References
Bhoola KD, Figueroa CD, Worthy K (1992). Bioregulation of kinins:
Kallikreins, kininogens, and kininases. Pharmacol Rev 44(1): 1-80.
Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M
(2006). Proteolytic activation of influenza viruses by serine proteases
TMPRSS2 and HAT from human airway epithelium. J Virol 80(19):
9896–9898. https://doi.org/10.1128/JVI.01118-06
Brechter AB, Persson E, Lundgren I, Lerner UH (2008). Kinin B1 and B2
Receptor Expression in Osteoblasts and Fibroblasts Is Enhanced by
interleukin-1 and Tumour Necrosis Factor-Alpha. Effects Dependent on
Activation of NF-kappaB and MAP Kinases. Bone 43(1): 72-83. doi:
10.1016/j.bone.2008.02.003.
Campbell CM, Kahwash R (2020). Will Complement Inhibition Be the New
Target in Treating COVID-19 Related Systemic Thrombosis? Circulation
doi: 10.1161/CIRCULATIONAHA.120.047419.
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G et al (2020). A Trial of
Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl
J Med NEJMoa2001282. doi: 10.1056/NEJMoa2001282.
Chen Y, Guo Y, Pan Y, Zhao ZJ (2020). Structure analysis of the receptor
binding of 350 2019-nCoV. Biochem Biophys Res Commun pii:
S0006-291X(20)30339-9. doi: 10.1016/j.bbrc.2020.02.071.
Chen Y, Liu Q, Guo D (2020). Emerging coronaviruses: genome structure,
replication, and pathogenesis. J Med Virol 92: 418‐423.
https://doi.org/10.1002/jmv.25681.
Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z et al (2011). Biochemical and
structural insights into the mechanisms of SARS coronavirus RNA
ribose2’-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog
7(10): e1002294-e1002294. doi: 10.1371/journal.ppat.1002294.
Choi JY, Kang YJ, Jang HM, Jung HY, Cho JH, Park SH et al (2015).
Nafamostat Mesilate as an Anticoagulant During Continuous Renal
Replacement Therapy in Patients With High Bleeding Risk: A Randomized
Clinical Trial. Medicine (Baltimore) 94(52): e2392. doi:
10.1097/MD.0000000000002392
Choi S, Kwon HJ, Song HJ, Choi SW, Nagar H, Piao S et al (2016).
Nafamostat mesilate promotes endothelium-dependent vasorelaxation via
the Akt-eNOS dependent pathway. Korean J Physiol Pharmacol 20(5):
539-45. doi: 10.4196/kjpp.2016.20.5.539.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW et al
(2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time
RT-PCR. Euro Surveill 25(3): 2000045. doi:
10.2807/1560-7917.ES.2020.25.3.2000045
Couture R, Harrisson M, Vianna RM, Cloutier F (2001). Kinin receptors in
pain and inflammation. Eur J Pharmacol 429: 161–176. doi:
10.1016/s0014-2999(01)01318-8.
Cui S, Chen S, Li X, Liu S, Wang F (2020). Prevalence of venous
thromboembolism in patients with severe novel coronavirus pneumonia. J
Thromb Haemost. doi:10.1111/jth.14830
Donoghue M, Wakimoto H, Maguire CT, Acton S, Hales P, Stagliano N et al
(2003). Heart block, ventricular tachycardia, and sudden death in ACE2
transgenic mice with downregulated connexins. J Mol Cell Cardiol 35:
1043–1053. doi:10.1016/S0022-2828(03)00177-9.
Elfiky AA (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and
Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A
molecular docking study. Life Sci 253: 117592. doi:
10.1016/j.lfs.2020.117592
Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K (2020). Drug repurposing
for coronavirus (COVID-19): in silico screening of known drugs against
coronavirus 3CL hydrolase and protease enzymes. J Biomol Struct Dyn
1-12. doi: 10.1080/07391102.2020.1758791
Ghebrehiwet B, CebadaMora C, Tantral L, Jesty J, Peerschke EI (2006).
gC1qR/p33 serves as a molecular bridge between the complement and
contact activation systems and is an important catalyst in inflammation.
ADV EXP MED BIOL 586: 95-105. doi: 10.1007/0-387-34134-x_7 PMID:
16893067
Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A et al
(2013). The spike protein of the emerging betacoronavirus EMC uses a
novel coronavirus receptor for entry, can be activated by TMPRSS2, and
is targeted by neutralizing antibodies. J Virol 87(10): 5502–5511.
https://doi.org/10.1128/JVI.00128-13
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A et al
(2020). Compassionate Use of Remdesivir for Patients With Severe
Covid-19. N Engl J Med NEJMoa2007016. doi: 10.1056/NEJMoa2007016
Griffin JH, Cochrane CG (1979). Recent advances in the understanding of
contact activation reactions. Semin Thromb Hemost 5(4): 254–73. doi:
10.1055/s-0028-1087158
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al (2020). Clinical
characteristics of coronavirus disease 2019 in China. N Engl J Med 382:
1708-1720. doi: 10.1056/NEJMoa2002032
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G, van Gooret H
(2004). Tissue distribution of ACE2 protein, the functional receptor for
SARS coronavirus. A first step in understanding SARS pathogenesis.
Journal of Pathology 203: 631-637. doi: 10.1002/path.1570
Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M
et al. (2013). Pharmacokinetics and pharmacodynamics of recombinant
human angiotensin-converting enzyme 2 in healthy human subjects. Clin
Pharmacokinet 52(9): 783-92. doi: 10.1007/s40262-013-0072-7.
Hewitt MG, Miller WT, Reilly TJ, Simpson S (2014). The relative
frequencies of causes of widespread ground-glass opacity: a
retrospective cohort. Eur J Radiol 83(10): 1970-6. doi:
10.1016/j.ejrad.2014.06.025
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S
et al (2020).SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
Blocked by a Clinically Proven Protease Inhibitor. Cell 181(2):
271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
Hooley E, McEwan PA, Emsley J (2007). Molecular modeling of the
prekallikrein structure provides insights into high-molecular-weight
kininogen binding and zymogen activation. J Thromb Haemost 5(12): 2461.
doi: 10.1111/j.1538-7836.2007.02792.x
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020). Clinical
features of patients infected with 2019 novel coronavirus in Wuhan,
China. Lancet 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5.
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B et al (2005).
Angiotensin-converting enzyme 2 protects from severe acute lung failure.
Nature 436: 112–6. doi: 10.1038/nature03712.
Kang MW, Song HJ, Kang SK, Kim Y, Jung SB, Jee S et al (2015).
Nafamostat Mesilate Inhibits TNF-alpha-Induced Vascular Endothelial Cell
Dysfunction by Inhibiting Reactive Oxygen Species Production. Korean J
Physiol Pharmacol 19(3): 229-34. doi: 10.4196/kjpp.2015.19.3.229.
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S (2012).
Simultaneous treatment of human bronchial epithelial cells with serine
and cysteine protease inhibitors prevents severe acute respiratory
syndrome coronavirus entry. J Virol 86: 6537–6545. doi:
10.1128/JVI.00094-12.
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD et al.
(2017). A pilot clinical trial of recombinant human
angiotensin-converting enzyme 2 in acute respiratory distress syndrome.
Crit Care 21: 234.doi: 10.1186/s13054-017-1823-x
Khan RJ, Jha R, Amera GM, Jain M, Singh E, Pathak A et al (2020).
Targeting novel coronavirus 2019: A systematic drug repurposing approach
to identify promising inhibitors against 3C-like proteinase and
2’-O-ribose methyltransferase. J Biomol Struct Dyn 1–14. doi:
10.1080/07391102.2020.1753577.
Kim HS, Lee KE, Oh JH, Jung CS, Choi D, Kim Y et al (2016). Cardiac
arrest caused by nafamostat mesilate. Kidney Res Clin Pract 35(3):
187-9. doi: 10.1016/j.krcp.2015.10.003.
Kimura S, Tsuji H, Nishimura H, Kato H, Ukimura N, Yano S et al (2002).
Bradykinin enhances in vitro procoagulant and antifibrinolytic
properties of rat vascular endothelial cells. Thromb Res 106: 41–50.
doi: 10.1016/s0049-3848(02)00070-1
Koitka A, Cooper ME, Thomas MC, Tikellis C (2008). Angiotensin
converting enzyme 2 in the kidney Clin Exp Pharmacol Physiol 35(4):
420–425. doi: 10.1111/j.1440-1681.2008.04889.x
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al (2005). A crucial role
of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced
lung injury. Nat Med 11: 875–879, 2005. doi:10.1038/nm1267.
Kuhr F, Lowry J, Zhang J, Brovkovych V, Skidgel RA (2010). Differential
Regulation of Inducible and Endothelial Nitric Oxide Synthase by Kinin
B1 and B2 Receptors. Neuropeptides 44(2): 145-54. doi:
10.1016/j.npep.2009.12.004.
Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R (2011).
Mechanism of endosomal TLR inhibition by antimalarial drugs and
imidazoquinolines. J Immunol 186: 4794–4804. doi:
10.4049/jimmunol.1000702
Leeb-Lundberg LMF (2004). Bradykinin specificity and signaling at GPR100
and B2 kinin receptors. Br J Pharmacol 143(8): 931–932. doi:
10.1038/sj.bjp.0706031.
Letko M, Marzi A, Munster V (2020). Functional assessment of cell entry
and receptor usage 348 for SARS-CoV-2 and other lineage B
betacoronaviruses. Nat Microbiol 5(4): 562-569. doi:
10.1038/s41564-020-0688-y.
Li F (2016). Structure, function, and evolution of coronavirus spike
proteins. Annu Rev Virol 3(1): 237–261.
Li F, Li W, Farzan M, Harrison SC (2005a). Structure of SARS coronavirus
spike receptor-binding domain complexed with receptor. Science
309(5742): 1864-8. doi: 10.1126/science.1116480
Li WC, Zhang J, Sui JH, Kuhn MJ, Moore S, Luo S et al (2005b). Receptor
and viral determinants of SARS-coronavirus adaptation to human ACE2.
EMBO J 24(8): 1634-1643. doi: 10.1038/sj.emboj.7600640
Marceau F, Hess JF, Bachvarov DR (1998). The B1 receptors for kinins.
Pharmacol Rev 50:357–386.
Maruyama Y, Yoshida H, Uchino S, Yokoyama K, Yamamoto H, Takinami M et
al (2011). Nafamostat mesilate as an anticoagulant during continuous
veno-venous hemodialysis: a three-year retrospective cohort study. Int J
Artif Organs 34(7): 571-6. doi: 10.5301/IJAO.2011.8535
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F (2010).
Efficient activation of the severe acute respiratory syndrome
coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol
84(24): 12658–12664. https://doi.org/10.1128/JVI.01542-10
Menachery VD, Yount BL, Josset L, Gralinski LE, Scobey T, Agnihothram S
et al (2014). Attenuation and restoration of severe acute respiratory
syndrome coronavirusmutant lacking 2’-o-methyltransferase activity. J
Virol 88(8): 4251-64. doi: 10.1128/JVI.03571-13.
Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K (2014).
Human coronavirus NL63 utilizes heparan sulfate proteoglycans for
attachment to target cells. J Virol 88(22): 13221-30. doi:
10.1128/JVI.02078-14.
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M et al
(2020). Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues
Using Clinical-Grade Soluble Human ACE2. Cell S0092-8674(20)30399-8.
doi: 10.1016/j.cell.2020.04.004.
Mycroft-West C, Su D, Elli S, Guimond S, Miller G, Turnbull J et al
(2020). The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1
Receptor Binding Domain undergoes conformational change upon heparin
binding. bioRxiv. doi: https://doi.org/10.1101/2020.02.29.971093
Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY et al (2020). Air,
surface environmental, and personal protective equipment contamination
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a
symptomatic patient. JAMA 323(16):1610-1612. doi:
10.1001/jama.2020.3227.
Ou J, Zhou Z, Zhang J, Lan W, Zhao S, Wu J (2020). RBD mutations from
circulating SARS-CoV-2 strains enhance the structure stability and
infectivity of the spike protein. bioRxiv doi:
https://doi.org/10.1101/2020.03.15.991844
Pan PP, Zhan QT, Le F, Zheng YM, Jin F (2013). Angiotensin-Converting
Enzymes Play a Dominant Role in Fertility. Int J Mol Sci 14(10):
21071–21086. doi: 10.3390/ijms141021071.
Patel VB, Zhong JC, Grant MB, Oudit GY (2016). Role of the
ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart
failure. Circ. Res 118: 1313–1326. doi: 10.1161/CIRCRESAHA.116.307708.
Qadri F, Bader M (2018). Kinin B1 receptors as a therapeutic target for
inflammation. Expert Opin Ther Targets 22: 31-44. doi:
10.1080/14728222.2018.1409724
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A et al
(2020). Baricitinib as Potential Treatment for 2019-nCoV Acute
Respiratory Disease. Lancet 395(10223): e30-e31. doi:
10.1016/S0140-6736(20)30304-4.
Schrezenmeier E, Dörner T (2020). Mechanisms of action of
hydroxychloroquine and chloroquine: implications for rheumatology. Nat
Rev Rheumatol 16(3): 155-166. doi: 10.1038/s41584-020-0372-x.
Selvarajan S, Lund LR, Takeuchi T, Craik CS, Werb Z (2001). A plasma
kallikrein-dependent cascade required for adipocyte differentiation.
Nature Cell Biol 3: 267-275. doi: 10.1038/35060059.
Shariat-Madar Z, Schmaier AH (1999). Kininogen-cytokeratin 1
interactions in endothelial cell biology. Trends Cardiovasc Med 9:
238–44.
Shastri MD, Stewart N, Horne J, Peterson GM, Gueven N, Sohal SS et al
(2015). In-vitro suppression of IL-6 and IL-8 release from human
pulmonary epithelial cells by non-anticoagulant fraction of enoxaparin.
PLoS One 10(5): e0126763. doi: 10.1371/journal.pone.0126763
Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F et al (2020). The potential
of low molecular weight heparin to mitigate cytokine storm in severe
COVID-19 patients: a retrospective clinical study. medRxiv. doi:
https://doi.org/10.1101/2020.03.28.20046144.
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T
(2011). A Transmembrane serine protease is linked to the severe acute
respiratory syndrome coronavirus receptor and activates virus entry. J
Virol 85(2): 873–882. https://doi.org/10.1128/JVI.02062-10
Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S
et al (2018). Attenuation of pulmonary ACE2activity impairs inactivation
of des-arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil
infiltration. Am J Physiol Lung Cell Mol Physiol 314: L17– 31. doi:
10.1152/ajplung.00498.2016.
Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S (1977). Synthetic
inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r-, and C1
esterase. Biochim Biophys Acta 484(2): 417-22. doi:
10.1016/0005-2744(77)90097-3.
Tang N, Bai N, Chen X, Gong J, Li D, Sun Z (2020a). Anticoagulant
Treatment Is Associated With Decreased Mortality in Severe Coronavirus
Disease 2019 Patients With Coagulopathy. J Thromb Haemost 18(5):
1094-1099. doi: 10.1111/jth.14817.
Tang N, Li D, Wang X, Sun Z (2020b). Abnormal Coagulation parameters are
associated with poor prognosis in patients with novel coronavirus
pneumonia. J Thromb Haemost 18: 844-847. doi: 10.1111/jth.14768.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP (2003). The Trinity of
COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol. doi:
10.1038/s41577-020-0311-8.
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000). A
human homolog of angiotensin-converting enzyme. Cloning and functional
expression as a captopril-insensitive carboxypeptidase. J Biol Chem
275(43): 33238-33243. doi :10.1074/jbc.M002615200.
Tsai YJ, Hao SP, Chen CL, Lin BJ, Wu WB (2015). Involvement of B2
Receptor in Bradykinin-Induced Proliferation and Proinflammatory Effects
in Human Nasal Mucosa-Derived Fibroblasts Isolated from Chronic
Rhinosinusitis Patients. PLoS One 10(5): e0126853. doi:
10.1371/journal.pone.0126853.
van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL
(1997). Chloroquine and hydroxychloroquine equally affect tumor necrosis
factor-alpha, interleukin 6, and interferon-gamma production by
peripheral blood mononuclear cells. J Rheumatol 24: 55–60 (1997).
Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J et al (2002).
Hydrolysis of biological peptides by human angiotensin-converting
enzyme-related carboxypeptidase. J Biol Chem 277: 14838–14843,.
doi:10.1074/jbc.M200581200.
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song G et al (2020).. A new
coronavirus associated with human respiratory disease in China. Nature
579(7798): 265-269. doi: 10.1038/s41586-020-2008-3.
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X (2020a). High expression of
ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J
Oral Sci 12 (8). https://doi.org/10.1038/s41368-020-0074-x
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X et al (2020b). Evolution of
the novel coronavirus from the ongoing Wuhan outbreak and modeling of
its spike protein for risk of human transmission. Sci China Life Sci
63(3): 457-460. doi: 10.1007/s11427-020-1637-5
Xu X, Han M, Li T, Sun W, Wang D, Fu B et al (2020c). Effective
treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad
Sci U S A 202005615. doi: 10.1073/pnas.2005615117.
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al (2020d).
Pathological findings of COVID-19 associated with acute respiratory
distress syndrome. Lancet Respir Med 8(4): 420-422. doi:
10.1016/S2213-2600(20)30076-X
Yamaya M, Shimotai Y, Hatachi Y, Kalonji NL, Tando Y, Kitajima Y et al
(2015). The Serine Protease Inhibitor Camostat Inhibits Influenza Virus
Replication and Cytokine Production in Primary Cultures of Human
Tracheal Epithelial Cells. Pulm Pharmacol Ther 33: 66-74. doi:
10.1016/j.pupt.2015.07.001.
Yuksel M, Okajima K, Uchiba M, Okabe H (2003). Gabexate mesilate, a
synthetic protease inhibitor, inhibits lipopolysaccharide-induced tumor
necrosis factor-alpha production by inhibiting activation of both
nuclear factor-kappaB and activator protein-1 in human monocytes. J
Pharmacol Exp Ther 305(1): 298-305. doi: 10.1124/jpet.102.041988.
Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z et al (2014). The cytosolic DNA
sensor cGAS forms an oligomeric complex with DNA and undergoes
switch-like conformational changes in the activation loop. Cell Rep 6:
421–430. doi: 10.1016/j.celrep.2014.01.003.
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W (2020). Single-cell RNA
expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv.
doi:https://doi.org/10.1101/2020.01.26.919985.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al (2020a). Clinical Course
and Risk Factors for Mortality of Adult Inpatients With COVID-19 in
Wuhan, China: A Retrospective Cohort Study. Lancet 395(10229):
1054-1062. doi: 10.1016/S0140-6736(20)30566-3.
Zhou J, Fang L, Yang Z, Xu S, Lv M, Sun Z et al (2019). Identification
of novel proteolytically inactive mutations in coronavirus 3C-like
protease using a combined approach. FASEB J 33(12): 14575–14587. doi:
10.1096/fj.201901624RR
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang E et al (2020b). A
pneumonia outbreak associated with a new coronavirus of probable bat
origin. Nature 579(7798): 270-273. doi: 10.1038/s41586-020-2012-7
Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020). Single-cell RNA-seq
data analysis on the receptor ACE2 expression reveals the potential risk
of different human organs vulnerable to 2019-nCoV infection. Front Med.
doi: 10.1007/s11684-020-0754-0.