References
Bhoola KD, Figueroa CD, Worthy K (1992). Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol Rev 44(1): 1-80.
Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006). Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80(19): 9896–9898. https://doi.org/10.1128/JVI.01118-06
Brechter AB, Persson E, Lundgren I, Lerner UH (2008). Kinin B1 and B2 Receptor Expression in Osteoblasts and Fibroblasts Is Enhanced by interleukin-1 and Tumour Necrosis Factor-Alpha. Effects Dependent on Activation of NF-kappaB and MAP Kinases. Bone 43(1): 72-83. doi: 10.1016/j.bone.2008.02.003.
Campbell CM, Kahwash R (2020). Will Complement Inhibition Be the New Target in Treating COVID-19 Related Systemic Thrombosis? Circulation doi: 10.1161/CIRCULATIONAHA.120.047419.
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G et al (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med NEJMoa2001282. doi: 10.1056/NEJMoa2001282.
Chen Y, Guo Y, Pan Y, Zhao ZJ (2020). Structure analysis of the receptor binding of 350 2019-nCoV. Biochem Biophys Res Commun pii: S0006-291X(20)30339-9. doi: 10.1016/j.bbrc.2020.02.071.
Chen Y, Liu Q, Guo D (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92: 418‐423. https://doi.org/10.1002/jmv.25681.
Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z et al (2011). Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose2’-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 7(10): e1002294-e1002294. doi: 10.1371/journal.ppat.1002294.
Choi JY, Kang YJ, Jang HM, Jung HY, Cho JH, Park SH et al (2015). Nafamostat Mesilate as an Anticoagulant During Continuous Renal Replacement Therapy in Patients With High Bleeding Risk: A Randomized Clinical Trial. Medicine (Baltimore) 94(52): e2392. doi: 10.1097/MD.0000000000002392
Choi S, Kwon HJ, Song HJ, Choi SW, Nagar H, Piao S et al (2016). Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway. Korean J Physiol Pharmacol 20(5): 539-45. doi: 10.4196/kjpp.2016.20.5.539.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW et al (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25(3): 2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045
Couture R, Harrisson M, Vianna RM, Cloutier F (2001). Kinin receptors in pain and inflammation. Eur J Pharmacol 429: 161–176. doi: 10.1016/s0014-2999(01)01318-8.
Cui S, Chen S, Li X, Liu S, Wang F (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. doi:10.1111/jth.14830
Donoghue M, Wakimoto H, Maguire CT, Acton S, Hales P, Stagliano N et al (2003). Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol 35: 1043–1053. doi:10.1016/S0022-2828(03)00177-9.
Elfiky AA (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci 253: 117592. doi: 10.1016/j.lfs.2020.117592
Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J Biomol Struct Dyn 1-12. doi: 10.1080/07391102.2020.1758791
Ghebrehiwet B, CebadaMora C, Tantral L, Jesty J, Peerschke EI (2006). gC1qR/p33 serves as a molecular bridge between the complement and contact activation systems and is an important catalyst in inflammation. ADV EXP MED BIOL 586: 95-105. doi: 10.1007/0-387-34134-x_7 PMID: 16893067
Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A et al (2013). The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87(10): 5502–5511. https://doi.org/10.1128/JVI.00128-13
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A et al (2020). Compassionate Use of Remdesivir for Patients With Severe Covid-19. N Engl J Med NEJMoa2007016. doi: 10.1056/NEJMoa2007016
Griffin JH, Cochrane CG (1979). Recent advances in the understanding of contact activation reactions. Semin Thromb Hemost 5(4): 254–73. doi: 10.1055/s-0028-1087158
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al (2020). Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382: 1708-1720. doi: 10.1056/NEJMoa2002032
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Gooret H (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology 203: 631-637. doi: 10.1002/path.1570
Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M et al. (2013). Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 52(9): 783-92. doi: 10.1007/s40262-013-0072-7.
Hewitt MG, Miller WT, Reilly TJ, Simpson S (2014). The relative frequencies of causes of widespread ground-glass opacity: a retrospective cohort. Eur J Radiol 83(10): 1970-6. doi: 10.1016/j.ejrad.2014.06.025
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020).SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181(2): 271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
Hooley E, McEwan PA, Emsley J (2007). Molecular modeling of the prekallikrein structure provides insights into high-molecular-weight kininogen binding and zymogen activation. J Thromb Haemost 5(12): 2461. doi: 10.1111/j.1538-7836.2007.02792.x
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5.
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B et al (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436: 112–6. doi: 10.1038/nature03712.
Kang MW, Song HJ, Kang SK, Kim Y, Jung SB, Jee S et al (2015). Nafamostat Mesilate Inhibits TNF-alpha-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production. Korean J Physiol Pharmacol 19(3): 229-34. doi: 10.4196/kjpp.2015.19.3.229.
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S (2012). Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 86: 6537–6545. doi: 10.1128/JVI.00094-12.
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD et al. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 21: 234.doi: 10.1186/s13054-017-1823-x
Khan RJ, Jha R, Amera GM, Jain M, Singh E, Pathak A et al (2020). Targeting novel coronavirus 2019: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-ribose methyltransferase. J Biomol Struct Dyn 1–14. doi: 10.1080/07391102.2020.1753577.
Kim HS, Lee KE, Oh JH, Jung CS, Choi D, Kim Y et al (2016). Cardiac arrest caused by nafamostat mesilate. Kidney Res Clin Pract 35(3): 187-9. doi: 10.1016/j.krcp.2015.10.003.
Kimura S, Tsuji H, Nishimura H, Kato H, Ukimura N, Yano S et al (2002). Bradykinin enhances in vitro procoagulant and antifibrinolytic properties of rat vascular endothelial cells. Thromb Res 106: 41–50. doi: 10.1016/s0049-3848(02)00070-1
Koitka A, Cooper ME, Thomas MC, Tikellis C (2008). Angiotensin converting enzyme 2 in the kidney Clin Exp Pharmacol Physiol 35(4): 420–425. doi: 10.1111/j.1440-1681.2008.04889.x
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11: 875–879, 2005. doi:10.1038/nm1267.
Kuhr F, Lowry J, Zhang J, Brovkovych V, Skidgel RA (2010). Differential Regulation of Inducible and Endothelial Nitric Oxide Synthase by Kinin B1 and B2 Receptors. Neuropeptides 44(2): 145-54. doi: 10.1016/j.npep.2009.12.004.
Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R (2011). Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 186: 4794–4804. doi: 10.4049/jimmunol.1000702
Leeb-Lundberg LMF (2004). Bradykinin specificity and signaling at GPR100 and B2 kinin receptors. Br J Pharmacol 143(8): 931–932. doi: 10.1038/sj.bjp.0706031.
Letko M, Marzi A, Munster V (2020). Functional assessment of cell entry and receptor usage 348 for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5(4): 562-569. doi: 10.1038/s41564-020-0688-y.
Li F (2016). Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 3(1): 237–261.
Li F, Li W, Farzan M, Harrison SC (2005a). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309(5742): 1864-8. doi: 10.1126/science.1116480
Li WC, Zhang J, Sui JH, Kuhn MJ, Moore S, Luo S et al (2005b). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24(8): 1634-1643. doi: 10.1038/sj.emboj.7600640
Marceau F, Hess JF, Bachvarov DR (1998). The B1 receptors for kinins. Pharmacol Rev 50:357–386.
Maruyama Y, Yoshida H, Uchino S, Yokoyama K, Yamamoto H, Takinami M et al (2011). Nafamostat mesilate as an anticoagulant during continuous veno-venous hemodialysis: a three-year retrospective cohort study. Int J Artif Organs 34(7): 571-6. doi: 10.5301/IJAO.2011.8535
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 84(24): 12658–12664. https://doi.org/10.1128/JVI.01542-10
Menachery VD, Yount BL, Josset L, Gralinski LE, Scobey T, Agnihothram S et al (2014). Attenuation and restoration of severe acute respiratory syndrome coronavirusmutant lacking 2’-o-methyltransferase activity. J Virol 88(8): 4251-64. doi: 10.1128/JVI.03571-13.
Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K (2014). Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol 88(22): 13221-30. doi: 10.1128/JVI.02078-14.
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M et al (2020). Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell S0092-8674(20)30399-8. doi: 10.1016/j.cell.2020.04.004.
Mycroft-West C, Su D, Elli S, Guimond S, Miller G, Turnbull J et al (2020). The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. bioRxiv. doi: https://doi.org/10.1101/2020.02.29.971093
Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY et al (2020). Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 323(16):1610-1612. doi: 10.1001/jama.2020.3227.
Ou J, Zhou Z, Zhang J, Lan W, Zhao S, Wu J (2020). RBD mutations from circulating SARS-CoV-2 strains enhance the structure stability and infectivity of the spike protein. bioRxiv doi: https://doi.org/10.1101/2020.03.15.991844
Pan PP, Zhan QT, Le F, Zheng YM, Jin F (2013). Angiotensin-Converting Enzymes Play a Dominant Role in Fertility. Int J Mol Sci 14(10): 21071–21086. doi: 10.3390/ijms141021071.
Patel VB, Zhong JC, Grant MB, Oudit GY (2016). Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ. Res 118: 1313–1326. doi: 10.1161/CIRCRESAHA.116.307708.
Qadri F, Bader M (2018). Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets 22: 31-44. doi: 10.1080/14728222.2018.1409724
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A et al (2020). Baricitinib as Potential Treatment for 2019-nCoV Acute Respiratory Disease. Lancet 395(10223): e30-e31. doi: 10.1016/S0140-6736(20)30304-4.
Schrezenmeier E, Dörner T (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16(3): 155-166. doi: 10.1038/s41584-020-0372-x.
Selvarajan S, Lund LR, Takeuchi T, Craik CS, Werb Z (2001). A plasma kallikrein-dependent cascade required for adipocyte differentiation. Nature Cell Biol 3: 267-275. doi: 10.1038/35060059.
Shariat-Madar Z, Schmaier AH (1999). Kininogen-cytokeratin 1 interactions in endothelial cell biology. Trends Cardiovasc Med 9: 238–44.
Shastri MD, Stewart N, Horne J, Peterson GM, Gueven N, Sohal SS et al (2015). In-vitro suppression of IL-6 and IL-8 release from human pulmonary epithelial cells by non-anticoagulant fraction of enoxaparin. PLoS One 10(5): e0126763. doi: 10.1371/journal.pone.0126763
Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F et al (2020). The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv. doi: https://doi.org/10.1101/2020.03.28.20046144.
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T (2011). A Transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 85(2): 873–882. https://doi.org/10.1128/JVI.02062-10
Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S et al (2018). Attenuation of pulmonary ACE2activity impairs inactivation of des-arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 314: L17– 31. doi: 10.1152/ajplung.00498.2016.
Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S (1977). Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r-, and C1 esterase. Biochim Biophys Acta 484(2): 417-22. doi: 10.1016/0005-2744(77)90097-3.
Tang N, Bai N, Chen X, Gong J, Li D, Sun Z (2020a). Anticoagulant Treatment Is Associated With Decreased Mortality in Severe Coronavirus Disease 2019 Patients With Coagulopathy. J Thromb Haemost 18(5): 1094-1099. doi: 10.1111/jth.14817.
Tang N, Li D, Wang X, Sun Z (2020b). Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18: 844-847. doi: 10.1111/jth.14768.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP (2003). The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol. doi: 10.1038/s41577-020-0311-8.
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000). A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275(43): 33238-33243. doi :10.1074/jbc.M002615200.
Tsai YJ, Hao SP, Chen CL, Lin BJ, Wu WB (2015). Involvement of B2 Receptor in Bradykinin-Induced Proliferation and Proinflammatory Effects in Human Nasal Mucosa-Derived Fibroblasts Isolated from Chronic Rhinosinusitis Patients. PLoS One 10(5): e0126853. doi: 10.1371/journal.pone.0126853.
van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL (1997). Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol 24: 55–60 (1997).
Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J et al (2002). Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277: 14838–14843,. doi:10.1074/jbc.M200581200.
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song G et al (2020).. A new coronavirus associated with human respiratory disease in China. Nature 579(7798): 265-269. doi: 10.1038/s41586-020-2008-3.
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X (2020a). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12 (8). https://doi.org/10.1038/s41368-020-0074-x
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X et al (2020b). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3): 457-460. doi: 10.1007/s11427-020-1637-5
Xu X, Han M, Li T, Sun W, Wang D, Fu B et al (2020c). Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 202005615. doi: 10.1073/pnas.2005615117.
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al (2020d). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8(4): 420-422. doi: 10.1016/S2213-2600(20)30076-X
Yamaya M, Shimotai Y, Hatachi Y, Kalonji NL, Tando Y, Kitajima Y et al (2015). The Serine Protease Inhibitor Camostat Inhibits Influenza Virus Replication and Cytokine Production in Primary Cultures of Human Tracheal Epithelial Cells. Pulm Pharmacol Ther 33: 66-74. doi: 10.1016/j.pupt.2015.07.001.
Yuksel M, Okajima K, Uchiba M, Okabe H (2003). Gabexate mesilate, a synthetic protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappaB and activator protein-1 in human monocytes. J Pharmacol Exp Ther 305(1): 298-305. doi: 10.1124/jpet.102.041988.
Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z et al (2014). The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6: 421–430. doi: 10.1016/j.celrep.2014.01.003.
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W (2020). Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv. doi:https://doi.org/10.1101/2020.01.26.919985.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al (2020a). Clinical Course and Risk Factors for Mortality of Adult Inpatients With COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 395(10229): 1054-1062. doi: 10.1016/S0140-6736(20)30566-3.
Zhou J, Fang L, Yang Z, Xu S, Lv M, Sun Z et al (2019). Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach. FASEB J 33(12): 14575–14587. doi: 10.1096/fj.201901624RR
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang E et al (2020b). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798): 270-273. doi: 10.1038/s41586-020-2012-7
Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. doi: 10.1007/s11684-020-0754-0.