References

1. Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors.Semin Immunopathol. 2020;42(1):5-15.
2. Del Giacco SR, Bakirtas A, Bel E, et al. Allergy in severe asthma.Allergy. 2017;72(2):207-220.
3. Burney PG, Potts J, Kummeling I, et al. The prevalence and distribution of food sensitization in European adults. Allergy.2014;69(3):365-371.
4. Ojeda P, Sastre J, Olaguibel JM, Chivato T, investigators participating in the National Survey of the Spanish Society of A, Clinical Immunology A. Alergologica 2015: A National Survey on Allergic Diseases in the Adult Spanish Population. J Investig Allergol Clin Immunol. 2018;28(3):151-164.
5. Wong A, Seger DL, Lai KH, Goss FR, Blumenthal KG, Zhou L. Drug Hypersensitivity Reactions Documented in Electronic Health Records within a Large Health System. J Allergy Clin Immunol Pract.2019;7(4):1253-1260 e1253.
6. Rondon C, Campo P, Eguiluz-Gracia I, et al. Local allergic rhinitis is an independent rhinitis phenotype: The results of a 10-year follow-up study. Allergy. 2018;73(2):470-478.
7. Pouessel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis fatalities: Analysis of the Allergy Vigilance Network((R)) database.Allergy. 2019;74(6):1193-1196.
8. Yii ACA, Tay TR, Choo XN, Koh MSY, Tee AKH, Wang DY. Precision medicine in united airways disease: A ”treatable traits” approach.Allergy. 2018;73(10):1964-1978.
9. Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy.2018;73(8):1609-1621.
10. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma.Allergy. 2018;73(12):2290-2305.
11. Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy. 2019;74(1):14-27.
12. Demoly P, Adkinson NF, Brockow K, et al. International Consensus on drug allergy. Allergy. 2014;69(4):420-437.
13. Romano A, Atanaskovic-Markovic M, Barbaud A, et al. Towards a more precise diagnosis of hypersensitivity to beta-lactams - an EAACI position paper. Allergy. 2019;[ahead of print].
14. Auge J, Vent J, Agache I, et al. EAACI Position paper on the standardization of nasal allergen challenges. Allergy.2018;73(8):1597-1608.
15. Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy.2019;74(9):1649-1659.
16. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293-2311.
17. Aberer W. A position paper on drug allergy - pinpointing problems rather than suggesting solutions. Allergy. 2016;71(8):1079-1080.
18. Atanaskovic-Markovic M, Gomes E, Cernadas JR, et al. Diagnosis and management of drug-induced anaphylaxis in children: An EAACI position paper. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.2019;30(3):269-276.
19. Garvey LH, Ebo DG, Mertes PM, et al. An EAACI position paper on the investigation of perioperative immediate hypersensitivity reactions.Allergy. 2019;74(10):1872-1884.
20. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper.Allergy. 2019;74(1):28-39.
21. Jappe U, Breiteneder H. Peanut allergy-Individual molecules as a key to precision medicine. Allergy. 2019;74(2):216-219.
22. Diamant Z, Vijverberg S, Alving K, et al. Toward clinically applicable biomarkers for asthma: An EAACI position paper.Allergy. 2019;74(10):1835-1851.
23. Breiteneder H. Mapping of conformational IgE epitopes of food allergens. Allergy. 2018;73(11):2107-2109.
24. Roberts G, Pfaar O, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy.2018;73(4):765-798.
25. Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy.2018;73(4):799-815.
26. Zielen S, Devillier P, Heinrich J, Richter H, Wahn U. Sublingual immunotherapy provides long-term relief in allergic rhinitis and reduces the risk of asthma: A retrospective, real-world database analysis.Allergy. 2018;73(1):165-177.
27. Rondon C, Blanca-Lopez N, Campo P, et al. Specific immunotherapy in local allergic rhinitis: A randomized, double-blind placebo-controlled trial with Phleum pratense subcutaneous allergen immunotherapy.Allergy. 2018;73(4):905-915.
28. Chen M, Land M. The current state of food allergy therapeutics.Hum Vaccin Immunother. 2017;13(10):2434-2442.
29. Ryan D, Gerth van Wijk R, Angier E, et al. Challenges in the implementation of the EAACI AIT guidelines: A situational analysis of current provision of allergen immunotherapy. Allergy.2018;73(4):827-836.
30. Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy.2018;73(12):2274-2289.
31. Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy.Allergy. 2017;72(10):1461-1474.
32. Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for Drug Hypersensitivity Reactions. An ENDA/EAACI Drug Allergy Interest Group Position Paper. Allergy. 2016;71(8):1103-1134.
33. Mayorga C, Fernandez TD, Montañez MI, Moreno E, Torres MJ. Recent developments and highlights in drug hypersensitivity. Allergy.2019;74(12):2368-2381.
34. Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy. 2019;74(8):1457-1471.
35. Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy. 2004;59(8):809-820.
36. Datema MR, van Ree R, Asero R, et al. Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy. Allergy. 2018;73(3):549-559.
37. Ansotegui IJ, Melioli G, Canonica GW, et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ J. 2020;13(2):100080.
38. Ariza A, Mayorga C, Salas M, et al. The influence of the carrier molecule on amoxicillin recognition by specific IgE in patients with immediate hypersensitivity reactions to betalactams. Sci Rep.2016;6:35113.
39. Barbero N, Fernandez-Santamaria R, Mayorga C, et al. Identification of an antigenic determinant of clavulanic acid responsible for IgE-mediated reactions. Allergy. 2019;74(8):1490-1501.
40. Vultaggio A, Matucci A, Virgili G, et al. Influence of total serum IgE levels on the in vitro detection of beta-lactams-specific IgE antibodies. Clin Exp Allergy. 2009;39(6):838-844.
41. Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 2015;70(11):1393-1405.
42. Ebo DG, Leysen J, Mayorga C, Rozieres A, Knol EF, Terreehorst I. The in vitro diagnosis of drug allergy: status and perspectives.Allergy. 2011;66(10):1275-1286.
43. Mayorga C, Gomez F, Aranda A, et al. Basophil response to peanut allergens in Mediterranean peanut-allergic patients. Allergy.2014;69(7):964-968.
44. Larsen LF, Juel-Berg N, Hansen KS, et al. A comparative study on basophil activation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy. Allergy. 2018;73(1):137-144.
45. Hamilton RG, Franklin Adkinson N, Jr. In vitro assays for the diagnosis of IgE-mediated disorders. J Allergy Clin Immunol.2004;114(2):213-225.
46. Märki I, Rebeaud F. Nanotechnologies for In Vitro IgE Testing.Curr Allergy Asthma Rep. 2017;17(7):50.
47. Gadisseur R, Chapelle JP, Cavalier E. A new tool in the field of in-vitro diagnosis of allergy: preliminary results in the comparison of ImmunoCAP© 250 with the ImmunoCAP© ISAC. Clin Chem Lab Med.2011;49(2):277-280.
48. Sackesen C, Suarez-Farinas M, Silva R, et al. A new Luminex-based peptide assay to identify reactivity to baked, fermented, and whole milk. Allergy. 2019;74(2):327-336.
49. Blanca M, Mayorga C, Torres MJ, et al. Clinical evaluation of Pharmacia CAP System™ RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy. Allergy. 2001;56(9):862-870.
50. Torres J, Romano A, Mayorga C, et al. Diagnostic evaluation of a large group of patients with immediate allergy to penicillins: the role of skin testing. Allergy. 2001;56(9):850-856.
51. Fontaine C, Mayorga C, Bousquet PJ, et al. Relevance of the determination of serum-specific IgE antibodies in the diagnosis of immediate beta-lactam allergy. Allergy. 2007;62(1):47-52.
52. Blanca M, Mayorga C, Perez E, et al. Determination of IgE antibodies to the benzyl penicilloyl determinant. A comparison between poly-lysine and human serum albumin as carriers. J Immunol Methods.1992;153(1-2):99-105.
53. Montañez MI, Najera F, Mayorga C, et al. Recognition of multiepitope dendrimeric antigens by human immunoglobulin E.Nanomed-Nanotechnol Biol Med. 2015;11(3):579-588.
54. Mayorga C, Perez-Inestrosa E, Molina N, Montañez MI. Development of nanostructures in the diagnosis of drug hypersensitivity reactions.Curr Opin Allergy Clin Immunol. 2016;16(4):300-307.
55. Faber M, Sabato V, De Witte L, et al. State of the art and perspectives in food allergy (part I): diagnosis. Curr Pharm Des.2014;20(6):954-963.
56. Laguna JJ, Bogas G, Salas M, et al. The Basophil Activation Test Can Be of Value for Diagnosing Immediate Allergic Reactions to Omeprazole.J Allergy Clin Immunol Pract. 2018;6(5):1628-1636 e1622.
57. Salas M, Fernandez-Santamaria R, Mayorga C, et al. Use of the Basophil Activation Test May Reduce the Need for Drug Provocation in Amoxicillin-Clavulanic Allergy. J Allergy Clin Immunol Pract.2018;6(3):1010-1018 e1012.
58. Mayorga C, Ebo DG, Lang DM, et al. Controversies in drug allergy: In vitro testing. J Allergy Clin Immunol. 2019;143(1):56-65.
59. Aranda A, Mayorga C, Ariza A, et al. In vitro evaluation of IgE-mediated hypersensitivity reactions to quinolones. Allergy.2011;66(2):247-254.
60. Aranda A, Mayorga C, Ariza A, et al. IgE-mediated hypersensitivity reactions to methylprednisolone. Allergy. 2010;65(11):1376-1380.
61. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules. 2019;25(1).
62. Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered.2020;11(1):328-355.
63. Wong XY, Sena-Torralba A, Alvarez-Diduk R, Muthoosamy K, Merkoci A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano. 2020;14(3):2585-2627.
64. Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, et al. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces. 2019;180:411-428.
65. Maurya A, Singh AK, Mishra G, et al. Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interv Med Appl Sci. 2019;11(1):38-54.
66. Ma Q, Wang J, Li Z, Lv X, Liang L, Yuan Q. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. Small. 2019;15(32):e1804969.
67. Yeo IL. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials (Basel).2019;13(1).
68. Hao Y, Zhou X, Li R, Song Z, Min Y. Advances of functional nanomaterials for cancer immunotherapeutic applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1574.
69. Gomez-Aguado I, Rodriguez-Castejon J, Vicente-Pascual M, Rodriguez-Gascon A, Solinis MA, Del Pozo-Rodriguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives.Nanomaterials (Basel). 2020;10(2).
70. Ventola CL. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P T. 2017;42(12):742-755.
71. Paradise J. Regulating Nanomedicine at the Food and Drug Administration. AMA J Ethics. 2019;21(4):E347-355.
72. Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol. 2019;16(1):87-124.
73. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles.Environ Health Perspect. 2005;113(7):823-839.
74. Gatto F, Moglianetti M, Pompa PP, Bardi G. Platinum Nanoparticles Decrease Reactive Oxygen Species and Modulate Gene Expression without Alteration of Immune Responses in THP-1 Monocytes. Nanomaterials (Basel). 2018;8(6).
75. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology.2014;12:5.
76. Geetha CS, Remya NS, Leji KB, et al. Cells-nano interactions and molecular toxicity after delayed hypersensitivity, in guinea pigs on exposure to hydroxyapatite nanoparticles. Colloids Surf B Biointerfaces. 2013;112:204-212.
77. Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine. 2013;9(6):742-757.
78. Pallardy MJ, Turbica I, Biola-Vidamment A. Why the Immune System Should Be Concerned by Nanomaterials? Front Immunol. 2017;8:544.
79. Shannahan JH, Brown JM. Engineered nanomaterial exposure and the risk of allergic disease. Curr Opin Allergy Clin Immunol.2014;14(2):95-99.
80. Fernandez TD, Pearson JR, Leal MP, et al. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 2015;43:1-12.
81. Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159-1164.
82. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404-1413.
83. Liu S, Xu L, Zhang T, Ren G, Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology.2010;267(1-3):172-177.
84. Schanen BC, Das S, Reilly CM, et al. Immunomodulation and T helper TH(1)/TH(2) response polarization by CeO(2) and TiO(2) nanoparticles.PLoS One. 2013;8(5):e62816.
85. Kubackova J, Zbytovska J, Holas O. Nanomaterials for direct and indirect immunomodulation: A review of applications. Eur J Pharm Sci. 2020;142:105139.
86. Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials.Pharmaceutics. 2019;11(10).
87. Gamazo C, D’Amelio C, Gastaminza G, Ferrer M, Irache JM. Adjuvants for allergy immunotherapeutics. Hum Vaccin Immunother.2017;13(10):2416-2427.
88. Sanchez-Navarro M, Rojo J. Targeting DC-SIGN with carbohydrate multivalent systems. Drug News Perspect. 2010;23(9):557-572.
89. Mascaraque A KW, Fernández T, Palomares F, Mayorga C, Andreu D, Rojo J. Glycodendropeptides stimulate dendritic cell maturation and T cell proliferation: a potential influenza A virus immunotherapy.Medicinal Chemistry Communication. 2015;6,: 1755-1760.
90. Gamazo C, Garcia-Azpiroz M, Souza Reboucas J, Gastaminza G, Ferrer M, Irache JM. Oral immunotherapy using polymeric nanoparticles loaded with peanut proteins in a murine model of fatal anaphylaxis.Immunotherapy. 2017;9(15):1205-1217.
91. Brotons-Canto A, Gamazo C, Martin-Arbella N, et al. Evaluation of nanoparticles as oral vehicles for immunotherapy against experimental peanut allergy. Int J Biol Macromol. 2018;110:328-335.
92. Pereira MA, Reboucas JS, Ferraz-Carvalho RS, et al. Poly(anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. Eur J Pharm Biopharm. 2018;127:51-60.
93. Le Guevel X, Perez Perrino M, Fernandez TD, et al. Multivalent Glycosylation of Fluorescent Gold Nanoclusters Promotes Increased Human Dendritic Cell Targeting via Multiple Endocytic Pathways. ACS Appl Mater Interfaces. 2015;7(37):20945-20956.
94. Shahbazi MA, Fernandez TD, Makila EM, et al. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.Biomaterials. 2014;35(33):9224-9235.
95. Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol. 2010;106(2):114-117.
96. Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii KJ. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Front Immunol. 2017;8:169.
97. Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front Immunol. 2020;11:222.
98. Inoue K, Takano H, Yanagisawa R, Ichinose T, Sakurai M, Yoshikawa T. Effects of nano particles on cytokine expression in murine lung in the absence or presence of allergen. Arch Toxicol.2006;80(9):614-619.
99. Bezemer GF, Bauer SM, Oberdorster G, et al. Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. J Innate Immun. 2011;3(2):150-166.
100. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Lovik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci. 2009;109(1):113-123.
101. Rossi EM, Pylkkanen L, Koivisto AJ, et al. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol. 2010;7:35.
102. Inoue K, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306-316.
103. Yanagisawa R, Takano H, Inoue K, et al. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med (Maywood). 2009;234(3):314-322.
104. Szebeni J, Alving CR, Rosivall L, et al. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res. 2007;17(2):107-117.
105. Hamad I, Moghimi SM. Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug. Expert Opin Drug Deliv. 2008;5(2):205-219.
106. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674-677.
107. Morimoto Y, Izumi H, Kuroda E. Significance of persistent inflammation in respiratory disorders induced by nanoparticles. J Immunol Res. 2014;2014:962871.
108. Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol. 2017;139(6):1752-1761.
109. St Clair EW. The calm after the cytokine storm: lessons from the TGN1412 trial. J Clin Invest. 2008;118(4):1344-1347.
110. Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release. 2015;220(Pt B):571-583.
111. Montañez MI, Ruiz-Sanchez AJ, Perez-Inestrosa E. A perspective of nanotechnology in hypersensitivity reactions including drug allergy.Curr Opin Allergy Clin Immunol. 2010;10(4):297-302
112. Martín-Serrano Ortiz Á, Stenström P, Mesa Antunez P, et al. Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules. Journal of Polymer Science Part A: Polymer Chemistry. 2018;56(15):1609-1616.
113. Castaño N, Cordts SC, Nadeau KC, Tsai M, Galli SJ, Tang SKY. Microfluidic methods for precision diagnostics in food allergy.Biomicrofluidics. 2020;14(2):021503.
114. Sánchez-Sancho F, Pérez-Inestrosa E, Suau R, Mayorga C, Torres MJ, Blanca M. Dendrimers as Carrier Protein Mimetics for IgE Antibody Recognition. Synthesis and Characterization of Densely Penicilloylated Dendrimers. Bioconjug Chem. 2002;13(3):647-653.
115. Montañez MI, Perez-Inestrosa E, Suau R, Mayorga C, Torres MJ, Blanca M. Dendrimerized Cellulose as a Scaffold for Artificial Antigens with Applications in Drug Allergy Diagnosis. Biomacromolecules.2008;9(5):1461-1466.
116. Montañez MI, Perez-Inestrosa E, Suau R, et al. Nano-technological Improvement in the Design of Radioimmunoassay to Detect IgE to Betalactams by Using Oligo(ethylenglycol)-Spacer to anchor Dendrimeric Conjugates to a Solid Phase. The Journal of allergy and clinical immunology; 2011.
117. Ruiz-Sanchez AJ, Montañez MI, Mayorga C, et al. Dendrimer-Modified Solid Supports: Nanostructured Materials with Potential Drug Allergy Diagnostic Applications. Curr Med Chem. 2012;19(29):4942-4954
118. Vida Y, Montanez MI, Collado D, et al. Dendrimeric antigen-silica particle composites: an innovative approach for IgE quantification.J Mat Chem B. 2013;1(24):3044-3050.
119. Soler M, Mesa-Antunez P, Estevez MC, et al. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.Biosensors Bioelectron. 2015;66(0):115-123.
120. Ashraf S, Qadri S, al-Ramadi B, Haik Y. Nanoparticles rapidly assess specific IgE in plasma. Nanotechnology.2012;23(30):305101.
121. Wang J, Munir A, Li Z, Zhou HS. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay.Biosensors & bioelectronics. 2009;25(1):124-129.
122. Wang Y, Cui M, Jiao M, Luo X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Analytical and bioanalytical chemistry.2018;410(23):5871-5878.
123. Chapman MD, Wuenschmann S, King E, Pomés A. Technological Innovations for High-Throughput Approaches to In Vitro Allergy Diagnosis. Curr Allergy Asthma Rep. 2015;15(7):36.
124. Platt GW, Damin F, Swann MJ, et al. Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosens Bioelectron. 2014;52:82-88.
125. Gómez-Arribas LN, Benito-Peña E, Hurtado-Sánchez MDC, Moreno-Bondi MC. Biosensing Based on Nanoparticles for Food Allergens Detection.Sensors (Basel). 2018;18(4).
126. Anfossi L, Di Nardo F, Russo A, et al. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and bioanalytical chemistry. 2019;411(9):1905-1913.
127. Ross GMS, Bremer M, Nielen MWF. Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays.Analytical and bioanalytical chemistry. 2018;410(22):5353-5371.
128. Badran AA, Morais S, Maquieira Á. Simultaneous determination of four food allergens using compact disc immunoassaying technology.Analytical and bioanalytical chemistry. 2017;409(9):2261-2268.
129. Deak PE, Kim B, Adnan A, et al. Nanoallergen platform for detection of platin drug allergies. J Allergy Clin Immunol.2019;143(5):1957-1960.e1912.
130. Molina N, Martin-Serrano A, Fernandez TD, et al. Dendrimeric Antigens for Drug Allergy Diagnosis: A New Approach for Basophil Activation Tests. Molecules. 2018;23(5):997.
131. Di Felice G, Colombo P. Nanoparticle-allergen complexes for allergen immunotherapy. Int J Nanomedicine. 2017;12:4493-4504.
132. Souza J, Almeida LY, Luis MAV, et al. Mental health in the Family Health Strategy as perceived by health professionals. Rev Bras Enferm. 2017;70(5):935-941.
133. Souto EB, Dias-Ferreira J, Oliveira J, et al. Trends in Atopic Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems.Int J Mol Sci. 2019;20(22).
134. Wang L, Feng M, Li Q, Qiu C, Chen R. Advances in nanotechnology and asthma. Ann Transl Med. 2019;7(8):180.
135. Gamazo C, Gastaminza G, Ferrer M, Sanz ML, Irache JM. Nanoparticle based-immunotherapy against allergy. Immunotherapy.2014;6(7):885-897.
136. Onoue S, Matsui T, Aoki Y, et al. Self-assembled micellar formulation of chafuroside A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur J Pharm Sci.2012;45(1-2):184-189.
137. Jeon JO, Kim S, Choi E, et al. Designed nanocage displaying ligand-specific Peptide bunches for high affinity and biological activity. ACS Nano. 2013;7(9):7462-7471.
138. Scholl I, Weissenbock A, Forster-Waldl E, et al. Allergen-loaded biodegradable poly(D,L-lactic-co-glycolic) acid nanoparticles down-regulate an ongoing Th2 response in the BALB/c mouse model.Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2004;34(2):315-321.
139. De SRJ, Irache JM, Camacho AI, et al. Immunogenicity of peanut proteins containing poly(anhydride) nanoparticles. Clin Vaccine Immunol. 2014;21(8):1106-1112.
140. Licciardi M, Montana G, Bondi ML, et al. An allergen-polymeric nanoaggregate as a new tool for allergy vaccination. Int J Pharm.2014;465(1-2):275-283.
141. Hajavi J, Hashemi M, Sankian M. Evaluation of size and dose effects of rChe a 3 allergen loaded PLGA nanoparticles on modulation of Th2 immune responses by sublingual immunotherapy in mouse model of rhinitis allergic. Int J Pharm. 2019;563:282-292.
142. Balenga NA, Zahedifard F, Weiss R, Sarbolouki MN, Thalhamer J, Rafati S. Protective efficiency of dendrosomes as novel nano-sized adjuvants for DNA vaccination against birch pollen allergy. J Biotechnol. 2006;124(3):602-614.
143. Beilvert F, Tissot A, Langelot M, et al. DNA/amphiphilic block copolymer nanospheres reduce asthmatic response in a mouse model of allergic asthma. Hum Gene Ther. 2012;23(6):597-608.
144. Pali-Scholl I, Szollosi H, Starkl P, et al. Protamine nanoparticles with CpG-oligodeoxynucleotide prevent an allergen-induced Th2-response in BALB/c mice. Eur J Pharm Biopharm. 2013;85(3 Pt A):656-664.
145. Taylor WA, Sheldon D, Spicer JW. Adjuvant and suppressive effects of Grass Conjuvac and other alginate conjugates on IgG and IgE antibody responses in mice. Immunology. 1981;44(1):41-50.
146. Strong P, Clark H, Reid K. Intranasal application of chitin microparticles down-regulates symptoms of allergic hypersensitivity to Dermatophagoides pteronyssinus and Aspergillus fumigatus in murine models of allergy. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.2002;32(12):1794-1800.
147. Jatana S, Palmer BC, Phelan SJ, DeLouise LA. Immunomodulatory Effects of Nanoparticles on Skin Allergy. Sci Rep.2017;7(1):3979.
148. Benede S, Ramos-Soriano J, Palomares F, et al. Peptide Glycodendrimers as Potential Vaccines for Olive Pollen Allergy.Mol Pharm. 2020;17(3):827-836.
149. Rodriguez MJ, Ramos-Soriano J, Perkins JR, et al. Glycosylated nanostructures in sublingual immunotherapy induce long-lasting tolerance in LTP allergy mouse model. Sci Rep. 2019;9(1):4043.