References
[1] R.K. Saari, Y. Mei, E. Monier, F. Garcia-Menendez, Effect of Health-Related Uncertainty and Natural Variability on Health Impacts and Cobenefits of Climate Policy, Environmental science & technology, 53 (2019) 1098-1108.
[2] Z. Chen, L. Yang, Y. Huang, P. Spencer, W. Zheng, Y. Zhou, S. Jiang, W. Ye, Y. Zheng, W. Qu, Carcinogenic risk of N-Nitrosamines in Shanghai Drinking Water: Indications for the Use of Ozone Pretreatment, Environmental science & technology, 53 (2019) 7007-7018.
[3] J.H. Xiao Lu, Lin Zhang,Owen R. Cooper,Martin G. Schultz, Xiaobin Xu,, M.G. Tao Wang, Yuanhong Zhao, and Yuanhang Zhang, Severe Surface Ozone Pollution in China A Global Perspective, Environmental Science & Technology Letters, 5 (2018) 487-494.
[4] C. Weisel, C.J. Weschler, K. Mohan, J. Vallarino, J.D. Spengler, Ozone and ozone byproducts in the cabins of commercial aircraft, Environmental science & technology, 47 (2013) 4711-4717.
[5] C.J. Weschler, Ozone in Indoor Environments: Concentration and Chemistry, Indoor Air, (2000) 269-288.
[6] B. Dhandapani, S.T. Oyama, Gas phase ozone decomposition catalysts, Applied Catalysis B: Environmental, 11 (1997) 129-166.
[7] Y. Liu, P. Zhang, J. Zhan, L. Liu, Heat treatment of MnCO3: An easy way to obtain efficient and stable MnO2 for humid O3decomposition, Applied Surface Science, 463 (2019) 374-385.
[8] M. Wang, P. Zhang, J. Li, C. Jiang, The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon, Chinese Journal of Catalysis, 35 (2014) 335-341.
[9] G. Zhu, J. Zhu, W. Li, W. Yao, R. Zong, Y. Zhu, Q. Zhang, Tuning the K(+) Concentration in the Tunnels of alpha-MnO2 To Increase the Content of Oxygen Vacancy for Ozone Elimination, Environmental science & technology, 52 (2018) 8684-8692.
[10] J. Jia, P. Zhang, L. Chen, Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Applied Catalysis B: Environmental, 189 (2016) 210-218.
[11] Wei Li, G.V.Gibbs, S.T. Oyama, Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst. 1. In Situ Raman Spectroscopy and Ab Initio Molecular Orbital Calculations, Journal of American Chemical Society, 120 (1998) 9041-9046.
[12] Wei Li, G.V.Gibbs, S.T. Oyama, Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst. 2. Steady-State and Transient Kinetic Studies, Journal of American Chemical Society, 120 (1998) 9047-9052.
[13] C. Wang, J. Ma, F. Liu, H. He, R. Zhang, The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts, The Journal of Physical Chemistry C, 119 (2015) 23119-23126.
[14] Y. Liu, P. Zhang, Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: Effects of cerium modification, Applied Catalysis A: General, 530 (2017) 102-110.
[15] G. Zhu, J. Zhu, W. Jiang, Z. Zhang, J. Wang, Y. Zhu, Q. Zhang, Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination, Applied Catalysis B: Environmental, 209 (2017) 729-737.
[16] J. Ma, C. Wang, H. He, Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition, Applied Catalysis B: Environmental, 201 (2017) 503-510.
[17] W. Hong, T. Zhu, Y. Sun, H. Wang, X. Li, F. Shen, Enhancing Oxygen Vacancies by Introducing Na(+) into OMS-2 Tunnels To Promote Catalytic Ozone Decomposition, Environmental science & technology, 53 (2019) 13332-13343.
[18] S. Gong, W. Li, Z. Xie, X. Ma, H. Liu, N. Han, Y. Chen, Low temperature decomposition of ozone by facilely synthesized cuprous oxide catalyst, New J. Chem., 41 (2017) 4828-4834.
[19] J. Jia, C. Qian, Y. Dong, Y.F. Li, H. Wang, M. Ghoussoub, K.T. Butler, A. Walsh, G.A. Ozin, Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering - perfecting imperfection, Chemical Society reviews, 46 (2017) 4631-4644.
[20] T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie, J. Chen, Y.W. Zhang, S.J. Pennycook, W.S.V. Lee, J. Xue, Defect Engineering of Oxygen‐Deficient Manganese Oxide to Achieve High‐Performing Aqueous Zinc Ion Battery, Advanced Energy Materials, 9 (2019) 1803815.
[21] D.W. Kwon, G.J. Kim, J.M. Won, S.C. Hong, Influence of Mn valence state and characteristic of TiO2 on the performance of Mn-Ti catalysts in ozone decomposition, Environ Technol, 38 (2017) 2785-2792.
[22] E. Rezaei, J. Soltan, N. Chen, Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: Effect of catalyst loading, Applied Catalysis B: Environmental, 136-137 (2013) 239-247.
[23] Ebrahim Rezaei , Jafar Soltan , Ning Chen , J. Lin, Effect of noble metals on activity of MnOx-γ-alumina catalyst in catalytic ozonation of toluene, Chemical Engineering Journal, 214 (2013) 219-228.
[24] Rakesh Radhakrishnan, S.T. Oyama, Ozone Decomposition over Manganese Oxide Supported on ZrO2 and TiO2 A Kinetic Study Using in Situ Laser Raman Spectroscopy, Journal of Catalysis, 199 (2001) 182-290.
[25] Rakesh Radhakrishnan, S.T. Oyama, Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide, Journal of Physical Chemisty.B, 105 (2001) 4245-4253.
[26] J. Jia, P. Zhang, L. Chen, The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone, Catal. Sci. Technol., 6 (2016) 5841-5847.
[27] J.D.P. H.J. Monkhorst, Special points for Brillouin-zone integrations, Physical Review B, 13 (1976) 5188-5192.
[28] T. Mishra , P. Mohapatra , K.M. Parida, Synthesis, characterisation and catalytic evaluation of iron–manganese mixed oxide pillared clay for VOC decomposition reaction, Applied Catalysis B: Environmental, 79 (2008) 279-285.
[29] A. Gil , M.A. Vicente , S.A. Korili, Effect of the nature and structure of pillared clays in the catalytic behaviour of supported manganese oxide, Catalysis Today, 112 (2006) 117-120.
[30] J. Chen, X. Chen, X. Chen, W. Xu, Z. Xu, H. Jia, J. Chen, Homogeneous introduction of CeOy into MnOx -based catalyst for oxidation of aromatic VOCs, Applied Catalysis B: Environmental, 224 (2018) 825-835.
[31] H. Sun, Z. Liu, S. Chen, X. Quan, The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene, Chemical Engineering Journal, 270 (2015) 58-65.
[32] Y. Yang, J. Huang, S. Wang, S. Deng, B. Wang, G. Yu, Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves, Applied Catalysis B: Environmental, 142-143 (2013) 568-578.
[33] D. Chen, D. He, J. Lu, L. Zhong, F. Liu, J. Liu, J. Yu, G. Wan, S. He, Y. Luo, Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization, Applied Catalysis B: Environmental, 218 (2017) 249-259.
[34] J. Hou, L. Liu, Y. Li, M. Mao, H. Lv, X. Zhao, Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation, Environmental science & technology, 47 (2013) 13730-13736.
[35] C.H. Li Yang, Yulun Nie, Jiuhui Qu, Catalytic Ozonation of Selected Pharmaceuticals over Mesoporous Alumina-Supported Manganese Oxide, Environmental science & technology, 43 (2009) 2525-2529.
[36] J.P.D.A. John M. Roscoe, Diffuse Reflectance FTIR Study of the Interaction of Alumina Surfaces with Ozone and Water Vapor, The Journal of Physical Chemistry A, 109 (2005) 9028-9034.
[37] T. Gao, H. Fjellvag, P. Norby, A comparison study on Raman scattering properties of alpha- and beta-MnO2, Analytica chimica acta, 648 (2009) 235-239.
[38] C. Julien, M. Massot, S. Rangan, M. Lemal, D. Guyomard, Study of structural defects in gama-MnO2 by Raman spectroscopy, Journal of Raman Spectroscopy, 33 (2002) 223-228.
[39] C.M. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (2004) 689-700.
[40] E. Widjaja, J.T. Sampanthar, The detection of laser-induced structural change of MnO2using in situ Raman spectroscopy combined with self-modeling curve resolution technique, Analytica chimica acta, 585 (2007) 241-245.