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1 INTRODUCTION

In finite-dimensional Hilbert spaces, Censor and Elfving1 first proposed the split feasibility problem (shortly, SFP) in 1994,
which is to solve the inverse problem in phase retrievals and medical image reconstruction.2 At the same time, SFP was also
applied to image restoration, computer tomograph, radiation therapy treatment planning, signal recovery and so on.3,4,5,6 Because
of its crucial application background, SFP has become a hot research field in the past 20 years and has been generalized in
various ways. To solve the split feasibility problem, it is necessary to mention that the fixed point equation and the CQ algorithm
proposed by Byrne2 in finite-dimensional Hilbert spaces. On the basis of this work, many results of weak convergence and strong
convergence were proved in Hilbert spaces and Banach spaces.7,8,9,10,11 Most of these iterative algorithms ususlly choose a fixed
stepsize or a stepsize sequence associated with the norm of the bounded linear operator. To get rid of such limitations, López et
al.12 used the idea of the gradient-projection algorithm to construct an adaptive stepsize sequence that does not depend on the
norm of the bounded linear operator and proposed a modified CQ algorithm with such a stepsize sequence. It turn out that such
a stepsize sequence is useful in practice and has been applied to many generalizations of SFP, such as the split common fixed
point problem, the split equality problem and the multiple-set split feasibility problem, see10,13,14,15,16 and the references therein.
Censor et al.17 introduced more general problems, i.e., the split inverse problems. By the selection of the inverse problem,

many generalization of SFP is generated. The split variational inclusion problem (shortly, SVIP) as one of them, including the
split variational inequality problem, the split equilibrium problem and the split feasibility problem. Based on resolvent mappings
of maximal monotone mappings, many strong convergent results are guaranteed under different iterative methods, such as the
Halpern iterative method,18 the viscosity iterative method19,20,21 and the Mann-type iterative method.22,23 Further, in terms of
the convergence rate of the algorithm, many related work have been done in various mathematical problems, among which the
most important and recognized is the inertial technique method. This method was first proposed by Polyak24 and was called the
heavy-ball method in a second-order time dynamic system. The acceleration of the algorithm is realized by setting the inertial
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extrapolation step, which contains the values of the previous two iterations in the next iteration. More recently, this technique
has also been applied to various aspects, such as variational inclusion problems, fixed point problems, variational inequalities,
split feasibilities and equilibrium problems.25,26,27,28,29,30,31,32
Along with the existing research results, many interesting insights have emerged in the improvement study of SVIP. On the

basis of the adaptive stepsize criterion and the inertial technique method, we will introduce a new Meir-Keeler contraction
algorithm and a new Mann-type algorithm for solving SVIP, as well as obtain strong convergence properties of the iterative
sequences generated by the proposed algorithms under certain parameter constraints. More precisely, our innovation and major
contributions in this paper are as follows:

(i) Based on the stepsize selection in12, our algorithm does not involve the norm of the bounded linear operator. This improves
the existing results7,9,18,19,21,22 and is easier to implement in practical applications;

(ii) The inertial technique method is taken into account in both algorithms and effectively accelerates the convergence rate of
the algorithms. This also promote many previous corresponding results;18,19,20,23

(iii) The Meir-Keeler contraction method and the Mann-type method are inserted to ensure the strong convergence property of
the both algorithms. Meanwhile, the familiar viscosity algorithm and the Halpern algorithm are also special cases of the
Meir-Keeler contraction algorithm;

(iv) The proposed algorithms are applied to the split variational inequality problem, the split feasibility problem and the split
equilibrium problem;

(v) In the numerical experiments, the convergence rate of our algorithms are faster than that of existing algorithms.19,21,22
Furthermore, our algorithms are also effectively applied to signal recovery problem.

An outline of this paper is as follows. Sect. 2 introduces the split variational inclusion problem and its some special split
forms. Meanwhile, some notations and lemmas for later proofs are given in this section. In Sect. 3, the inertial Meir-Keeler
contraction algorithm and the inertial Mann-type algorithm are proposed, and their convergence theorems are built under mild
conditions. In Sect. 4, some theoretical applications on the split variational inequality problem, the split feasibility problem and
the split equilibrium problem are presented by our main results. Finally, in Sect. 5, some practical examples, especially for signal
recovery problems, are given to show the convergence behavior of the proposed algorithms over the existing ones.

2 STATE OF PROBLEM AND PRELIMINARIES

2.1 State of problem
For the sake of simplicity, the notations 1, 2 and  represent Hilbert spaces, 01

and 02
represent the zero elements of

Hilbert spaces 1 and 2, respectively. The symbols 1, 1 and  denote nonempty closed convex subsets of 1, 2 and ,
respectively.  (T ) stands for the fixed point set of a mapping T . Let B1 ∶ 1 → 21 and B2 ∶ 2 → 22 be two maximal
monotone mappings, A ∶ 1 → 2 be a bounded linear operator. The split variational inclusion problem is to find z∗ ∈ 1
such that

01
∈ B1(z∗) and 02

∈ B2(Az∗). (SVIP)

The solution set of this problem is represented by Γ, i.e., Γ ∶= {z∗ ∈ 1 ∣ 01
∈ B1(z∗), 02

∈ B2(Az∗)}. On the other hand,
let F ∶  →  be a �-inverse strongly monotone operator. The classical variational inequality problem is to find z∗ ∈  such
that

⟨F (z∗), z − z∗⟩ ≥ 0, ∀z ∈ . (1)
Meanwhile, the normal coneN(z) of  at z ∈  is defined by

N(z) ∶= {v ∈  ∣ ⟨v, y − z⟩ ≤ 0, ∀y ∈ }.

The set valued mapping SF related toN(z) is defined by

SF (z) ∶=
{

F (z) +N(z), z ∈ ,
∅, otherwise. (2)
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In fact, such a mapping SF is maximal monotone and z∗ is a solution of (1) if and only if 0 ∈ SF (z∗), where 0 is a zero
element in. So, let F1 ∶ 1 → 1 and F2 ∶ 2 → 2 be �-inverse strongly monotone operators,A ∶ 1 → 2 be a bounded
linear operator. The split variational inequality problem (shortly, SVIP*) is to find z∗ ∈ 1 such that

⟨F1(z∗), z − z∗⟩ ≥ 0, ∀z ∈ 1 and ⟨F2(Az∗), u − Az∗⟩ ≥ 0, ∀u ∈ 1. (SVIP*)

From the above methods, set B1 ∶= SF1 and B2 ∶= SF2 , where SF1 and SF2 are constructed as (2), SVIP is equivalent to the
split variational inequality problem.
In addition, suppose that G ∶  ×  → ℝ is a bifunction that satisfies the following conditions:

(A1) G(z, z) = 0, ∀z ∈ ;

(A2) G(z, y) + G(y, z) ≤ 0, ∀z, y ∈ ;

(A3) lim supt→0G(tz + (1 − t)x, y) ≤ G(x, y), ∀x, y, z ∈ ;

(A4) For each z ∈ , the function y → G(z, y) is convex and lower semi-continuous.

The famous equilibrium problem is to find z∗ ∈  such that

G(z∗, y) ≥ 0, ∀y ∈ .

Firstly, Blum and Oettli33 gave the existence of the following inequality for the bifunction G, that is, for any r > 0 and z ∈ ,
there exists x ∈  such that

G(x, y) + 1
r
⟨y − x, x − z⟩ ≥ 0,∀y ∈ .

Further, Combettes and Hirstoaga34 defined a mapping T Gr ∶  →  as follows:

T Gr (z) ∶= {x ∈  ∣ G(x, y) + 1
r
⟨y − x, x − z⟩ ≥ 0, ∀y ∈ }, ∀r > 0, z ∈ . (3)

Then, T Gr is a single-valued and firmly nonexpansive mapping;  (T Gr ) = EP (G) is a nonempty closed and convex set, where
EP (G) denotes the solution set of the equilibrium problem. Meanwhile, T Gr is also called the resolvent mapping of G for any
r > 0. For explanation, Takahashi et al.35 introduced a set-valued mapping G from  into itself, i.e.,

G(z) ∶=
{

{x ∈ H ∣ G(z, y) ≥ ⟨y − z, x⟩,∀y ∈ } , z ∈ ,
∅, z ∉ . (4)

Then, EP (G) = −1
G (0) and G is maximal monotone with the effective domain of G ⊂ . Hence, for any z ∈  and r > 0,

the resolvent T Gr of G coincides with the resolvent of G, i.e.,

T Gr (z) =
(

I + rG
)−1 (z). (5)

Moreover, the equilibrium problem is extended to the split equilibrium problem (shortly, SEP): Let G1 ∶ 1 × 1 → ℝ and
G2 ∶ 1 ×1 → ℝ be two bifunctions satisfying (A1)-(A4). SEP is to find a point z∗ such that

G1(z∗, x) ≥ 0, ∀x ∈ 1 and G2(Az∗, y) ≥ 0, ∀y ∈ 1. (SEP)

Using the above conclusions, G1 , G2 , T
G1
r and T G2r are also generated in the same way. In the case that B1 = G1 and

B2 = G2 , SVIP is equivalent to SEP.
In addition, let g ∶  → (−∞,+∞) be a proper convex lower semicontinuous function. The subdifferential )g of g is defined

by )g(x) = {z ∈  ∣ g(y) − g(x) − ⟨z, y − x⟩ ≥ 0, ∀y ∈ }, ∀x ∈ . Suppose that i1 and i1 are indicator functions of 1
and 1, respectively, that is,

i1(x) ∶=
{

0, x ∈ 1,
∞, x ∉ 1;

i1(y) ∶=
{

0, y ∈ 1,
∞, y ∉ 1.

So, i1 and i1 are proper convex lower semicontinuous functions on1 and2, respectively, the subdifferentials )i1 and )i1
are two maximal monotone mappings. Meanwhile,

)i1(x) = {p ∈ 1 ∣ i1(z) − i1(x) − ⟨p, z − x⟩ ≥ 0, ∀z ∈ 1},
= {p ∈ 1 ∣ ⟨p, z − x⟩ ≤ 0, ∀z ∈ 1} = N1(x);

)i1(y) = {q ∈ 2 ∣ i1(u) − i1(y) − ⟨q, u − y⟩ ≥ 0, ∀u ∈ 2}
= {q ∈ 2 ∣ ⟨q, u − y⟩ ≤ 0, ∀u ∈ 1} = N1(y).
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Further, for 
 > 0, we define the following resolvent operators J
)i1

 and J

)i1

 with respect to )i1 and )i1 , respectively,

J
)i1

 (x) = (I + 
)i1)

−1(x), x ∈ 1, J
)i1

 (y) = (I + 
)i1)

−1(y), y ∈ 2.

Furthermore, for any 
 > 0,

u = J
)i1

 (x)⇔ x ∈ u + 
)i1(u)⇔x − u ∈ 
)i1(u)

⇔⟨x − u, z − u⟩ ≤ 0, ∀z ∈ 1
⇔u = P1(x),

where P1 is a metric projection from 1 onto 1. In the same way, v = J
)i1

 (y) ⇔ v = P1(y), where P1 is also a metric

projection from 2 onto 1. So, for any 
 > 0, we have J
)i1

 = P1 and J

)i1

 = P1 . In other words, when B1 = )i1 and

B2 = )i1 , SVIP is equivalent to the following split feasibility problem, which is to find z∗ such that

z∗ ∈ 1 and Az∗ ∈ 1. (SFP)

2.2 Preliminaries
Let  be a Hilbert space and  be a nonempty closed convex subset of . The symbols → and ⇀ denote strong convergence
and weak convergence, respectively.  (T ) denotes the fixed point set of a mapping T .

Definition 1. For any z, y ∈ , a mapping T ∶  →  is said to be

(i) contraction, if there exists a constant � ∈ [0, 1) such that

‖T (z) − T (y)‖ ≤ �‖z − y‖.

(ii) L-Lipschitz continuous with L > 0, if
‖T (z) − T (y)‖ ≤ L‖z − y‖.

(iii) nonexpansive, if
‖T (z) − T (y)‖ ≤ ‖z − y‖.

(iv) firmly nonexpansive, if
‖T (z) − T (y)‖2 ≤ ⟨T (z) − T (y), z − y⟩.

(v) �-inverse strongly monotone, if
�‖T (z) − T (y)‖2 ≤ ⟨T (z) − T (y), z − y⟩.

In addition, for any z, y ∈  and � ∈ ℝ, the following properties hold

(1) ‖z + y‖2 = ‖z‖2 + ‖y‖2 + 2⟨z, y⟩ ≤ ‖z‖2 + 2⟨y, z + y⟩;

(2) ‖�z + (1 − �)y‖2 = �‖z‖2 + (1 − �)‖y‖2 − �(1 − �)‖z − y‖2.

Remark 1. If T is a firmly nonexpansive mapping, then it is also nonexpansive and I−T is also a firmly nonexpansive mapping.

Definition 2. The metric projection of  onto , denoted by P(z), is defined by

P(z) ∶= argminy∈ ‖z − y‖, ∀z ∈ .

This definition has the following important consequences.

Lemma 1 (Bauschke and Combettes36). For any z ∈  and y ∈ , the metric projection PC from  onto  possesses the
following equivalent properties:

⟨P(z) − z, P(z) − y⟩ ≤ 0 ⇔ ‖y − P(z)‖2 + ‖z − P(z)‖2 ≤ ‖z − y‖2.

Definition 3 (Meir and Keeler37). Let ( , d) be a metric space. ℎ ∶  →  is a Meir-Keeler contraction mapping if and only
if for each " > 0, there exists a number � > 0 such that

" ≤ d(z, y) < " + � ⇒ d(ℎ(z), ℎ(y)) < ", ∀z, y ∈  .
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Lemma 2 (Suzuki38). Let  be a convex subset of a Banach space , ℎ ∶  →  be a Meir-Keeler contraction mapping. For
each " > 0, there exists a number � ∈ (0, 1) such that ‖z − y‖ ≥ " implies ‖ℎ(z) − ℎ(y)‖ ≤ �‖z − y‖, ∀z, y ∈ .

Definition 4. Let B ∶  → 2 be a set-valued mapping with domain (B) ∶= {z ∈  ∣ B(z) ≠ ∅} and graph (B) ∶=
{(z,w) ∈  × ∣ z ∈ (B), w ∈ B(z)}. Recall that B ∶  → 2 is monotone mapping if and only if ⟨z − y,w − v⟩ ≥ 0,
∀w ∈ B(z), v ∈ B(y). Further, a monotone mapping B ∶  → 2 is maximal, that is, the graph (B) is not properly contained
in the graph of any other monotone mapping.

Lemma 3 (Marino and Xu,39 Chuang40). The resolvent mapping JB
 of a maximal monotone mapping B with 
 > 0 is defined
as JB
 (z) = (I + 
B)

−1(z),∀z ∈ . The following properties hold.

(1) JB
 is a single-valued and firmly nonexpansive mapping;

(2)  (JB
 )⇔ B−1(0) ∶= {z ∈ (B) ∣ 0 ∈ B(z)}.

Remark 2. Because of the nature of the resolvent mapping JB
 , the solution set Γ of the split variational inclusion problem is
equivalent to the set {z∗ ∈ 1 ∣ z∗ ∈  (JB1
 ), Az∗ ∈  (JB2
 )}, where J

B1

 (resp. JB2
 ) is the resolvent mapping of a maximal

monotone mapping B1 (resp. B2).

Lemma 4 (Cui and Su41). Let B ∶ (B) ⊂  → 2 be a maximal monotone mapping. For any 0 < � ≤ 
 , then

‖x − JB� (x)‖ ≤ 2‖x − JB
 (x)‖, ∀x ∈ .

Lemma 5 (Zhou and Qin42). Let T ∶  →  be a nonexpansive mapping with  (T ) ≠ ∅. I − T is demiclosed at zero, that is,
for any sequence {zn} in , satisfying zn ⇀ z and zn − T (zn)→ 0, then z ∈  (T ).

Lemma 6 (He and Yang43). Let {an} and {cn} be two sequences of nonnegative real numbers such that

an+1 ≤ (1 − kn)an + knbn, n ≥ 1,

an+1 ≤ an − cn + dn, n ≥ 1,
where {kn}, {bn} and {dn} are real sequences with 0 < kn < 1. If

∑∞
n=1 kn = ∞, limn→∞ dn = 0, and limk→∞ cnk = 0 implies

limk→∞ bnk ≤ 0, where {nk} is any subsequence of {n}. The sequence {an} converges to 0 as n→∞.

3 TWO ADAPTIVE INERTIAL ITERATIVE ALGORITHMS

In this section, we assume that 1, 2 are two Hilbert spaces and A ∶ 1 → 2 is a bounded linear operator with adjoint
operator A∗, B1 ∶ 1 → 21 and B2 ∶ 2 → 22 are two set-valued maximal monotone mappings, ℎ ∶ 1 → 1 is a Meir-
Keeler contraction mapping. For solving SVIP, we introduce the following Algorithm 1 and Algorithm 2 using the Meir-Keeler
contraction method and the Mann-type method, respectively.

Remark 3. We have the following observations from Algorithms 1 and 2.

(1) The value of ‖zn − zn−1‖ is known in each iteration of Algorithms 1 and 2. Hence, the sequence {�n} is constructed as
follows:

�n =

⎧

⎪

⎨

⎪

⎩

min
{

�,
�n

‖

‖

zn − zn−1‖‖

}

, zn ≠ zn−1,

�, otherwise,
where {�n} is a positive sequence with �n = o(�n) and � ∈ [0, 1).

(2) Furthermore, the sequence {�n} can be chosen by �n = n−p with 0 < p ≤ 1. Thus, the above positive sequence {�n} can be
obtained �n = n−q with q > p, for more detail, see10.

(3) In Algorithms 1 and 2, the coefficient �n ∈ [a, b] ⊂ (0, 2) is satisfied to avoid the limit of �n being equal to 0 or 1. In fact, it
is permissible to set �n in the following cases:

(i) 0 < lim infn→∞ �n ≤ lim supn→∞ �n < 2;
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Algorithm 1 Inertial Meir-Keeler contraction algorithm (IMKCA)
Suppose 
n > 0, �n ∈ [0, �] ⊂ [0, 1), �n ∈ (0, 1) and �n ∈ [a, b] ⊂ (0, 2). Take any z0, z1 ∈ 1 and compute

⎧

⎪

⎨

⎪

⎩

tn = zn + �n(zn − zn−1),
wn = JB1
n (tn),

un = wn − �nA∗(I − JB2
n )Awn.
(6)

If tn = wn = un, then stop. Otherwise, calculate

zn+1 = �nℎ(un) + (1 − �n)un.

Here the stepsize �n is defined by

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I−J
B2

n )Awn‖

2

‖A∗(I−JB2
n )Awn‖
2
, Awn ∉ B−12 (0),

0, otherwise,
(7)

and ∞
∑

n=1
�n = ∞, limn→∞ �n = 0, limn→∞

�n
�n
‖zn − zn−1‖ = 0, infn{
n} ≥ 
 > 0.

Algorithm 2 Inertial Mann-type algorithm (IMTA)
Suppose 
n > 0, �n ∈ [0, �] ⊂ [0, 1), �n ∈ (0, 1) and �n ∈ [a, b] ⊂ (0, 2). Take any initial guesses z0, z1 ∈ 1 and tn, wn, un are
generated in the same way as (6). If tn = wn = un, then stop. Otherwise, calculate

zn+1 = (1 − �n − �n)wn + �nun.

Here �n is defined as (7) and
∞
∑

n=1
�n = ∞, limn→∞ �n = 0, limn→∞

�n
�n
‖zn − zn−1‖ = 0, {�n} ⊂ [c, d] ⊂ (0, 1 − �n), infn{
n} ≥ 
 > 0.

(ii) infn �n
(

2 − �n
)

> 0.

Lemma 7. If tn = wn = un in Algorithms 1 and 2, then tn is a solution of SVIP, i.e., tn ∈ Γ.

Proof. From Lemmas 3 and 4, and the definition of tn, wn and un, for any z∗ ∈ Γ,

0 = ⟨tn − un, tn − z∗⟩ = ⟨tn −wn, tn − z∗⟩ + ⟨wn − un, tn − z∗⟩
= ⟨tn − JB1
n (tn), tn − z

∗
⟩ + �n⟨A∗(I − JB2
n )Awn, tn − z∗⟩

= ⟨tn − JB1
n (tn), tn − z
∗
⟩ + �n⟨(I − JB2
n )Atn, Atn − Az

∗
⟩

≥ ‖tn − JB1
n (tn)‖
2 + ‖(I − JB2
n )Atn‖

2

≤ 1
2
(‖tn − JB1
 (tn)‖

2 + ‖(I − JB2
 )Atn‖
2).

Thus ‖tn − J
B1

 tn‖ = ‖(I − JB2
 )Atn‖ = 0. From Remark 2, we obtain that tn is a solution of SVIP.

Lemma 8. For any z1 ∈ 1, 
n > 0 and �n > 0, set un = zn − �nA∗(I − J
B2

n )Azn. Then,

‖un − z∗‖2 ≤ ‖zn − z∗‖2 − �n
(

2‖(I − JB2
n )Azn‖
2 − �n‖A∗(I − JB2
n )Azn‖

2
)

, ∀z∗ ∈ Γ.
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Proof. For any z∗ ∈ Γ, i.e., z∗ ∈ B−11 (0) and Az
∗ ∈ B−12 (0). According to the firmly nonexpansive mappings JB1
n , J

B2

n and

I − JB2
n , we have

‖un − z∗‖2 = ‖zn − z∗‖2 + �2n‖A
∗(I − JB2
n )Azn‖

2 − 2�n
⟨

zn − z∗, A∗(I − JB2
n )Azn
⟩

= ‖zn − z∗‖2 + �2n‖A
∗(I − JB2
n )Azn‖

2

− 2�n
⟨

Azn − Az∗, (I − JB2
n )Azn − (I − J
B2

n
)Az∗

⟩

≤ ‖zn − z∗‖2 + �2n‖A
∗(I − JB2
n )Azn‖

2 − 2�n‖(I − JB2
n )Azn‖
2

= ‖zn − z∗‖2 − �n
(

2‖(I − JB2
n )Azn‖
2 − �n‖A∗(I − JB2
n )Azn‖

2
)

.

Theorem 1. If the solution set Γ is nonempty, the sequence {zn} generated by Algorithm 1 converges to z∗ ∈ Γ in norm and
z∗ = PΓℎ(z∗), i.e., ⟨ℎ(z∗) − z∗, z̄ − z∗⟩ ≤ 0, ∀ z̄ ∈ Γ.

Proof. Obviously, the solution set Γ is closed and convex. Hence, PΓ is well defined. Choose z∗ ∈ Γ and z∗ = PΓℎ(z∗), that is,
z∗ ∈ B−11 (0) and Az

∗ ∈ B−12 (0). If for any " > 0, ‖xn − x
∗
‖ ≤ ", this implies that {xn} is a bounded sequence. On the contrary,

‖xn − x∗‖ ≥ ", there exists a number � ∈ (0, 1) by Lemma 2 such that ‖ℎ(xn) − ℎ(x∗)‖ ≤ �‖xn − x∗‖. Take

Δn = 2‖(I − JB2
n )Awn‖
2 − �n‖A∗(I − JB2
n )Awn‖

2.

By Lemma 8 and the choice of the stepsize {�n}, we have Δn ≥ 0 and

‖un − z∗‖2 = ‖wn − z∗‖2 − �nΔn ≤ ‖wn − z∗‖2. (8)

Further, it follows from (6) and (8) that
‖zn+1 − z∗‖ ≤ �n‖ℎ(un) − z∗‖ + (1 − �n)‖un − z∗‖

≤ �n‖ℎ(un) − ℎ(z∗)‖ + �n‖ℎ(z∗) − z∗‖ + (1 − �n)‖un − z∗‖
≤ (1 − �n(1 − �))‖un − z∗‖ + �n‖ℎ(z∗) − z∗‖
≤ (1 − �n(1 − �))‖wn − z∗‖ + �n‖ℎ(z∗) − z∗‖
≤ (1 − �n(1 − �))‖zn − z∗‖ + �n‖ℎ(z∗) − z∗‖ + (1 − �n(1 − �))�n‖zn − zn−1‖

≤ (1 − �n(1 − �))‖zn − z∗‖ + �n(1 − �)
(

‖ℎ(z∗) − z∗‖
1 − �

+
�n‖zn − zn−1‖
�n(1 − �)

)

.

Using the conditions lim
n→∞

�n
�n
‖zn − zn−1‖ = 0 and � ∈ (0, 1), we have lim

n→∞

�n‖zn − zn−1‖
�n(1 − �)

= 0. That is to say, there exists a
non-negative constant K such that

K∕2 = max
{

‖ℎ(z∗) − z∗‖
1 − �

,
�n‖zn − zn−1‖
�n(1 − �)

}

.

Hence,
‖zn+1 − z∗‖ ≤ (1 − �n(1 − �))‖zn − z∗‖ + �n(1 − �)K

≤ max{‖zn − z∗‖, K} ≤⋯ ≤ max{‖z0 − z∗‖, K}.
This shows that {zn} is bounded. Similarly, {tn}, {wn} and {un} are also bounded. In addition, from the firmly nonexpansive
mapping JB1
n , we obtain

‖wn − z∗‖2 ≤ 2⟨wn − z∗, tn − z∗⟩ − ‖wn − z∗‖2

= ‖tn − z∗‖2 − ‖wn − tn‖2

≤ ‖zn − z∗‖2 + 2�n⟨tn − z∗, zn − zn−1⟩ − ‖wn − tn‖2

≤ ‖zn − z∗‖2 + 2�n‖tn − z∗‖‖zn − zn−1‖ − ‖wn − tn‖2.

(9)
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By combining (8) and (9), we get
‖zn+1 − z∗‖2 ≤ ‖�n(ℎ(un) − ℎ(z∗)) + (1 − �n)(un − z∗)‖2 + 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩

≤ �n‖ℎ(un) − ℎ(z∗)‖2 + (1 − �n)‖un − z∗‖2 + 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩
≤ (1 − �n(1 − �2))‖un − z∗‖2 + 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩
≤ (1 − �n(1 − �2))‖wn − z∗‖2 − (1 − �n(1 − �2))�nΔn + 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩
≤ (1 − �n(1 − �2))‖zn − z∗‖2 + 2(1 − �n(1 − �2))�n‖tn − z∗‖‖zn − zn−1‖
+ 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩ − (1 − �n(1 − �2))(�nΔn + ‖wn − tn‖2).

From the above inequality, we have

an+1 ≤ (1 − kn)an + knbn and an+1 ≤ an − cn + dn, n ≥ 1,

where

an = ‖zn − z∗‖2, kn = �n(1 − �2), cn = (1 − �n(1 − �2))(�nΔn + ‖wn − tn‖2),

bn =
2(1 − kn)�n‖tn − z∗‖‖zn − zn−1‖ + 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩

�n(1 − �2)
,

dn = 2(1 − kn)�n‖tn − z∗‖‖zn − zn−1‖ + 2�n⟨ℎ(z∗) − z∗, zn+1 − z∗⟩.

Since
∑∞
n=1 �n = ∞, limn→∞ �n = 0, limn→∞

�n
�n
‖zn−zn−1‖ = 0 and {tn} is bounded, we see that

∑∞
n=1 kn = ∞ and limn→∞ dn = 0.

Besides, suppose that {cnk} is a subsequence of {cn} such that limk→∞ cnk = 0. If Awnk ∉ B−12 (0), we have limk→∞ ‖(I −
JB2
nk )Awnk‖ = 0 and limk→∞ ‖wnk − tnk‖ = 0. Further,

‖wnk − znk‖ ≤ ‖wnk − tnk‖ + ‖tnk − znk‖ ≤ ‖wnk − tnk‖ + �nk‖znk − znk−1‖ → 0, as k→∞;

‖(I − JB1
nk
)znk‖ ≤ ‖znk −wnk‖ + ‖wnk − J

B1

nk
znk‖ ≤ ‖znk −wnk‖ + �nk‖znk − znk−1‖ → 0, as k→∞.

By Lemma 4 and infn{
n} ≥ 
 > 0, we have

‖(I − JB2
 )Awnk‖ ≤ 2‖(I − JB2
nk
)Awnk‖ → 0, ‖(I − JB1
 )znk‖ ≤ 2‖(I − JB1
nk

)znk‖ → 0.

On the other hand, from the boundedness of {znk}, there exists a subsequence {znki } of {znk} such that znki ⇀ ẑ and
lim supk→∞⟨ℎ(z∗) − z∗, znk − z

∗
⟩ = limi→∞⟨ℎ(z∗) − z∗, znki − z

∗
⟩. By virtue of limk→∞ ‖wnk − znk‖ = 0 and the bounded

linear operator A, we obtain wnki
⇀ ẑ and Awnki

⇀ Aẑ. It follows from Lemma 5 that ẑ ∈  (JB1
 ) and Aẑ ∈  (JB2
 ),
i.e., ẑ ∈ Γ. Meanwhile, if Awnk ∈ B−12 (0), one can also get the same result. According to the property of metric projection,
limi→∞⟨ℎ(z∗) − z∗, znki − z

∗
⟩ = ⟨ℎ(z∗) − z∗, ẑ − z∗⟩ ≤ 0. Besides,

‖znk+1 − znk‖ ≤ ‖znk+1 − unk‖ + ‖unk −wnk‖ + ‖wnk − znk‖
≤ �nk‖ℎ(unk) − unk‖ + �nk‖A‖‖(I − J

B2

nk
)Awnk‖ + ‖wnk − znk‖ → 0, as k→∞.

Hence, lim supk→∞⟨ℎ(z∗) − z∗, znk+1 − z
∗
⟩ ≤ 0 and

lim
n→∞

(1 − kn)�n‖tn − z∗‖‖zn − zn−1‖
�n(1 − �2)

≤ lim
n→∞

�n‖tn − z∗‖‖zn − zn−1‖
�n(1 − �2)

= 0.

This means that lim supk→∞ bnk ≤ 0. It follows from Lemma 6 that limn→∞ ‖zn − z∗‖ = 0, i.e., the iterative sequence {zn}
converges to z∗ in norm and z∗ = PΓℎ(z∗).

Theorem 2. If the solution set Γ is nonempty, the sequence {zn} generated by Algorithm 2 converges in norm to z∗ ∈ Γ and
z∗ = PΓ(0), i.e., the minimum-norm element of Γ.
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Proof. Firstly, since the solution set Γ is closed and convex, then there exists the minimum-norm element of Γ. Take z∗ ∈ Γ
and z∗ = PΓ(0), it follows from (8) that

‖zn+1 − z∗‖ = ‖(1 − �n − �n)(wn − z∗) + �n(un − z∗) − �nz∗‖
≤ (1 − �n − �n)‖wn − z∗‖ + �n‖un − z∗‖ + �n‖z∗‖
≤ (1 − �n)‖wn − z∗‖ + �n‖z∗‖
≤ (1 − �n)‖zn − z∗‖ + �n‖z∗‖ + (1 − �n)�n‖zn − zn−1‖

≤ (1 − �n)‖zn − z∗‖ + �n
(

‖z∗‖ +
�n‖zn − zn−1‖

�n

)

.

Similar to the proof of Theorem 1, we also obtain that the sequences {zn}, {tn}, {wn} and {un} are bounded. Further, by (8) and
(9), we have

‖zn+1 − z∗‖2 = ‖(1 − �n − �n)(wn − z∗) + �n(un − z∗) − �nz∗‖2

≤ ‖(1 − �n − �n)(wn − z∗) + �n(un − z∗)‖2 − 2�n⟨z∗, zn+1 − z∗⟩
≤ (1 − �n − �n)2‖wn − z∗‖2 + �2n‖un − z

∗
‖

2 − 2�n⟨z∗, zn+1 − z∗⟩
+ 2(1 − �n − �n)�n‖wn − z∗‖‖un − z∗‖

≤ (1 − �n − �n)(1 − �n)‖wn − z∗‖2 + (1 − �n)�n‖un − z∗‖2 − 2�n⟨z∗, zn+1 − z∗⟩
≤ (1 − �n)2‖wn − z∗‖2 − (1 − �n)�n�nΔn + 2�n⟨z∗, z∗ − zn+1⟩
≤ (1 − �n(1 − �n))‖zn − z∗‖2 + 2�n(1 − �n)2‖tn − z∗‖‖zn − zn−1‖
− (1 − �n)2‖wn − tn‖2 − (1 − �n)�n�nΔn + 2�n⟨z∗, z∗ − zn+1⟩.

Thus, for each n ≥ 1, we get
an+1 ≤ (1 − kn)an + knbn and an+1 ≤ an − cn + dn,

where

an = ‖zn − z∗‖2, kn = �n(1 − �n), cn = (1 − �n)2‖wn − tn‖2 + (1 − �n)�n�nΔn,

bn =
2�n(1 − �n)2‖tn − z∗‖‖zn − zn−1‖ + 2�n⟨z∗, z∗ − zn+1⟩

�n(1 − �n)
,

dn = 2�n(1 − �n)2‖tn − z∗‖‖zn − zn−1‖ + 2�n⟨z∗, z∗ − zn+1⟩.

Based on the above derivation and the same method in Theorem 1, it follows from Lemma 6 that limn→∞ ‖zn − z∗‖ = 0, i.e.,
the iterative sequence {zn} converges to z∗ = PΓ(0) in norm. Meanwhile, from the property of the metric projection mapping,
we have

⟨z∗, z∗ − z̄⟩ ≤ 0⇔ ‖z∗‖2 ≤ ‖z∗‖‖z̄‖ ⇔ ‖z∗‖ ≤ ‖z̄‖, ∀z̄ ∈ Γ,
that is, z∗ is the minimum-norm element of Γ.

Remark 4. From the definition ofMeir-Keeler contraction mapping, we can easily know that the contraction mapping is a special
case. Thus, the viscosity algorithm with the contraction mapping and the Halpern algorithm are special cases of Algorithm 1.

Corollary 1. Let 1, 2, A, A∗, B1 and B2 be the same as Theorem 1 and 
n, �n, �n, �n, �n be the same as Algorithm 1. Let
ℎ ∶ 1 → 1 be a contraction mapping with coefficient � ∈ [0, 1). Take any z0, z1 ∈ 1, the sequence {zn} generated by the
following iterative algorithm: tn,wn, un are generated in the same manner as (6). If tn = wn = un, then stop. Otherwise, calculate

zn+1 = �nℎ(un) + (1 − �n)un, n ≥ 1.

If the solution set Γ is nonempty, the sequence {zn} converges in norm to z∗ ∈ Γ and z∗ = PΓℎ(z∗), i.e., ⟨ℎ(z∗) − z∗, z̄− z∗⟩ ≤
0, ∀ z̄ ∈ Γ.

Corollary 2. Let 1, 2, A, A∗, B1 and B2 be the same as Theorem 1 and 
n, �n, �n, �n, �n be the same as Algorithm 1. Let u
be a fixed point in 1. Take any initial points z0, z1 ∈ 1, the sequence {zn} generated by the following algorithm: tn, wn, un
are generated in the same manner as (6). If tn = wn = un, then stop. Otherwise, calculate

zn+1 = �nu + (1 − �n)un, n ≥ 1.
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If the solution set Γ is nonempty, the sequence {zn} converges in norm to z∗ ∈ Γ and z∗ = PΓ(u), that is, ⟨u − z∗, z̄ − z∗⟩ ≤
0, ∀ z̄ ∈ Γ.

Remark 5. (1) When Hilbert spaces 1 = 2, the split variational inclusion problem becomes the simultaneous variational
inclusion problem: to find a point z∗ ∈ 1 such that

01
∈ B−11 (z

∗) and 01
∈ B−12 (Az

∗),

whereB1 andB2 are maximal monotone mappings from1 onto 21 . Hence, the results of Theorems 1 and 2 can be applied
to this problem. More importantly, the simultaneous variational inclusion problem involves the simultaneous variational
inequality problem and the simultaneous equilibrium problem.

(2) When the bounded linear operatorA = I (I is identity mapping on1) and1 = 2, the split variational inclusion problem
becomes the common solution of the variational inclusion problem (shortly, CSVIP). Using the conclusion of this paper,
the iterative sequences generated by the Algorithms 1 and 2 with 1 = 2 and A = I converges strongly to approximate
solution of CSVIP. On the other hand, the common solution of the variational inequality problem, the common solution of
the equilibrium problem and the convex feasibility problem can all be special cases of CSVIP.

4 THEORETICAL APPLICATIONS

According to the transformation of SVIP, the split variational inequality problem, the split equilibrium problem and the split
feasibility problem can be represented indirectly by appropriate settings in Subsection 2.1. Therefore, by our Theorems 1 and 2,
the following results are easy to obtain and prove.

4.1 The split variational inequality problem
Theorem 3. Let 1, 2, 1, 1, A, A∗, F1, F2 be the same as SVIP* and ℎ, 
n, �n, �n, �n be the same as Algorithm 1. Take
any initial points z0, z1 ∈ 1, the sequence {zn} generated by the following algorithm:

⎧

⎪

⎨

⎪

⎩

tn = zn + �n(zn − zn−1),

wn = J
SF1

n (tn),

un = wn − �nA∗(I − J
SF2

n )Awn.

(10)

If tn = wn = un, then stop. Otherwise, go on to calculate

zn+1 = �nℎ(un) + (1 − �n)un, n ≥ 1.

Here SF1 and SF2 are defined as (2),

�n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�n‖(I − J
SF2

n )Awn‖

2

‖A∗(I − J
SF2

n )Awn‖

2
, Awn ∉ S−1F2 (0),

0, otherwise.

(11)

If the solution set Φ of SVIP* is nonempty, the sequence {zn} converges in norm to z∗ ∈ Φ and z∗ = PΦℎ(z∗), i.e., ⟨ℎ(z∗) −
z∗, z̄ − z∗⟩ ≤ 0, ∀ z̄ ∈ Φ.

Proof. Set B1 = SF1 and B2 = SF2 in Theorem 1, we get the proof.

Theorem 4. Let1,2, 1,1,A,A∗, F1, F2 be the same as SVIP* and 
n, �n, �n, �n, �n be the same as Algorithm 2. Take any
initial points z0, z1 ∈ 1, the sequence {zn} generated by the following algorithm: tn, wn, un are generated in the same manner
as (10). If tn = wn = un, then stop. Otherwise, go on to calculate

zn+1 = (1 − �n − �n)wn + �nun, n ≥ 1.

HereSF1 andSF2 are defined as (2), �n is defined as (11). If the solution setΦ of SVIP* is nonempty, the sequence {zn} converges
in norm to z∗ ∈ Φ and z∗ = PΦ(0), i.e., the minimum-norm element of Φ.
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4.2 The split feasibility problem
Theorem 5. Let1,2, 1, 1, A, A∗ be the same as SFP and ℎ, �n, �n, �n be the same as Algorithm 1. Take any initial points
z0, z1 ∈ 1, the sequence {zn} generated by the following algorithm:

⎧

⎪

⎨

⎪

⎩

tn = zn + �n(zn − zn−1),
wn = P1(tn),
un = wn − �nA∗(I − P1)Awn.

(12)

If tn = wn = un, then stop. Otherwise, go on to calculate

zn+1 = �nℎ(un) + (1 − �n)un, n ≥ 1.

Here

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − P1)Awn‖
2

‖A∗(I − P1)Awn‖
2
, Awn ∉ 1,

0, otherwise.
(13)

If the solution setΥ of SFP is nonempty, the sequence {zn} converges in norm to z∗ ∈ Υ and z∗ = PΥℎ(z∗), i.e., ⟨ℎ(z∗)−z∗, z̄−
z∗⟩ ≤ 0, ∀ z̄ ∈ Υ.

Proof. Using metric projection mappings P1 , P1 and Theorem 1, we have the proof.

Theorem 6. Let1,2, 1, 1, A and A∗ be the same as above and �n, �n, �n, �n be the same as Algorithm 2. Take any initial
points z0, z1 ∈ 1, the sequence {zn} generated by the following algorithm: tn, wn, un are generated in the same manner as
(12). If tn = wn = un, then stop. Otherwise, go on to calculate

zn+1 = (1 − �n − �n)wn + �nun, n ≥ 1.

Here �n is defined as (13). If the solution set Υ of SFP is nonempty, the sequence {zn} converges in norm to z∗ ∈ Υ and
z∗ = PΥ(0), i.e., the minimum-norm element of Υ.

4.3 The split equilibrium problem
From the definition of the split equilibrium problem, the symbol Λ represents the solution set of the split equilibrium problem,
i.e., Λ = {z∗ ∈ 1 ∣ z∗ ∈ EP (G1) and Az∗ ∈ EP (G2)}.

Theorem 7. Let 1, 2, 1, 1, G1, G2, A, A∗ be the same as SEP and ℎ, �n, �n, �n be the same as Algorithm 1. Take any
initial points z0, z1 ∈ 1 and r > 0, the sequence {zn} generated by the following algorithm:

⎧

⎪

⎨

⎪

⎩

tn = zn + �n(zn − zn−1),
wn = T G1r (tn),
un = wn − �nA∗(I − T G2r )Awn.

(14)

If tn = wn = un, then stop. Otherwise, calculate

zn+1 = �nℎ(un) + (1 − �n)un, n ≥ 1.

Here

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − T
G2
r )Awn‖

2

‖A∗(I − T G2r )Awn‖
2
, Awn ∉ EP (G2),

0, otherwise.
(15)

If the solution set Λ is nonempty, the sequence {zn} converges in norm to z∗ ∈ Λ and z∗ = PΛℎ(z∗), i.e., ⟨ℎ(z∗) − z∗, z̄− z∗⟩ ≤
0, ∀ z̄ ∈ Λ.

Proof. Set B1 = G1 , B2 = G2 and Theorem 1, we get the proof.
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Theorem 8. Let1,2, 1, 1, G1, G2, A and A∗ be the same as SEP and �n, �n, �n, �n be the same as Algorithm 2. Take any
initial points z0, z1 ∈ 1 and r > 0, the sequence {zn} generated by the following algorithm: tn, wn, un are generated in the
same manner as (14). If tn = wn = un, then stop. Otherwise, calculate

zn+1 = (1 − �n − �n)wn + �nun, n ≥ 1.

Here �n is defined as (15). If the solution set Λ is nonempty, the sequence {zn} converges in norm to z∗ ∈ Λ and z∗ = PΛ(0),
i.e., the minimum-norm element of Λ.

Remark 6. The split variational inequality problem, the split feasibility problem and the split equilibrium problem are often
used in practical applications, which includes image restoration, computer tomograph, signal recovery, etc. At the same time,
many generalizations and meaningful results have been obtained thanks to these problems.

5 NUMERICAL EXAMPLES

This section provides some numerical examples to illustrate the convergence behavior of the iterative sequence generated by our
Algorithms 1 and 2. Meanwhile, these numerical results also confirm the conclusion of Theorems 1 and 2 on the split variational
inclusion problem. All the programs were implemented in Matlab 2018a on a Intel(R) Core(TM) i5-8250U CPU @1.60 GHz
computer with RAM 8.00 GB. Firstly, let 1 and 2 be Hilbert spaces, A ∶ 1 → 2 be a bounded linear operator with the
adjoint operator A∗. Let B1 ∶ 1 → 21 and B2 ∶ 2 → 22 be two set-valued maximal monotone mappings. In such an
environment, the following results for SVIP have been given as comparative algorithms.

Theorem 9. (Kazmi and Rizvi19 Algorithm (3.1)) Let ℎ ∶ 1 → 1 be a contraction mapping with coefficient � ∈ (0, 1). For
any initial point z1 ∈ 1, �n ∈ (0, 1) and 
 > 0, the iterative sequence {zn} is generated by the following iterative scheme

zn+1 = �nℎ(zn) + (1 − �n)JB1

(

zn − �A∗(I − JB2
 )Azn
)

, n ≥ 1, (KR)

where L is the spectral radius of the operator A∗A, 0 < � < 1∕L, lim
n→∞

�n = 0 and
∑∞
n=1 �n = ∞ and

∑∞
n=1

|

|

�n − �n−1|| <∞. The
iterative sequence {zn} converges strongly to a point z∗ = PΓℎ(z∗), which is a solution of SVIP.

Theorem 10. (Long er al.21 Algorithm (49)) Let ℎ ∶ 1 → 1 be a contraction mapping with coefficient � ∈ [0, 1). For any
initial points z0, z1 ∈ 1 and 
 > 0, the iterative sequence {zn} is generated by the following iterative scheme

⎧

⎪

⎨

⎪

⎩

wn = zn + �n(zn − zn−1),

un = JB1

(

wn − �nA∗(I − JB2
 )Awn

)

,

zn+1 = �nℎ(zn) + (1 − �n)un, n ≥ 1,

(LTD)

where {�n} is a sequence in (0, 1) such that lim
n→∞

�n = 0 and
∑∞
n=1 �n = ∞, 0 < a ≤ �n ≤ b < 1∕‖A‖2, 0 ≤ �n ≤ � and

lim
n→∞

�n‖zn−zn−1‖
�n

= 0. The iterative sequence {zn} converges strongly to a point z∗ = PΓℎ(z∗).

Theorem 11. (Anh et al.22 Algorithm (4)) For any initial points z0, z1 ∈ 1 and 
 > 0, the iterative sequence {zn} is generated
by the following iterative scheme

⎧

⎪

⎨

⎪

⎩

wn = zn + �n(zn − zn−1),

un = JB1

(

wn − �nA∗(I − JB2
 )Awn

)

,

zn+1 = (1 − �n − �n)zn + �nun, n ≥ 1,

(ATD)

where {�n} is a sequence in (0, 1)with limn→∞�n = 0,
∑∞
n=1 �n = ∞, 0 < a ≤ �n ≤ b < 1∕‖A‖2, 0 ≤ �n < � and limn→∞

�n‖zn−zn−1‖
�n

= 0,
0 < c < �n < d < 1 − �n. The iterative sequence {zn} converges strongly to a point z∗ = argminz∈Γ ‖z‖.

Example 5.1. Assume that A,A1, A2 ∶ ℝm → ℝm are created from a normal distribution with mean zero and unit variance. Let
B1 ∶ ℝm → ℝm and B2 ∶ ℝm → ℝm be defined by B1(z) = A∗1A1z and B2(y) = A

∗
2A2y, respectively. Consider the problem of

finding a point z̄ =
(

z̄1,… , z̄m
)T ∈ ℝm such that B1(z̄) = (0,… , 0)T and B2(Az̄) = (0,… , 0)T. It is easy to see that the solution

of the problem mentioned above is z∗ = (0,… , 0)T. The parameters of all algorithms are set as follows. For all algorithms, take

n = 
 = 1, �n = 1∕(n+1), �n = 0.5(1− �n) and ℎ(z) = 0.5z. Set inertial parameters � = 0.5 and �n = 1∕(n+1)2 for Algorithm
(LTD), Algorithm (ATD) and the proposed Algorithms 1 and 2. Select �n = 1.5 for the proposed Algorithms 1 and 2. Choose
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�n = � = 0.5∕‖A∗A‖ for Algorithm (KR), Algorithm (LTD) and Algorithm (ATD). The process starts with the initial values
z0 = z1 = rand(n, 1). Dn = ‖

‖

zn − z∗‖‖ is used to measure the iteration error of all the algorithms. The stopping condition is
either Dn < �, or maximum number of iterations which is set to 299. Table 1 and Figure 1 describe the numerical behavior
of all algorithms in different dimensions with the same stopping criterion � = 10−7.

TABLE 1 Numerical results of Example 5.1

Algorithms
m = 50 m = 100 m = 150 m = 200

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 23 0.0082 17 0.0187 19 0.0304 19 0.0454
Our Alg. 3.2 26 0.0082 24 0.0226 23 0.0375 27 0.0628
KR Alg. 147 0.0654 98 0.1473 129 0.3786 136 0.6908
LTD Alg. 61 0.0283 35 0.0567 53 0.1535 55 0.2962
ATD Alg. 154 0.0652 108 0.1591 136 0.3997 146 0.7465

Example 5.2. Consider 1 = 2 = L2([0, 1]) with the inner product ⟨z, y⟩ ∶= ∫ 1
0 z(t)y(t) dt and the induced norm ‖z‖ ∶=

(

∫ 1
0 |z(t)|2 dt

)1∕2, for any z, y ∈ L2([0, 1]). Select the following nonempty closed and convex subsets 1 and 1 in L2([0, 1]):

1 =
{

z ∈ L2([0, 1]) ∣

1

∫
0

z(t) dt ≤ 1
}

,

1 =
{

y ∈ L2([0, 1]) ∣

1

∫
0

|y(t) − sin(t)|2 dt ≤ 16
}

.

LetA ∶ L2([0, 1])→ L2([0, 1]) be the Volterra integration operator, which is given by (Az)(t) = ∫ t
0 z(s) ds, ∀t ∈ [0, 1], z ∈ 1.

Then A is a bounded linear operator and its operator norm is ‖A‖ = 2
�
. Moreover, the adjoint operator A∗ of A is defined by

(A∗z)(t) = ∫ 1
t z(s) ds. This example is to solve SFP that is a special case of SVIP. Then, z(t) = 0 is a solution of SFP and

thus the solution set of the problem is nonempty. On the other hand, it is known that projections on sets 1 and 1 have display
formulas, that is,

P1(z) =
{

1 − a + z , a > 1 ;
z , a ≤ 1 . and P1(y) =

{

sin(⋅) + 4(y−sin(⋅))
√

b
, b > 16 ;

y , b ≤ 16 ,

where a ∶= ∫ 1
0 z(t) dt and b ∶= ∫ 1

0 |y(t) − sin(t)|2 dt.
We use symbolic computation in MATLAB to implement these algorithms for generating the sequences of iterates and use

En = ‖(I − P1)zn‖
2 + ‖A∗(I − P1)Azn‖

2 < 10−5 for stopping criterion. All parameters in the five algorithms are selected as
set in Example 5.1. Table 2 shows the numerical behavior of all algorithms with four different initial values (the inertial values
z0 = z1 in Algorithms 1, 2, LTD and ATD).

Example 5.3. Compressed sensing is an effective method to recover a clean signal from a polluted signal. This requires us to
solve the following underdetermined system problems:

y = Az + � ,

where y ∈ ℝM is the observed noise data, A ∈ ℝM×N is a bounded linear observation operator, z ∈ ℝN with k (k ≪ N) non-
zero elements is the original and clean data that needs to be restored, and � is the noise observation encountered during data
transmission. An important consideration of this problem is that the signal z is sparse, that is, the number of non-zero elements
in the signal z is much smaller than the dimension of the signal z. A successful model used to solve the above problem can be
translated into the following convex constraint minimization problem:

min
z∈ℝN

1
2
‖y − Az‖2 subject to ‖z‖1 ≤ t , (LASSO)
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(d) m = 200

FIGURE 1 Numerical behavior of all algorithms with different dimensions in Example 5.1

TABLE 2 Numerical results of Example 5.2

Algorithms
z1 = 200 log(t) z1 = 1000 sin(t) z1 = 2000t2 z1 = 1000(t3 + 2t)

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 1 4 1.9061 7 4.7476 14 6.5722 14 8.6165
Our Alg. 2 5 2.3435 7 4.4679 11 5.0096 12 6.8348
KR Alg. 20 4.5199 28 6.1316 41 6.7691 45 7.8257
LTD Alg. 20 25.1634 28 24.8726 41 20.0938 46 31.1601
ATD Alg. 10 7.2614 15 12.3174 24 11.5068 29 18.3746

where t is a positive constant. It should be pointed out that this problem is related to the least absolute shrinkage and selection
operator problem. Note that the problem (LASSO) described above can be regarded as a special case of the split feasibility
problem when 1 =

{

z ∈ ℝN ∣ ‖z‖1 ≤ t
}

and 1 = {y}.
We now consider using the proposed iterative schemes to solve (LASSO) and compare them with some known algorithms

in the literature. In our numerical experiments, the matrix A ∈ ℝM×N is created from a standard normal distribution with zero
mean and unit variance and then orthonormalizing the rows. The clean signal z ∈ ℝN contains k (k ≪ N) randomly generated
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±1 spikes. The observation y is formed by y = Az+� with white Gaussian noise � of variance 10−4. The recovery process starts
with the initial signals z0 = z1 = 0 and ends after 2000 iterations. We use the mean squared error MSE = (1∕N) ‖z∗ − z‖2

(z∗ is an estimated signal of z) to measure the restoration accuracy of all algorithms. In our test, we set M = 256, N = 512
and k = 50. The parameters of all algorithms are the same as those set in Example 5.1. The numerical results are shown in the
following figures. More precisely, Figure 2 displays the original signal and the contaminated signal. The recovery results of
the suggested algorithms are shown in Figure 3 . Last, Figure 4 gives the numerical behavior of the MSE of all algorithms in
the iteration process.
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FIGURE 2 Original signal and contaminated signal
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FIGURE 3 The original signal and the signal recovered by our algorithms

Remark 7. From the above Examples 5.1–5.3 and the test results, we can see that all our programming have been implemented.
Meanwhile, some interesting observations for our algorithm are as follows:
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FIGURE 4 The discrepancy of mean squared error (MSE) of all algorithms

(1) The proposed algorithms can work well and converge quickly. Hence, our iterative schemes are efficient.

(2) The algorithms presented in this paper are better than some known ones in the literature, and these results have nothing to
do with the choice of initial values and the size of the dimension. Therefore, our algorithms are robust.

(3) Note that the described algorithms can work adaptively, while the algorithms compared need to know the prior knowledge
of the operator norm to work. Thus, our algorithms are more useful.

6 CONCLUSIONS

In this paper, two inertial strong convergent iterative algorithms are given to approximate the solution of the split variational
inclusion problem in real Hilbert spaces. The proposed algorithms add a new adaptive stepsize to overcome the shortcomings of
existing fixed stepsize algorithms that require prior information about the operator norm. The strong convergence of the iterative
sequences formed by our algorithms is demonstrated under appropriate conditions. In addition, three theoretical applications of
our main results are given. Numerical experiments including signal recovery show that the suggested algorithms improve and
extend some existing ones in the literature.
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