 2020;370:m3489.
21. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet.2021;398(10302):747-758.
22. Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children.N Engl J Med. 2020;382(17):1663-1665.
23. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med.2020;383(4):334-346.
24. Chou J, Thomas PG, Randolph AG. Immunology of SARS-CoV-2 infection in children. Nat Immunol. 2022;23(2):177-185.
25. McArdle AJ, Vito O, Patel H, et al. Treatment of Multisystem Inflammatory Syndrome in Children. N Engl J Med.2021;385(1):11-22.
26. Son MBF, Murray N, Friedman K, et al. Multisystem Inflammatory Syndrome in Children - Initial Therapy and Outcomes. N Engl J Med. 2021;385(1):23-34.
27. Rodino KG, Smith KP, Pettengill MA. Novel Assays for Molecular Detection of Severe Acute Respiratory Syndrome Coronavirus 2. Clin Lab Med. 2022;42(2):299-307.
28. Mekonnen D, Mengist HM, Derbie A, et al. Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A systematic review and meta-analysis. Rev Med Virol. 2021;31(3):e2181.
29. Chiereghin A, Zagari RM, Galli S, et al. Recent Advances in the Evaluation of Serological Assays for the Diagnosis of SARS-CoV-2 Infection and COVID-19. Front Public Health. 2020;8:620222.
30. Garcia-Finana M, Buchan IE. Rapid antigen testing in COVID-19 responses. Science. 2021;372(6542):571-572.
31. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med.2020;26(8):1200-1204.
32. Han MS, Choi EH, Chang SH, et al. Clinical Characteristics and Viral RNA Detection in Children With Coronavirus Disease 2019 in the Republic of Korea. JAMA Pediatr. 2021;175(1):73-80.
33. Radermecker C, Detrembleur N, Guiot J, et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J Exp Med.2020;217(12).
34. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12).
35. Zhang JJ, Dong X, Liu GH, Gao YD. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin Rev Allergy Immunol. 2022.
36. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy.2021;76(2):428-455.
37. Haldane V, De Foo C, Abdalla SM, et al. Health systems resilience in managing the COVID-19 pandemic: lessons from 28 countries. Nat Med. 2021;27(6):964-980.
38. Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci U S A. 2020;117(30):17720-17726.
39. Miyasaka M. Is BCG vaccination causally related to reduced COVID-19 mortality? EMBO Mol Med. 2020;12(6):e12661.
40. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, et al. Activate: Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell. 2020;183(2):315-323 e319.
41. Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andres J, et al. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell. 2020;181(5):969-977.
42. Lundberg L, Bygdell M, Stukat von Feilitzen G, et al. Recent MMR vaccination in health care workers and Covid-19: A test negative case-control study. Vaccine. 2021;39(32):4414-4418.
43. Gold JE, Baumgartl WH, Okyay RA, et al. Analysis of Measles-Mumps-Rubella (MMR) Titers of Recovered COVID-19 Patients.mBio. 2020;11(6).
44. Ozdemir O. Measles-Mumps-Rubella Vaccine and COVID-19 Relationship.mBio. 2020;11(5).
45. Patel AB, Verma A. Nasal ACE2 Levels and COVID-19 in Children.JAMA. 2020;323(23):2386-2387.
46. Muus C, Luecken MD, Eraslan G, et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med.2021;27(3):546-559.
47. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80-88 e88.
48. Morrison CB, Edwards CE, Shaffer KM, et al. SARS-CoV-2 infection of airway cells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13. Proc Natl Acad Sci U S A.2022;119(16):e2119680119.
49. Xu Y, Gao R, Zhu G, et al. Genetic variation of allergic disease is associated with the susceptibility to COVID-19. J Infect.2022;84(5):e92-e93.
50. Ren J, Pang W, Luo Y, et al. Impact of Allergic Rhinitis and Asthma on COVID-19 Infection, Hospitalization, and Mortality. J Allergy Clin Immunol Pract. 2022;10(1):124-133.
51. Marin C, Hummel T, Liu Z, Mullol J. Chronic Rhinosinusitis and COVID-19. J Allergy Clin Immunol Pract. 2022.
52. Takabayashi T, Yoshida K, Imoto Y, Schleimer RP, Fujieda S. Regulation of the Expression of SARS-CoV-2 Receptor Angiotensin-Converting Enzyme 2 in Nasal Mucosa. Am J Rhinol Allergy. 2022;36(1):115-122.
53. Marin C, Tubita V, Langdon C, et al. ACE2 downregulation in olfactory mucosa: Eosinophilic rhinosinusitis as COVID-19 protective factor? Allergy. 2021;76(9):2904-2907.
54. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell.2020;181(5):1016-1035 e1019.
55. Blume C, Jackson CL, Spalluto CM, et al. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet.2021;53(2):205-214.
56. Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020;324(13):1307-1316.
57. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704.
58. Sinha S, Rosin NL, Arora R, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201-211.
59. Peters MC, Sajuthi S, Deford P, et al. COVID-19-related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83-90.
60. Milne S, Li X, Yang CX, et al. Inhaled corticosteroids downregulate SARS-CoV-2-related genes in COPD: results from a randomised controlled trial. Eur Respir J. 2021;58(1).
61. Ramakrishnan S, Nicolau DV, Jr., Langford B, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med.2021;9(7):763-772.
62. Yu LM, Bafadhel M, Dorward J, et al. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;398(10303):843-855.
63. Baker JR, Mahdi M, Nicolau DV, Jr., et al. Early Th2 inflammation in the upper respiratory mucosa as a predictor of severe COVID-19 and modulation by early treatment with inhaled corticosteroids: a mechanistic analysis. Lancet Respir Med. 2022.
64. Chang YC, Yang CF, Chen YF, et al. A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant. EMBO Mol Med. 2022;14(4):e15298.
65. Zhang H, Zhu W, Jin Q, et al. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc Natl Acad Sci U S A. 2021;118(29).
66. Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature.2022;602(7898):671-675.
67. Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126-2128.
68. Bergwerk M, Gonen T, Lustig Y, et al. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N Engl J Med.2021;385(16):1474-1484.
69. Kousathanas A, Pairo-Castineira E, Rawlik K, et al. Whole genome sequencing reveals host factors underlying critical Covid-19.Nature. 2022.
70. Buonafine CP, Paiatto BNM, Leal FB, et al. High prevalence of SARS-CoV-2 infection among symptomatic healthcare workers in a large university tertiary hospital in Sao Paulo, Brazil. BMC Infect Dis. 2020;20(1):917.
71. Karampoor S, Hesamizadeh K, Maleki F, et al. A possible pathogenic correlation between neutrophil elastase (NE) enzyme and inflammation in the pathogenesis of coronavirus disease 2019 (COVID-19). Int Immunopharmacol. 2021;100:108137.
72. Bouchard BA, Colovos C, Lawson MA, et al. Increased histone-DNA complexes and endothelial-dependent thrombin generation in severe COVID-19. Vascul Pharmacol. 2022;142:106950.
73. Arunachalam PS, Wimmers F, Mok CKP, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210-1220.
74. Zhang Q, Bastard P, Effort CHG, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia.Nature. 2022;603(7902):587-598.
75. Liu N, Zhang T, Ma L, et al. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis. Blood Rev. 2021;48:100785.
76. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature.2020;584(7821):430-436.
77. Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection?Ann N Y Acad Sci. 2021;1486(1):15-38.
78. Fiorito S, Soligo M, Gao Y, Ogulur I, Akdis CA, Bonini S. Is epithelial barrier hypothesis the key to understanding the higher incidence and excess mortality during COVID-19 pandemic? The case of Northern Italy. Allergy. 2022.
79. Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology.2020;160(2):171-182.
80. Annesi-Maesano I, Maesano CN, D’Amato M, D’Amato G. Pros and cons for the role of air pollution on COVID-19 development. Allergy.2021;76(8):2647-2649.
81. Aghapour M, Ubags ND, Bruder D, et al. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev. 2022;31(163).
82. Wang B, Chen H, Chan YL, Oliver BG. Is there an association between the level of ambient air pollution and COVID-19? Am J Physiol Lung Cell Mol Physiol. 2020;319(3):L416-L421.
83. Hammer MS, van Donkelaar A, Martin RV, et al. Effects of COVID-19 lockdowns on fine particulate matter concentrations. Sci Adv.2021;7(26).
84. Damialis A, Gilles S, Sofiev M, et al. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc Natl Acad Sci U S A. 2021;118(12).
85. Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links between air pollution and COVID-19 in England. Environ Pollut.2021;268(Pt A):115859.
86. Bozack A, Pierre S, DeFelice N, et al. Long-Term Air Pollution Exposure and COVID-19 Mortality: A Patient-Level Analysis from New York City. Am J Respir Crit Care Med. 2022;205(6):651-662.
87. Dales R, Blanco-Vidal C, Romero-Meza R, Schoen S, Lukina A, Cakmak S. The association between air pollution and COVID-19 related mortality in Santiago, Chile: A daily time series analysis. Environ Res.2021;198:111284.
88. Koelle K, Martin MA, Antia R, Lopman B, Dean NE. The changing epidemiology of SARS-CoV-2. Science. 2022;375(6585):1116-1121.
89. Starr TN, Greaney AJ, Hilton SK, et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell. 2020;182(5):1295-1310 e1220.
90. Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science.2021;372(6538).
91. Volz E, Mishra S, Chand M, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature.2021;593(7858):266-269.
92. Dhar MS, Marwal R, Vs R, et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India.Science. 2021;374(6570):995-999.
93. Mlcochova P, Kemp SA, Dhar MS, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature.2021;599(7883):114-119.
94. Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature.2022;603(7902):679-686.
95. Balloux F, Tan C, Swadling L, et al. The past, current and future epidemiological dynamic of SARS-CoV-2. Oxf Open Immunol.2022;3(1):iqac003.
96. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study.Lancet. 2022;399(10332):1303-1312.
97. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature.2022;603(7902):706-714.
98. Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature.2022;603(7902):715-720.
99. Tegally H, Moir M, Everatt J, et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat Med. 2022.
100. Wang Y, Chen R, Hu F, et al. Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine. 2021;40:101129.
101. Callaway E. What Omicron’s BA.4 and BA.5 variants mean for the pandemic. Nature. 2022;606(7916):848-849.
102. Phan T, Boes S, McCullough M, et al. First detection of SARS-CoV-2 Omicron BA.4 variant in Western Pennsylvania, United States. J Med Virol. 2022;94(9):4053-4055.
103. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022.
104. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum.Cell. 2022;185(14):2422-2433 e2413.
105. Hachmann NP, Miller J, Collier AY, et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med. 2022;387(1):86-88.
106. Gao YD, Agache I, Akdis M, et al. The effect of allergy and asthma as a comorbidity on the susceptibility and outcomes of COVID-19.Int Immunol. 2022;34(4):177-188.
107. Bloom CI, Cullinan P, Wedzicha JA. Asthma Phenotypes and COVID-19 Risk: A Population-based Observational Study. Am J Respir Crit Care Med. 2022;205(1):36-45.
108. Zein JG, Strauss R, Attaway AH, et al. Eosinophilia Is Associated with Improved COVID-19 Outcomes in Inhaled Corticosteroid-Treated Patients. J Allergy Clin Immunol Pract. 2022;10(3):742-750 e714.
109. Warner JO, Warner JA, Munblit D. Hypotheses to explain the associations between asthma and the consequences of COVID-19 infection.Clin Exp Allergy. 2022;52(1):7-9.
110. Eggert LE, He Z, Collins W, et al. Asthma phenotypes, associated comorbidities, and long-term symptoms in COVID-19. Allergy.2022;77(1):173-185.
111. Conway FM, Bloom CI, Shah PL. Susceptibility of Patients with Airways Disease to SARS-CoV-2 Infection. Am J Respir Crit Care Med. 2022.
112. Carr TF, Kraft M. Asthma and atopy in COVID-19: 2021 updates.J Allergy Clin Immunol. 2022;149(2):562-564.
113. Gaietto K, Freeman MC, DiCicco LA, et al. Asthma as a risk factor for hospitalization in children with COVID-19: A nested case-control study. Pediatr Allergy Immunol. 2022;33(1):e13696.
114. Han X, Xu J, Hou H, Yang H, Wang Y. Significant association of pre-existing asthma with an increased risk for ICU admission among COVID-19 patients: Evidence based on a meta-analysis. J Infect.2022;84(3):418-467.
115. Izquierdo JL, Soriano JB. Biologics may have a beneficial effect in asthma patients with COVID-19. Eur Respir J. 2021;58(2).
116. Gill MA, Liu AH, Calatroni A, et al. Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab. J Allergy Clin Immunol. 2018;141(5):1735-1743 e1739.
117. Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203-206 e203.
118. Palmon PA, Jackson DJ, Denlinger LC. COVID-19 Infections and Asthma. J Allergy Clin Immunol Pract. 2022;10(3):658-663.
119. Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: An overview.Diabetes Metab Syndr. 2021;15(3):869-875.
120. Montani D, Savale L, Noel N, et al. Post-acute COVID-19 syndrome.Eur Respir Rev. 2022;31(163).
121. Hayes LD, Ingram J, Sculthorpe NF. More Than 100 Persistent Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Front Med (Lausanne). 2021;8:750378.
122. Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1-C11.
123. Raman B, Bluemke DA, Luscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J.2022;43(11):1157-1172.
124. Kayaaslan B, Eser F, Kalem AK, et al. Post-COVID syndrome: A single-center questionnaire study on 1007 participants recovered from COVID-19. J Med Virol. 2021;93(12):6566-6574.
125. Mehandru S, Merad M. Pathological sequelae of long-haul COVID.Nat Immunol. 2022;23(2):194-202.
126. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.Allergy. 2020;75(7):1564-1581.
127. Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI).Allergy. 2020;75(10):2445-2476.
128. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell.2020;181(5):1036-1045 e1039.
129. Maggi E, Azzarone BG, Canonica GW, Moretta L. What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy. 2022;77(4):1114-1128.
130. Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735-2739.
131. Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122-1127.
132. Yin X, Riva L, Pu Y, et al. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep.2021;34(2):108628.
133. Rodrigues TS, de Sa KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3).
134. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell.2020;183(4):996-1012 e1019.
135. Galati D, Zanotta S, Capitelli L, Bocchino M. A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy. 2022;77(1):100-110.
136. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients.Science. 2020;369(6504):718-724.
137. Bastard P, Rosen LB, Zhang Q, et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020.
138. Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-288.
139. Garcia-Beltran WF, Lam EC, Astudillo MG, et al. COVID-19-neutralizing antibodies predict disease severity and survival.Cell. 2021;184(2):476-488 e411.
140. Ungar B, Lavin L, Golant AK, et al. The impact of dupilumab treatment on severe acute respiratory syndrome coronavirus 2-coronavirus disease 2019 antibody responses in patients with atopic dermatitis.Ann Allergy Asthma Immunol. 2022;128(6):734-736.
141. Sananez I, Raiden SC, Algieri SC, et al. A poor and delayed anti-SARS-CoV2 IgG response is associated to severe COVID-19 in children. EBioMedicine. 2021;72:103615.
142. Ozge Ardicli TC, Pattraporn Satitsuksanoa, Anita Dreher, Alexia Cusini, Sandra Hutter, David Mirer, Beate R¨uckert, Hulda R. Jonsdottir, Benjamin Weber, Carlo Cervia, Mubeccel Akdis, Onur Boyman, Alexander Eggel, Marie-Charlotte, Br¨uggen CA, and Willem van de Veen. Exposure to avian coronavirus vaccines is associated with increased levels of SARS-CoV-2-cross-reactive antibodies. Authorea 2022.
143. Plassmeyer M, Alpan O, Corley MJ, et al. Caspases and therapeutic potential of caspase inhibitors in moderate-severe SARS-CoV-2 infection and long COVID. Allergy. 2022;77(1):118-129.
144. Rodda LB, Netland J, Shehata L, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19.Cell. 2021;184(1):169-183 e117.
145. Sokal A, Chappert P, Barba-Spaeth G, et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell.2021;184(5):1201-1213 e1214.
146. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-216.
147. Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. Mast cell activation symptoms are prevalent in Long-COVID. Int J Infect Dis. 2021;112:217-226.
148. Knight JS, Caricchio R, Casanova JL, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24).
149. Cheon IS, Li C, Son YM, et al. Immune signatures underlying post-acute COVID-19 lung sequelae. Sci Immunol.2021;6(65):eabk1741.
150. Sumi T, Harada K. Immune response to SARS-CoV-2 in severe disease and long COVID-19. iScience. 2022;25(8):104723.
151. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond).2021;53(10):737-754.
152. Pattini S, Malizia V, Travaglini A, et al. Telemedicine for allergic patients during COVID-19. Pediatr Allergy Immunol.2020;31 Suppl 26:102-104.
153. Bousquet J, Akdis CA, Jutel M, et al. Intranasal corticosteroids in allergic rhinitis in COVID-19 infected patients: An ARIA-EAACI statement. Allergy. 2020;75(10):2440-2444.
154. Strauss R, Jawhari N, Attaway AH, et al. Intranasal Corticosteroids Are Associated with Better Outcomes in Coronavirus Disease 2019. J Allergy Clin Immunol Pract. 2021;9(11):3934-3940 e3939.
155. Webster KE, O’Byrne L, MacKeith S, Philpott C, Hopkins C, Burton MJ. Interventions for the prevention of persistent post-COVID-19 olfactory dysfunction. Cochrane Database Syst Rev.2021;7:CD013877.
156. Morisada MV, Hwang J, Gill AS, Wilson MD, Strong EB, Steele TO. Telemedicine, Patient Satisfaction, and Chronic Rhinosinusitis Care in the Era of COVID-19. Am J Rhinol Allergy. 2021;35(4):494-499.
157. Beaney T, Salman D, Samee T, Mak V. Assessment and management of adults with asthma during the covid-19 pandemic. BMJ.2020;369:m2092.
158. Ari A. Use of aerosolised medications at home for COVID-19.Lancet Respir Med. 2020;8(8):754-756.
159. Adir Y, Saliba W, Beurnier A, Humbert M. Asthma and COVID-19: an update. Eur Respir Rev. 2021;30(162).
160. Klimek L, Pfaar O, Worm M, et al. Allergen immunotherapy in the current COVID-19 pandemic: A position paper of AeDA, ARIA, EAACI, DGAKI and GPA: Position paper of the German ARIA Group(A) in cooperation with the Austrian ARIA Group(B), the Swiss ARIA Group(C), German Society for Applied Allergology (AEDA)(D), German Society for Allergology and Clinical Immunology (DGAKI)(E), Society for Pediatric Allergology (GPA)(F) in cooperation with AG Clinical Immunology, Allergology and Environmental Medicine of the DGHNO-KHC(G) and the European Academy of Allergy and Clinical Immunology (EAACI)(H). Allergol Select.2020;4:44-52.
161. Compalati E, Erlewyn-Lajeunesse M, Runa Ali F, et al. Allergen Immunotherapy in the Era of SARS-CoV-2. J Investig Allergol Clin Immunol. 2020;30(6):459-461.
162. Martinez-Lopez A, Cuenca-Barrales C, Montero-Vilchez T, Molina-Leyva A, Arias-Santiago S. Review of adverse cutaneous reactions of pharmacologic interventions for COVID-19: A guide for the dermatologist. J Am Acad Dermatol. 2020;83(6):1738-1748.
163. Dordal Culla MT, Herrera-Lasso Regas V, Marti-Garrido J, Rodriguez Cumplido D, Vazquez-Revuelta P, Lleonart Bellfill R. Treating COVID-19: Review of Drug Hypersensitivity Reactions. J Investig Allergol Clin Immunol. 2020;30(6):385-399.
164. Manjaly Thomas ZR, Leuppi-Taegtmeyer A, Jamiolkowski D, et al. Emerging treatments in COVID-19: Adverse drug reactions including drug hypersensitivities. J Allergy Clin Immunol. 2020;146(4):786-789.
165. Virant FS, Randolph C, Nanda A, et al. Pulmonary Procedures During the COVD-19 Pandemic: A Workgroup Report of the American Academy of Allergy, Asthma, and Immunology (AAAAI) Asthma Diagnosis and Treatment (ADT) Interest Section. J Allergy Clin Immunol Pract. 2022.
166. McGowan A, Laveneziana P, Bayat S, et al. International consensus on lung function testing during the COVID-19 pandemic and beyond.ERJ Open Res. 2022;8(1).
167. Oreskovic NM, Kinane TB, Aryee E, Kuhlthau KA, Perrin JM. The Unexpected Risks of COVID-19 on Asthma Control in Children. J Allergy Clin Immunol Pract. 2020;8(8):2489-2491.
168. Hernandez N, Sanclemente G, Tamayo L, Lopez A, Seidel A, Colombian Atopic Dermatitis Research Group M. Atopic dermatitis in the COVID-19 era: Results from a web-based survey. World Allergy Organ J.2021;14(8):100571.
169. El-Qushayri AE, Mahmoud MA, Salman S, Sarsik S, Nardone B. Dupilumab therapy in atopic dermatitis is safe during COVID-19 infection era: A systematic review and meta-analysis of 1611 patients.Dermatol Ther. 2022:e15476.
170. Pfaar O, Hamelmann E, Klimek L, et al. Allergen immunotherapy during the COVID-19 pandemic-A survey of the German Society for Allergy and Clinical Immunology. Clin Transl Allergy. 2022;12(3):e12134.
171. Rodriguez Del Rio P, Caimmi D, Rico P, et al. Real-life report of allergen immunotherapy management during the COVID-19 outbreak in France and Spain. Clin Exp Allergy. 2022;52(1):167-170.
172. Akca HM, Tuncer Kara K. Evaluation of urticaria patients before and during the period of the COVID-19 pandemic: A retrospective study.Dermatol Ther. 2021;34(2):e14800.
173. Kulu H, Atasoy M, Ozyurt K, et al. The COVID-19 Pandemic Affects Male Patients With Chronic Spontaneous Urticaria More Than Female Patients. Front Immunol. 2021;12:722406.
174. Mitamura Y, Schulz D, Oro S, et al. Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients. Allergy. 2022;77(2):595-608.
175. Boyton RJ, Altmann DM. Risk of SARS-CoV-2 reinfection after natural infection. Lancet. 2021;397(10280):1161-1163.
176. Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med. 2021;27(4):591-600.
177. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol.2021;21(10):626-636.
178. Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol.2022;22(1):57-65.
179. Gattinger P, Niespodziana K, Stiasny K, et al. Neutralization of SARS-CoV-2 requires antibodies against conformational receptor-binding domain epitopes. Allergy. 2022;77(1):230-242.
180. Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics.Elife. 2021;10.
181. Vogel M, Augusto G, Chang X, et al. Molecular definition of severe acute respiratory syndrome coronavirus 2 receptor-binding domain mutations: Receptor affinity versus neutralization of receptor interaction. Allergy. 2022;77(1):143-149.
182. Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020;9.
183. Cele S, Jackson L, Khoury DS, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature.2022;602(7898):654-656.
184. Carreno JM, Alshammary H, Tcheou J, et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature.2022;602(7898):682-688.
185. Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis.2022;22(3):329-340.
186. Gebre MS, Rauch S, Roth N, et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature.2022;601(7893):410-414.
187. Badano MN, Sabbione F, Keitelman I, et al. Humoral response to the BBIBP-CorV vaccine over time in healthcare workers with or without exposure to SARS-CoV-2. Mol Immunol. 2022;143:94-99.
188. Kaewborisuth C, Wanitchang A, Koonpaew S, et al. Chimeric Virus-like Particle-Based COVID-19 Vaccine Confers Strong Protection against SARS-CoV-2 Viremia in K18-hACE2 Mice. Vaccines (Basel).2022;10(5).
189. Volkmann A, Koopman G, Mooij P, et al. A Capsid Virus-Like Particle-Based SARS-CoV-2 Vaccine Induces High Levels of Antibodies and Protects Rhesus Macaques. Front Immunol. 2022;13:857440.
190. Gattinger P, Kratzer B, Tulaeva I, et al. Vaccine based on folded RBD-PreS fusion protein with potential to induce sterilizing immunity to SARS-CoV-2 variants. Allergy. 2022.
191. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med.2020;383(27):2603-2615.
192. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416.
193. Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med.2020;383(16):1544-1555.
194. Guebre-Xabier M, Patel N, Tian JH, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine. 2020;38(50):7892-7896.
195. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet.2021;397(10277):881-891.
196. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-681.
197. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med.2021;384(23):2187-2201.
198. Bos R, Rutten L, van der Lubbe JEM, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses.NPJ Vaccines. 2020;5:91.
199. Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature.2020;586(7830):583-588.
200. Sadoff J, Le Gars M, Shukarev G, et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med.2021;384(19):1824-1835.
201. Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med. 2021;27(2):205-211.
202. Ella R, Reddy S, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis. 2021;21(7):950-961.
203. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(2):181-192.
204. Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(6):803-812.
205. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854.
206. Wu S, Huang J, Zhang Z, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis.2021;21(12):1654-1664.
207. Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med.2021;385(13):1172-1183.
208. Keech C, Albert G, Cho I, et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med.2020;383(24):2320-2332.
209. Falsey AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N Engl J Med. 2021;385(25):2348-2360.
210. Bogdanov G, Bogdanov I, Kazandjieva J, Tsankov N. Cutaneous adverse effects of the available COVID-19 vaccines. Clin Dermatol.2021;39(3):523-531.
211. de Vrieze J. Pfizer’s vaccine raises allergy concerns.Science. 2021;371(6524):10-11.
212. Alhumaid S, Al Mutair A, Al Alawi Z, et al. Anaphylactic and nonanaphylactic reactions to SARS-CoV-2 vaccines: a systematic review and meta-analysis. Allergy Asthma Clin Immunol. 2021;17(1):109.
213. Klein NP, Lewis N, Goddard K, et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA.2021;326(14):1390-1399.
214. Maltezou HC, Anastassopoulou C, Hatziantoniou S, Poland GA, Tsakris A. Anaphylaxis rates associated with COVID-19 vaccines are comparable to those of other vaccines. Vaccine. 2022;40(2):183-186.
215. Haaf P, Kuster GM, Mueller C, et al. The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Med Wkly. 2021;151:w30087.
216. Lau CL, Galea I. Risk-benefit analysis of COVID-19 vaccines - a neurological perspective. Nat Rev Neurol. 2022;18(2):69-70.
217. Bellanti JA. COVID-19 vaccines and vaccine hesitancy: Role of the allergist/immunologist in promotion of vaccine acceptance. Allergy Asthma Proc. 2021;42(5):386-394.
218. Barbaud A, Garvey LH, Arcolaci A, et al. Allergies and COVID-19 vaccines: An ENDA/EAACI Position paper. Allergy. 2022.
219. Garvey LH, Nasser S. Anaphylaxis to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br J Anaesth.2021;126(3):e106-e108.
220. Turner PJ, Ansotegui IJ, Campbell DE, et al. COVID-19 vaccine-associated anaphylaxis: A statement of the World Allergy Organization Anaphylaxis Committee. World Allergy Organ J.2021;14(2):100517.
221. Stone CA, Jr., Liu Y, Relling MV, et al. Immediate Hypersensitivity to Polyethylene Glycols and Polysorbates: More Common Than We Have Recognized. J Allergy Clin Immunol Pract. 2019;7(5):1533-1540 e1538.
222. Bigini P, Gobbi M, Bonati M, et al. The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines.Nat Nanotechnol. 2021;16(11):1169-1171.
223. Troelnikov A, Perkins G, Yuson C, et al. Basophil reactivity to BNT162b2 is mediated by PEGylated lipid nanoparticles in patients with PEG allergy. J Allergy Clin Immunol. 2021;148(1):91-95.
224. Zhou ZH, Stone CA, Jr., Jakubovic B, et al. Anti-PEG IgE in anaphylaxis associated with polyethylene glycol. J Allergy Clin Immunol Pract. 2021;9(4):1731-1733 e1733.
225. Erdeljic Turk V. Anaphylaxis associated with the mRNA COVID-19 vaccines: Approach to allergy investigation. Clin Immunol.2021;227:108748.
226. Caballero ML, Quirce S. Excipients as Potential Agents of Anaphylaxis in Vaccines: Analyzing the Formulations of Currently Authorized COVID-19 Vaccines. J Investig Allergol Clin Immunol.2021;31(1):92-93.
227. Sokolowska M, Eiwegger T, Ollert M, et al. EAACI statement on the diagnosis, management and prevention of severe allergic reactions to COVID-19 vaccines. Allergy. 2021;76(6):1629-1639.
228. Pitlick MM, Sitek AN, Kinate SA, Joshi AY, Park MA. Polyethylene glycol and polysorbate skin testing in the evaluation of coronavirus disease 2019 vaccine reactions: Early report. Ann Allergy Asthma Immunol. 2021;126(6):735-738.
229. Warren CM, Snow TT, Lee AS, et al. Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory Testing in a US Regional Health System. JAMA Netw Open.2021;4(9):e2125524.
230. Wolfson AR, Robinson LB, Li L, et al. First-Dose mRNA COVID-19 Vaccine Allergic Reactions: Limited Role for Excipient Skin Testing.J Allergy Clin Immunol Pract. 2021;9(9):3308-3320 e3303.
231. Kohli-Pamnani A, Zapata K, Gibson T, Kwittken PL. Coronavirus disease 2019 messenger RNA vaccine skin tests and serum histamine levels in allergic reactions. Ann Allergy Asthma Immunol.2022;128(3):339.
232. Aurich S, Dolle-Bierke S, Francuzik W, et al. Anaphylaxis in Elderly Patients-Data From the European Anaphylaxis Registry.Front Immunol. 2019;10:750.
233. Albery GF, Becker DJ, Brierley L, et al. The science of the host-virus network. Nat Microbiol. 2021;6(12):1483-1492.
234. Kucharski AJ, Cohen C. Effective surveillance of variants.Science. 2022;375(6587):1349-1350.
235. Telenti A, Arvin A, Corey L, et al. After the pandemic: perspectives on the future trajectory of COVID-19. Nature.2021;596(7873):495-504.
236. Altmann DM, Boyton RJ. COVID-19 vaccination: The road ahead.Science. 2022;375(6585):1127-1132.