References :
  1. Adeyemi, W.J., Olayaki, L.A., Abdussalam, T.A., Toriola, A.P., Olowu, A.B., Yakub, A.J. and Raji, A.O. (2020). Investigation of the effects of dietary modification in experimental obesity: low dose of virgin coconut oil has a potent therapeutic value. Biomedicine & Pharmacotherapy, 126 :110110.
  2. Arlee, R., Suanphairoch, S., Pakdeechanuan, P. (2013). Differences in chemical components and antioxidant-related substances in virgin coconut oil from coconut hybrids and their parents. Food Res Int.20(5) : 2103-2109.
  3. Assunção, M.L., Ferreira, H.S., dos Santos, A.F., Cabral, C.R., Florêncio, T.M.M.T. (2009). Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids, 44 :593-601
  4. Bartolotta, S., Garc´ıa C. C., Candurra N. A., and Damonte E. B. (2001). Effect of fatty acids on arenavirus replication: inhibition of virus production by lauric acid. Arch Virol, 146 : 777–790
  5. Carolyn et al. (2012). US Patent-https://patents.google.com/patent/US20120219644A1/en
  6. Dayrit, C.S. (2000). Coconut oil in health and disease: its and monolaurin’s potential as cure for HIV/AIDS. Ind Coconut J (Cochin),31 :19–24.
  7. Dayrit, F. (2014). The properties of lauric acid and their significance in coconut oil. J Am Oil Chem Soc. 92 :1-15 Doi. 10.1007/s11746-014-2562-7
  8. de Sousa, A.L.M., Pinheiro, R.R., Araújo, J.F., de Azevedo, D.A.A., Peixoto, R.M., Andrioli, A., da Cruz Silva Bezerra, S.T. and da Silva Teixeira, M.F. (2019). Sodium dodecyl sulfate as a viral inactivator and future perspectives in the control of small ruminant lentiviruses. Arquivos do Instituto Biológico, 86 . doi. 10.1590/1808-1657000752018. doi: https://doi.org/10.1101/2020.03.29.009464
  9. Duke, W. (2009). Medicine: Cocos nucifera Folk Medicine.
  10. Enig, M. G. (2010). Health and nutritional benefits from coconut oil and its advantages over competing oils. Indian Coconut Journal. 9-15.
  11. Enig, M.G. (1998). Lauric oils as antimicrobial agents: theory of effect, scientific rationale, and dietary applications as adjunct nutritional support for HIV-infected individuals. In: Nutrients and Foods in AIDS (Watson RR, ed.). CRC Press, Boca Raton, FL, USA, 81–97
  12. Fife, B. (2013). Health properties of coconut oil. Agro Food Ind Hi Tec, 24(3 ): 7-10
  13. Fletcher, N.F.,   Meredith L.W., ,  Tidswell E.,  Bryden S.R.,  Gonçalves-Carneiro D.,  Chaudhry Y.,  Lowe C.S.,  Folan M.A,  Lefteri D.A.,  Pingen, M.,  Bailey D., McKimmie C.S., Baird A.W. (2020). A novel antiviral formulation inhibits a range of enveloped viruses. bioRxiv 2020.03.29.009464
  14. Gaborit B.J., Bergmann J-F., Mussini C., Arribas J.R., Behrens G., Walmsley S., Pozniak A., Raffi F., (2020). Plea for multitargeted interventions for severe COVID-19. Lancet Infect Dis . https://doi.org/10.1016/S1473-3099(20)30312-1
  15. Hilmarsson, H. (2008). Microbicidal activity of lipids, their effect on mucosal infections in animals and their potential as disinfecting agents, PhD Thesis, Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik
  16. Hilmarsson, H., Traustason, B.S., Kristmundsdottir, T. and Thormar, H. (2007) .Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels. Arch. Virol.,152 :2225–2236
  17. Hornung, B., Amtmann E., & Sauer, G. (1994). Lauric acid inhibits the maturation of vesicular stomatitis virus. Journal of General Virology,75 (2): 353–361.
  18. Kamalaldin, N. A., Sulaiman, S. A., Yusop, M. R., & Yahaya, B. (2017). Does inhalation of virgin coconut oil accelerate reversal of airway remodelling in an allergic model of asthma?. International Journal Of Inflammation,  Article ID 8741851. https://doi.org/10.1155/2017/8741851
  19. Khan, H.U., Aamir. K., Sisinthy, S.P., Nagojappa, N.B.S., Arya, A. (2020). Food additive “lauric acid” possess non-toxic profile on biochemical, haematological and histopathological studies in female Sprague Dawley (SD) rats.  PeerJ 8 :e8805 https://doi.org/10.7717/peerj.8805
  20. Kohn, A., Gitelman, J., Inbar, M. (1980). Unsaturated free fatty acids inactivate animal enveloped viruses. Arch Virol, 66 : 301–307
  21. Kristmundsdottir, T., Arnadottir, S.G., Bergsson, G., Thormar, H. (1999). Development and evaluation of microbicidal hydrogels containing monoglyceride as the active ingredient. J Pharm Sci88 : 1011–1015
  22. Li, Q., Estes, J. D., Schlievert, P. M., Duan, L., Brosnahan, A. J., Southern, P. J., … & Nephew, K. R. (2009). Glycerol monolaurate prevents mucosal SIV transmission. Nature, 458(7241 ): 1034-1038. doi:10.1038/nature07831
  23. Liu, T., Zhang, J., Yang,Y., Ma ,H., Li, Z., Zhang, J., Cheng, J., Zhang, X., Zhao, Y., Xia, Z., Zhang, L., Wu,G., Yi, J. (2020). The potential role of IL-6 in monitoring severe cases of Coronavirus disease 2019. medRxiv doi: 10.1101/2020.03.01.20029769
  24. Luna, P.,   Hoerudin Habiddin, Andarwulan, N. (2020). Characterisation of functional monoglyceride and its potential application. AIP Conference Proceedings 2215, 070006 https://doi.org/10.1063/5.0000576
  25. McDonald, G.B., Saunders, D.R., Weidman, M., Fisher, L. (1980) Portal venous transport of long-chain fatty acids absorbed from rat intestine. Am J Physiol 239 :G141–G150
  26. Mikołajczak N. (2017). Coconut oil in human diet – nutrition value and potential health benefits. Journal of Education, Health and Sport7(9): 307-319. eISSN 2391-8306. doi. http://dx.doi.org/10.5281/zenodo.997464
  27. Mutmainah., Jumina., and Purwono, B. (2019). Chemical synthesis of monosaccharide lauric acid esters as antibacterial and antifungal agents. Materials Science Forum, 948 , 63-68. https://doi.org/10.4028/www.scientific.net/MSF.948.63
  28. Peterson, M.L., Schlievert, P.M. (2006). Glycerol monolaurate inhibits the effects of Gram-positive select agents on eukaryotic cells. Biochemistry 45(7): 2387-2397
  29. Piironen, V., Lampi, A.M. (2004). Occurrence and Levels of Phytosterols in Foods. (w:) Phytosterols as Functional Food Components and Nutraceuticals Dutta P.C. (Ed.). Marcel Dekker INC, Nowy Jork, 1-32
  30. Piret, J., Déseomeaux, A., Bergeron, M.G., et al., (2002). Sodium lauryl sulfate, a microbicide effective against enveloped and nonenveloped viruses. Current Drug Targets, 3(1): 17-30.
  31. Projan, S. J., Skrobot, S. B., Schlievert, P.M., Vandenesch F., and Novick, R. P. (1996). Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin1, and other staphylococcal exoproteins by interfering with signal transduction. Journal of Bacteriology, 176 : 4204–4209.
  32. St-Onge, M-P., Ross, R., Parsons, W.D., Johns, P.J.H. (2003). Medium chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes Res Clin Pract. 11(3): 395-402
  33. Thormar, H., Isaacs, C.E., Brown, H.R., Barshatzky, M.R., Pessolano, T. (1987). Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy. 31(1): 27-31. doi:10.1128/AAC.31.1.27
  34. Varga Z., , Flammer A.J., , Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R, Schuepbach R.A., Ruschitzka F., Moch H. (2020). Endothelial cell infection and endotheliitis in COVID-19.The Lancet . Published online April 17, 2020 https://doi.org/10.1016/S0140-6736(20)30937-5
  35. Widhiarta, K. D. (2016). Virgin Coconut Oil for HIV - Positive People. Cord, 32 (1): 50-57.
  36. Willimann (2018) US patent-https://patents.google.com/patent/US10307452B2/en
  37. Wyde, P.R., Chetty, S.N., Timmerman, P. et al. (2003). Short duration aerosols of JNJ 2408068 (R170591) administered prophylactically or therapeutically protect cotton rats from experimental respiratory syncytial virus infection. Antiviral Res. 60 : 221–231
  38. Yuniwarti E.Y. W., Asmara W., Artama W.T. and Tabbu C.R. (2015). Virgin coconut oil supplementation increased the survival of avianinfluenza virus (H5N1) infected chicken. Asian Journal of Poultry Science, 9 (2): 106-111
  39. Zhang, M.S., Sandouk, A., Houtman, J.C. (2017). Glycerol monolaurate (GML) inhibits human T cell signaling, metabolism, and function by disrupting lipid dynamics. The Journal of Allergy and Clinical Immunology. 139(2 ): AB269-AB269. doi:10.1016/j.jaci.2016.12.866