8 References:
[1] Gaw, Z. Y., Liu, N. T., Zia, T. U., Tissue culture methods for cultivation of virus grasserie. Acta Virol .1959, 3, 55-60.
[2] Vail, P. V., Sutter, G., Jay, D. L., Gough, D., Reciprocal infectivity of nuclear polyhedrosis viruses of the cannage looper and alfalfa looper. J Invert Patho . 1971, 17 (3), 383-388.
[3] Smith, G. E., Summers, M. D., Fraser, M. J., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol . 1983, 3, 2156-2165.
[4] Smith, G. E., Ju, G., Ericson, B. L., Moschera, J., Lahm, H. W. et al., Modification and secretion of human interleukin 2 produced in insect cells by a baculovirus expression vector.Proc Natl Acad Sci U.S.A. 1985, 82(24), 8404–8408.
[5] Kuzio, J., Rohel, D. Z., Curry, C. J., Krebs, A., Carstens, E. B. et al., Nucleotide sequence of the p10 polypeptide gene of autographa californica nuclear polyhedrosis virus. Viro . 1984, 139, 414-418.
[6] Kirnbauer, R., Booy, F., Cheng, N., Lowry, D. R., Schiller, J. T., Papillomavirus L1 major capsid protein self-assembles into virus like particles that are highly immunogenic. Proc Natl Acad Sci U.S.A. 1992, 89(24) 12180-12184.
[7] Wickham, T. J., Davis, T., Granados, R. R., Shuler, M. L., Wood, H. A., Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system.Biotechnol Prog . 1992, 8(5), 391-396.
[8] Felberbaum, R. S., The baculovirus expression vector system: a commercial
manufacturing platform for viral vaccines and gene therapy vectors.Biotechnol J .
2015, 10(5), 702-714.
[9] Buckland, B., Boulanger, R., Fino, M., Srivastava, I., Holtz, K et al., Technology transfer and scale-up of the Flublok® recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine . 2014, 32(42), 5496-5502.
[10] Van Oers, M. M., Oijlman, G. P., Vlak, J. M., Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol . 2015, 96, 6-23.
[11] Kamen, A. A., Bédard, C., Tom, R., Perret, S., Jardin, B., On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol. Bioeng . 1996, 50(1), 36-48.
[12] Kamen, A. A., Tom, R. L., Caron, A. W., Chavarie, C., Massie, B. et al.,Culture of insect cells in a helical ribbon impeller bioreactor. Biotechnol. Bioeng. 1991, 38, 619-628.
[13] Kamen, A. A., Chavarie, C., Andre, G., Archambault, J., Design parameters and performance of a surface baffled hellicle ribbon impeller bioreactor for the culture of shear sensitive cells. Chem Engg Sci . 1992, 47, 2375-2380.
[14] Maranga, L., Cunha, A., Clemente J., Cruz, P., Carrondo, M. J., Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity, J Biotechnol. 2004, 107(1), 55-64.
[15] Mena, J. A., Kamen, A. A., Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev.Vaccines. 2011, 10, 1063-1081.
[16] Desrosiers, R., Clark, E., Tremblay, D., Tremblay, R., Polson, D., Use of a one-dose subuit vaccine to prevent loss associated with procine circovirus type 2. J Swin Health Prod. 2009, 17, 148-154.
[17] Harper, D. M., Impact of vaccination with CervarixTM on subsequent HPV-16/18 infection and cervical disease in women 15-25 years of age. Gynecol. Oncol . 2008, 110, S11-S17.
[18] Ylä-Hertuala, S., Endgame: Glybera finally recommended for approval as the first gene
therapy drug in the European Union. Mol. Ther . 2012, 20, 1831-1832
[19] AAV5-hFVIII-SQ (BMN 270) Annex III A. BioMarin Pharmaceutical Inc. 2017.
[20] Kailasan, A., Agbandje-McKenna, M. Parrish, C. R., Parvovirus Family Conundrum: What Makes a Killer?Annu. Rev. Virol . 2015, 2, 425-450.
[21] Adler, S. P., Koch, W. C., Human Parvovirus, Infect. Dis. Fetus. Elsevier Inc.2011, 834–
860.
[22] Urabe, M., Ding, C., Kotin, RM., Insect cells as a factory to produce adeno-associated
virus type 2 vectors. Hum. Gene. Ther . 2012, 13, 1935-1943.
[23] Zarate-Perez, F., Mansilla-Soto, J., Bardelli, M., BurgnerII, J. W., Villamil-Jarauta, M. et al., Oligomeric properties of adeno-associated virus Rep68 reflect its multifunctionality. J Viro . 2013, 87 (3), 1232-1241.
[24] James, J. A., Escalante, C. R., Yoon-Robarts, M., Edwards, T. A., Linden, R. M. et al., Crystal structure of the SF3 helicase from adeno-associated virus type 2. Structure . 2003, 11(8), 1025-1035.
25] Yoon-Robarts, M., Blouin, A. G., Blenker, S., Kleinschmidt, J. A., Aggarwal, A. K. et al., Residues within the ß-motif are critical for DNA binding by the superfamily 3 helicase rep40 of adeno-associated virus type 2. J Biol Chem . 2004, 279(48), 50472-50481.
[26] King, J. A., Dubiezlig, R., Grimm, D., Kleinschmidt, J. A., DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids, EMBO J . 2001, 20(12), 3282–3291.
[27] Collaco, R. F., Kalman-Maltese, V., Smith, A. D., Dignam, J. D., Trempe, J. P. A., Biochemical characterization of the adeno-associated virus rep40 helicase. J Biol Chem . 2003, 278(36), 34011-34017.
[28] Srivastava, A., Lusby, E. W., Benrs, K. I., Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol . 1983, 45(2), 555-564.
[29] Grimm, D., Kern, A., Rittner, K., Kleinschmidt, J. A., Novel tool for production and purification of recombinant adeno-associated virus vectors. Hum. Gene. Ther . 1998, 9(18), 2745-2760.
[30] Girod, A., Wobus, CE., Zádori, Z., Ried. M., Leike, K., Tijssen, P., The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen. Virol . 2002, 83, 973-8.
[31] Vihinen-Ranta, M., Wang, D., Weichert, W. S., Parrish, C. R., The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J Virol . 2002, 76(4), 1884-1891.
[32] Kohlbrenner, E., Aslanidi, G., Nash, K., Shklyaev, S., Thompson, MC., Bryne, BJ.et al.,
Successful production of pseudotyped rAAV vectors using a modified baculovirus
expression system. Mol. Ther . 2005, 12, 1217-1225.
[33] Chen, H., Intron splicing-mediated expression of AAV rep and cap genes and
production of AAV vectors in insect cells. Mol. Ther . 2008, 16, 924-930.
[34] Smith, RH., Levy, JR., Kotin, RM., A simplified baculovirus-AAV expression vector
system coupled with one-step affinity purification yields high-titer rAAV stocks from
insect cells. Mol. Ther . 2009, 17, 1888-1896.
[35] Aslanidi, G., Lamb, K., Zolotukhin, S., An inducible system for highly efficient
production of recombinant adeno-associated virus (rAAV) vectors in insect sf9 cells.
Proc Natl Acad Sci U.S.A . 2009, 106, 5059-5064.
[36] Nony, P., Tessier, J., Chadeuf, G., Ward, P., Giraud, A. et al., Novel cis-acting replication element in the adeno-associated virus type 2 genome is involved in amplification of integrated rep-cap sequences. J Virol . 2001, 75(20), 9991-9994.
[37] Lackner, D. F., Muzyczka, N., Studies of the mechanism of transactivation of the adeno-associated virus p19 promoter by Rep protein., J Virol. 2002, 76(18), 8225-8235.
[38] Savy, A., Kaikkonen, M. U., Léger, A., Dickx, Y., Galibert, L. et al., Genetics instability of wtAAV2 genome and AAV promoter activities in the Baculovirus / Sf9 cells system. PLoS One . 2018, 13(7), pp. 1–18, 2018.
[39] Mietzsch, M., Grasse, S., Zurawski, C, Weger, S., Bennett, A., Agabandje-McKenna, M. et al., One Bac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy. Hum. Gene Ther. 2014, 25(3), 212–222.
[40] Grieger, J. C., Snowdy, S., Samulski, R. J. Separate basic region motifs within the adeno associated virus capsid proteins are essential for infectivity and assembly. J Virol . 2006, 80(11), 5199-5210.
[41] Bantel-Schaal, U., Dellius, H., Schmidt, R., zur Hausen, H., Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol. 1999. 73(2), 939-947.
[42] Urabe, M., Nakakura, T., Xin K. Q., Obara, Y., Mizukami, H., Kume A. et al., Scalable generation of high-titer recombinant adeno-associated virus type 5 in insect cells. J Virol. 2006, 80(4), 1874-1885.
[43] Kozak, M., Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes.Cell. 1986, 44(2), 283-292.
[44] Grünert, S., Jackson, R. J. The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO . 1994, 13(15), 3618-3630.
[45] Mietzsch, M., Casteleyn, V., Weger, S., Zolotukhin, S., Heilbronn, R., OneBac 2.0: sf9 cell
lines for production of AAV5 vectors with enhanced infectivity and minimal
encapsidation of foreign DNA. Hum. Gene. Ther . 2015, 26, 1-24.
[46] Kondratov, O., Marsic, D., Crosson, SM., Mendez-Gomez, HR., Moskalenko, O., Mietzsch,
M. et al., Direct head-to head evaluation of recombinant adeno-associated viral
vectors manufactured in human versus insect cells. Mol. Ther .2017, 25, 2661-2675.
[47] Bosma, B., du Plessis, F., Ehlert, E., Nijmeijer, B., deHaan, M. et al., Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Ther . 2018, 25(6), 415-424.
[48] Meghrous, J., Aucoin, MG., Jacob, D., Chahal, P. S., Arcand, N., Kamen, AA. Production
of recombinant adeno-associated viral vectors using baculovirus/insect cell
suspension culture system: From shake flasks to a 20-L bioreactor.Biotechnol. Prog .
2005, 21, 154-160.
[49] Wilde, M., Klausberge, M., Palmberge, D., Ernst, W., Grabherr, R., Tnao38, high five and Sf9-evaluation of host-virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression. Biotechnol Lett . 2014, 36(4), 743-749.
[50] Liu, Y. K., Yang, C. J., Liu, C. L., Shen, C. R., Shiau, L. D., Using a fed-batch culture strategy to enhance rAAV production in the baculovirus/insect cell system. J Biosci Bioeng . 2010. 110 (2), 187-193.
[51] Hu, C. Y., Bentley, W. E., Effect of MOI ratio on the composition and yield of chimeric infectious bursal disease virus-like particles by baculovirus co-infection: deterministic predictions and experimental results. Biotechnol. Bioeng . 2001, 75(1), 104-119.
[52] Jiang, B., Barnaik, V., Smith, R. P., Sharma, R., Corsaro, B. et al., Synthesis of rotavirus-like particles in insect cells: comparative and quantitative analysis. Biotechnol. Bioeng . 1998, 60(3), 369-374.
[53] Palomares, L. A., López, S., Ramírez, O. T., Strategies for manipulating the relative concentration of recombinant rotavirus structural proteins during simultaneous production by insect cells.Biotechnol. Bioeng . 2002, 78(6), 635-644.
[54] Mena, J. A., Ramírez, O. T., Palomares, L. A., Intracellular distribution of rotavirus structural proteins and virus-like particles expressed in the insect cell-baculovirus system. J Biotechnol . 2006, 122(4), 443-452.
[55] Aucoin, M. G., Perrier, M., Kamen, A. A., Production of adeno-associated viral vectors in insect cells using triple infection : optimization of baculovirus concentration ratios. Biotechnol. Bioeng . 2006, 95(6), 1081-1092.
[56] Schmid, G. Insect cell cultivation: Growth and kinetics.Cytotechnology , 1996, 20, 43–56.
[57] Cechini, S., Virag, T., Kotin, M., Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum. Gene. Ther . 2011. 22(8), 1021-1030.
[58] Joshi, P. R. H., Cervera, L., Ahmed, I., Kondratov, O, Zolotukhin, S. et al., Achieving high-yield production of functional AAV5 gene delivery vectors via fedbatch in an insect cell-one baculovirus system. Mol Ther Methods Clin Dev . 2019, 13, 279-289.
[59] Mena, J. A., Aucoin, M. G., Montes, J., Chahal, P.S., Kamen, A. A., Improving adeno-associated vector yield in high density insect cell cultures. J Gene Med . 2010. 12(2), 157-167.
[60] Bédard C., Kamen A., Tom, R., Massie B., Maximization of recombinant protein yield in the insect cell / baculovirus system by one-time addition of nutrients to high-density batch cultures.Cytotechnology . 1994, 15, 129-138.
[61] Elias, C.B., Zeiser, A., Bédard, C., Kamen, A. A., Enhanced growth of Sf-9 cells to a maximum density of 5.2 x 107cells per mL and production of ß-galactosidase at high cell density by fed batch culture. Biotechnol. Bioeng . 2000, 68, 381-388.
[62] Shuler, M. L., Cho, T., Wickman, T., Ogonah, O., Kool, M. et al., Bioreactor development for production of viral pesticides or heterologous proteins in insect cell cultures. Ann N Y Acad Sci . 1990, 589, 399-422.
[63] Huhtala, A., Linko, P., Mutharasan, R., Protein response of insect cells to bioreactor environmental stresses. J Biotechnol . 2005, 118(3), 278-289.
[64] Cain, K. D., Byrne, K. M., Brassfield, A. L., LaPatra, S. E., Ristow, S. S., Temperature dependent characteristics of a recombinant infectious hematopoietic necrosis virus glycoprotein produced in insect cells. Dis Aquat Organ . 1999, 36(1), 1-10.
[65] Donaldson, M., Wood, H. A., Kulakosky, P. C., Shuler, M. L., Glycosylation of a recombinant protein in the Tn5B1-4 insect cell line: Influence of ammonia, time of harvest, temperature, and dissolved oxygen. Biotechnol. Bioeng . 1999, 63(3), 255-262.
[66] Hara, T., Nonaka, K., Kawaguchi, H., Ogata, S., Etou, N., Effects of temperature on escherichia coli beta-galactosidase expression in baculovirus-insect cell system. Biosci Biotechnol Biochem . 1993, 57(6), 996-997.
[67] Reuveny, S., Kim, Y. J., Kemp, C. W., Shiloach, J., Effect of temperature and oxygen on cell growth and recombinant protein production in insect cell cultures. Appl Microbiol Biotechnol . 1993, 38(5), 619-623.
[68] Aucoin, M. G., Perrier, M., Kamen, A. A., Improving AAV vector yield in insect cells by modulating the temperature after infection.Biotechnol. Bioeng . 2007, 97(6), 1501-1509.
[69] Negrete, A., Kotin, R. M., Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol Methods . 2007, 145(2), 155-161.
[70] Wu, y., Ting, M., Jiang, L., Zengpeng, H., Dong, R. et al., Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production. Hum. Gene. Ther. Methods . 2019, 30(5), 172-183.
[71] Galibert, L., Merten, O. W., Jacob, A. Baculovirus system for the expression of a gene therapy vector. US patent 2014/0349374A1, 2014.
[72] Rumachik, N. G., Malaker, S. A., Poweleit, N., Maynard, L. H., Adams, C. M. et al., Methods matter-standard production platform for recombinant AAV can produce chemically and functionaliy distinct vectors. doi: https://doi.org/10.1101/640169
[73] Zeltner, N., Kohlbrenner, E., Clément N., Weber, T., Linden, R. M., Near-perfect
infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV
vectors. Gene. Ther . 2011, 17, 872-879.
Table 1. Summary of AAV Production in IC-BEVS Platform