References
Abdel-Khalik J, Crick PJ, Yutuc E, DeBarber AE, Duell PB, Steiner
RD, et al. (2018). Identification of
7alpha,24-dihydroxy-3-oxocholest-4-en-26-oic and
7alpha,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human
cerebrospinal fluid and plasma. Biochimie 153: 86-98.
Axelson M, Larsson O, Zhang J, Shoda J, & Sjovall J (1995). Structural
specificity in the suppression of HMG-CoA reductase in human fibroblasts
by intermediates in bile acid biosynthesis. J Lipid Res 36:290-298.
Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, & Russell
DW (2009). 25-Hydroxycholesterol secreted by macrophages in response to
Toll-like receptor activation suppresses immunoglobulin A production.
Proc Natl Acad Sci U S A 106: 16764-16769.
Beck KR, Inderbinen SG, Kanagaratnam S, Kratschmar DV, Jetten AM,
Yamaguchi H, et al. (2019a). 11beta-hydroxysteroid dehydrogenases
control access of 7beta,27-dihydroxycholesterol to retinoid-related
orphan receptor gamma. J Lipid Res.
Beck KR, Kanagaratnam S, Kratschmar DV, Birk J, Yamaguchi H, Sailer
AW, et al. (2019b). Enzymatic interconversion of the oxysterols
7beta,25-dihydroxycholesterol and 7-keto,25-hydroxycholesterol by
11beta-hydroxysteroid dehydrogenase type 1 and 2. J Steroid Biochem Mol
Biol 190: 19-28.
Bjorkhem I (2007). Rediscovery of cerebrosterol. Lipids 42:5-14.
Bjorkhem I (2013). Cerebrotendinous xanthomatosis. Curr Opin Lipidol
24: 283-287.
Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, et
al. (2013). The transcription factor STAT-1 couples macrophage
synthesis of 25-hydroxycholesterol to the interferon antiviral response.
Immunity 38: 106-118.
Boussicault L, Alves S, Lamaziere A, Planques A, Heck N, Moumne L,
et al. (2016). CYP46A1, the rate-limiting enzyme for cholesterol
degradation, is neuroprotective in Huntington’s disease. Brain
139: 953-970.
Brown MS, Radhakrishnan A, & Goldstein JL (2018). Retrospective on
Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem
87: 783-807.
Burlot MA, Braudeau J, Michaelsen-Preusse K, Potier B, Ayciriex S, Varin
J, et al. (2015). Cholesterol 24-hydroxylase defect is implicated
in memory impairments associated with Alzheimer-like Tau pathology. Hum
Mol Genet 24: 5965-5976.
Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele
S, et al. (2016). Structural basis of Smoothened regulation by
its extracellular domains. Nature 535: 517-522.
Chen L, Ma MY, Sun M, Jiang LY, Zhao XT, Fang XX, et al. (2019).
Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR
degradation and SREBP-2 processing. J Lipid Res 60: 1765-1775.
Clayton PT (2011). Disorders of bile acid synthesis. J Inherit Metab Dis
34: 593-604.
Clottu AS, Mathias A, Sailer AW, Schluep M, Seebach JD, Du Pasquier
R, et al. (2017). EBI2 Expression and Function: Robust in Memory
Lymphocytes and Increased by Natalizumab in Multiple Sclerosis. Cell Rep
18: 213-224.
Coates HW, & Brown AJ (2019). A wolf in sheep’s clothing: unmasking the
lanosterol-induced degradation of HMG-CoA reductase. J Lipid Res
60: 1643-1645.
Cobice DF, Mackay CL, Goodwin RJ, McBride A, Langridge-Smith PR, Webster
SP, et al. (2013). Mass spectrometry imaging for dissecting
steroid intracrinology within target tissues. Anal Chem 85:11576-11584.
Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI,
et al. (2003). A defective response to Hedgehog signaling in disorders
of cholesterol biosynthesis. Nat Genet 33: 508-513.
Corcoran RB, & Scott MP (2006). Oxysterols stimulate Sonic hedgehog
signal transduction and proliferation of medulloblastoma cells. Proc
Natl Acad Sci U S A 103: 8408-8413.
Crick PJ, William Bentley T, Abdel-Khalik J, Matthews I, Clayton PT,
Morris AA, et al. (2015). Quantitative charge-tags for sterol and
oxysterol analysis. Clin Chem 61: 400-411.
Das A, Smith JA, Gibson C, Varma AK, Ray SK, & Banik NL (2011).
Estrogen receptor agonists and estrogen attenuate TNF-alpha-induced
apoptosis in VSC4.1 motoneurons. J Endocrinol 208: 171-182.
Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, & Rosenkilde MM
(2014). Oxysterol-EBI2 signaling in immune regulation and viral
infection. Eur J Immunol 44: 1904-1912.
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, & Joels M (2018).
Importance of the brain corticosteroid receptor balance in
metaplasticity, cognitive performance and neuro-inflammation. Front
Neuroendocrinol 49: 124-145.
de Medina P, Paillasse MR, Segala G, Poirot M, & Silvente-Poirot S
(2010). Identification and pharmacological characterization of
cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS
ligands. Proc Natl Acad Sci U S A 107: 13520-13525.
Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, et al.(2019). Smoothened stimulation by membrane sterols drives Hedgehog
pathway activity. Nature 571: 284-288.
Dietschy JM, & Turley SD (2004). Thematic review series: brain Lipids.
Cholesterol metabolism in the central nervous system during early
development and in the mature animal. J Lipid Res 45:1375-1397.
Duc D, Vigne S, & Pot C (2019). Oxysterols in Autoimmunity. Int J Mol
Sci 20.
DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, & McDonnell DP (2008).
27-hydroxycholesterol is an endogenous selective estrogen receptor
modulator. Mol Endocrinol 22: 65-77.
Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, & Parhami F (2007).
Oxysterols are novel activators of the hedgehog signaling pathway in
pluripotent mesenchymal cells. J Biol Chem 282: 8959-8968.
Dzeletovic S, Breuer O, Lund E, & Diczfalusy U (1995). Determination of
cholesterol oxidation products in human plasma by isotope dilution-mass
spectrometry. Anal Biochem 225: 73-80.
Ercoli A, & Ruggieri P (1953). The constitution of cerebrosterol, a
hydroxycholesterol isolated from horse brain. J Am Chem Soc 75:3284.
Evans RM, & Mangelsdorf DJ (2014). Nuclear Receptors, RXR, and the Big
Bang. Cell 157: 255-266.
Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Jr., Murphy
RC, et al. (2005). A comprehensive classification system for
lipids. J Lipid Res 46: 839-861.
Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, et al.(2001). 27-hydroxycholesterol is an endogenous ligand for liver X
receptor in cholesterol-loaded cells. J Biol Chem 276:38378-38387.
Gill S, Chow R, & Brown AJ (2008). Sterol regulators of cholesterol
homeostasis and beyond: the oxysterol hypothesis revisited and revised.
Prog Lipid Res 47: 391-404.
Goldstein JL, DeBose-Boyd RA, & Brown MS (2006). Protein sensors for
membrane sterols. Cell 124: 35-46.
Goyal S, Xiao Y, Porter NA, Xu L, & Guengerich FP (2014). Oxidation of
7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1. J
Lipid Res 55: 1933-1943.
Griffiths WJ, Crick PJ, Meljon A, Theofilopoulos S, Abdel-Khalik J,
Yutuc E, et al. (2019a). Additional pathways of sterol
metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma.
Biochim Biophys Acta Mol Cell Biol Lipids 1864: 191-211.
Griffiths WJ, Crick PJ, Wang Y, Ogundare M, Tuschl K, Morris AA,
et al. (2013). Analytical strategies for characterization of oxysterol
lipidomes: liver X receptor ligands in plasma. Free Radic Biol Med
59: 69-84.
Griffiths WJ, & Wang Y (2020). Oxysterols as lipid mediators: Their
biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid
Mediat 147: 106381.
Griffiths WJ, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson
A, et al. (2019b). Metabolism of Non-Enzymatically Derived
Oxysterols: Clues from sterol metabolic disorders. Free Radic Biol Med
144: 124-133.
Han M, Wang S, Yang N, Wang X, Zhao W, Saed HS, et al. (2020).
Therapeutic implications of altered cholesterol homeostasis mediated by
loss of CYP46A1 in human glioblastoma. EMBO Mol Med 12: e10924.
Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, et
al. (2011). Oxysterols direct immune cell migration via EBI2. Nature
475: 524-527.
Hauser S, Poenisch M, Schelling Y, Hoflinger P, Schuster S, Teegler
A, et al. (2019). mRNA as a Novel Treatment Strategy for
Hereditary Spastic Paraplegia Type 5. Mol Ther Methods Clin Dev
15: 359-370.
Heine VM, & Rowitch DH (2009). Hedgehog signaling has a protective
effect in glucocorticoid-induced mouse neonatal brain injury through an
11betaHSD2-dependent mechanism. J Clin Invest 119: 267-277.
Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon
L, et al. (2004). Changes in the levels of cerebral and
extracerebral sterols in the brain of patients with Alzheimer’s disease.
J Lipid Res 45: 186-193.
Holmes MC, Sangra M, French KL, Whittle IR, Paterson J, Mullins
JJ, et al. (2006). 11beta-Hydroxysteroid dehydrogenase type 2
protects the neonatal cerebellum from deleterious effects of
glucocorticoids. Neuroscience 137: 865-873.
Holmes MC, & Seckl JR (2006). The role of 11beta-hydroxysteroid
dehydrogenases in the brain. Mol Cell Endocrinol 248: 9-14.
Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, et
al. (2009). Highly sensitive quantification of key regulatory
oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res
50: 350-357.
Horton JD, Goldstein JL, & Brown MS (2002). SREBPs: activators of the
complete program of cholesterol and fatty acid synthesis in the liver. J
Clin Invest 109: 1125-1131.
Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, et al.(2016). Cellular Cholesterol Directly Activates Smoothened in Hedgehog
Signaling. Cell 166: 1176-1187 e1114.
Hult M, Elleby B, Shafqat N, Svensson S, Rane A, Jornvall H, et
al. (2004). Human and rodent type 1 11beta-hydroxysteroid
dehydrogenases are 7beta-hydroxycholesterol dehydrogenases involved in
oxysterol metabolism. Cell Mol Life Sci 61: 992-999.
Iuliano L, Crick PJ, Zerbinati C, Tritapepe L, Abdel-Khalik J, Poirot
M, et al. (2015). Cholesterol metabolites exported from human
brain. Steroids 99: 189-193.
Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ,
et al. (1999). Structural requirements of ligands for the oxysterol
liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A
96: 266-271.
Janowski BA, Willy PJ, Devi TR, Falck JR, & Mangelsdorf DJ (1996). An
oxysterol signalling pathway mediated by the nuclear receptor LXR alpha.
Nature 383: 728-731.
Javitt NB (2008). Oxysterols: novel biologic roles for the 21st century.
Steroids 73: 149-157.
Jetten AM, & Joo JH (2006). Retinoid-related Orphan Receptors (RORs):
Roles in Cellular Differentiation and Development. Adv Dev Biol
16: 313-355.
Jin L, Martynowski D, Zheng S, Wada T, Xie W, & Li Y (2010). Structural
basis for hydroxycholesterols as natural ligands of orphan nuclear
receptor RORgamma. Mol Endocrinol 24: 923-929.
Kacher R, Lamaziere A, Heck N, Kappes V, Mounier C, Despres G, et
al. (2019). CYP46A1 gene therapy deciphers the role of brain
cholesterol metabolism in Huntington’s disease. Brain 142:2432-2450.
Kallen J, Schlaeppi JM, Bitsch F, Delhon I, & Fournier B (2004).
Crystal structure of the human RORalpha Ligand binding domain in complex
with cholesterol sulfate at 2.2 A. J Biol Chem 279:14033-14038.
Kandutsch AA, Chen HW, & Heiniger HJ (1978). Biological activity of
some oxygenated sterols. Science 201: 498-501.
Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G,
et al. (2007). Liquid chromatography-mass spectrometry utilizing
multi-stage fragmentation for the identification of oxysterols. J Lipid
Res 48: 976-987.
Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K, Jones
MC, et al. (1996). Holoprosencephaly in RSH/Smith-Lemli-Opitz
syndrome: does abnormal cholesterol metabolism affect the function of
Sonic Hedgehog? Am J Med Genet 66: 478-484.
Kim WK, Meliton V, Amantea CM, Hahn TJ, & Parhami F (2007).
20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic
differentiation of bone marrow stromal cells through a
hedgehog-dependent mechanism. J Bone Miner Res 22: 1711-1719.
Kinnebrew M, Iverson EJ, Patel BB, Pusapati GV, Kong JH, Johnson
KA, et al. (2019). Cholesterol accessibility at the ciliary
membrane controls hedgehog signaling. Elife 8.
Kong JH, Siebold C, & Rohatgi R (2019). Biochemical mechanisms of
vertebrate hedgehog signaling. Development 146.
Kotti T, Head DD, McKenna CE, & Russell DW (2008). Biphasic requirement
for geranylgeraniol in hippocampal long-term potentiation. Proc Natl
Acad Sci U S A 105: 11394-11399.
Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, & Russell DW (2006). Brain
cholesterol turnover required for geranylgeraniol production and
learning in mice. Proc Natl Acad Sci U S A 103: 3869-3874.
Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Canizal
MCA, et al. (2020). Structural insight into small molecule action
on Frizzleds. Nat Commun 11: 414.
Lange Y, & Steck TL (1998). Four cholesterol-sensing proteins. Curr
Opin Struct Biol 8: 435-439.
Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su
JL, et al. (1997). Activation of the nuclear receptor LXR by
oxysterols defines a new hormone response pathway. J Biol Chem
272: 3137-3140.
Li-Hawkins J, Lund EG, Bronson AD, & Russell DW (2000). Expression
cloning of an oxysterol 7alpha-hydroxylase selective for
24-hydroxycholesterol. J Biol Chem 275: 16543-16549.
Li J, & Gibbs RB (2019). Detection of estradiol in rat brain tissues:
Contribution of local versus systemic production.
Psychoneuroendocrinology 102: 84-94.
Linsenbardt AJ, Taylor A, Emnett CM, Doherty JJ, Krishnan K, Covey
DF, et al. (2014). Different oxysterols have opposing actions at
N-methyl-D-aspartate receptors. Neuropharmacology 85: 232-242.
Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, et al. (2011).
Oxysterols direct B-cell migration through EBI2. Nature 475:519-523.
Liu S, Sjovall J, & Griffiths WJ (2003). Neurosteroids in rat brain:
extraction, isolation, and analysis by nanoscale liquid
chromatography-electrospray mass spectrometry. Anal Chem 75:5835-5846.
Lund EG, Guileyardo JM, & Russell DW (1999). cDNA cloning of
cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the
brain. Proc Natl Acad Sci U S A 96: 7238-7243.
Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, & Russell DW (2003).
Knockout of the cholesterol 24-hydroxylase gene in mice reveals a
brain-specific mechanism of cholesterol turnover. J Biol Chem
278: 22980-22988.
Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa
H, et al. (2017). Cholesterol-metabolizing enzyme cytochrome P450
46A1 as a pharmacologic target for Alzheimer’s disease.
Neuropharmacology 123: 465-476.
McCabe JM, & Leahy DJ (2015). Smoothened goes molecular: new pieces in
the hedgehog signaling puzzle. J Biol Chem 290: 3500-3507.
McDonald JG, Smith DD, Stiles AR, & Russell DW (2012). A comprehensive
method for extraction and quantitative analysis of sterols and
secosteroids from human plasma. J Lipid Res 53: 1399-1409.
Meaney S, Bodin K, Diczfalusy U, & Bjorkhem I (2002). On the rate of
translocation in vitro and kinetics in vivo of the major oxysterols in
human circulation: critical importance of the position of the oxygen
function. J Lipid Res 43: 2130-2135.
Meaney S, Lutjohann D, Diczfalusy U, & Bjorkhem I (2000). Formation of
oxysterols from different pools of cholesterol as studied by stable
isotope technique: cerebral origin of most circulating
24S-hydroxycholesterol in rats, but not in mice. Biochim Biophys Acta
1486: 293-298.
Meljon A, Crick PJ, Yutuc E, Yau JL, Seckl JR, Theofilopoulos S,
et al. (2019). Mining for Oxysterols in Cyp7b1(-/-) Mouse Brain and
Plasma: Relevance to Spastic Paraplegia Type 5. Biomolecules 9.
Meljon A, Theofilopoulos S, Shackleton CH, Watson GL, Javitt NB, Knolker
HJ, et al. (2012). Analysis of bioactive oxysterols in newborn
mouse brain by LC/MS. J Lipid Res 53: 2469-2483.
Meljon A, Wang Y, & Griffiths WJ (2014). Oxysterols in the brain of the
cholesterol 24-hydroxylase knockout mouse. Biochem Biophys Res Commun
446: 768-774.
Meljon A, Watson GL, Wang Y, Shackleton CH, & Griffiths WJ (2013).
Analysis by liquid chromatography-mass spectrometry of sterols and
oxysterols in brain of the newborn Dhcr7(Delta3-5/T93M) mouse: a model
of Smith-Lemli-Opitz syndrome. Biochem Pharmacol 86: 43-55.
Mitic T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, et
al. (2013). 11beta-Hydroxysteroid dehydrogenase type 1 contributes to
the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem
Pharmacol 86: 146-153.
Murphy RC, & Johnson KM (2008). Cholesterol, reactive oxygen species,
and the formation of biologically active mediators. J Biol Chem
283: 15521-15525.
Myers BR, Sever N, Chong YC, Kim J, Belani JD, Rychnovsky S, et
al. (2013). Hedgehog pathway modulation by multiple lipid binding sites
on the smoothened effector of signal response. Dev Cell 26:346-357.
Nachtergaele S, Mydock LK, Krishnan K, Rammohan J, Schlesinger PH, Covey
DF, et al. (2012). Oxysterols are allosteric activators of the
oncoprotein Smoothened. Nat Chem Biol 8: 211-220.
Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan
K, et al. (2013). Structure and function of the Smoothened
extracellular domain in vertebrate Hedgehog signaling. Elife 2:e01340.
Nedelcu D, Liu J, Xu Y, Jao C, & Salic A (2013). Oxysterol binding to
the extracellular domain of Smoothened in Hedgehog signaling. Nat Chem
Biol 9: 557-564.
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK,
et al. (2013). 27-Hydroxycholesterol links hypercholesterolemia and
breast cancer pathophysiology. Science 342: 1094-1098.
Nelson JA, Steckbeck SR, & Spencer TA (1981). Biosynthesis of
24,25-epoxycholesterol from squalene 2,3;22,23-dioxide. J Biol Chem
256: 1067-1068.
Nobrega C, Mendonca L, Marcelo A, Lamaziere A, Tome S, Despres G,
et al. (2019). Restoring brain cholesterol turnover improves autophagy
and has therapeutic potential in mouse models of spinocerebellar ataxia.
Acta Neuropathol 138: 837-858.
Ogundare M, Theofilopoulos S, Lockhart A, Hall LJ, Arenas E, Sjovall
J, et al. (2010). Cerebrospinal fluid steroidomics: are bioactive
bile acids present in brain? J Biol Chem 285: 4666-4679.
Olkkonen VM, & Hynynen R (2009). Interactions of oxysterols with
membranes and proteins. Mol Aspects Med 30: 123-133.
Paul SM, Doherty JJ, Robichaud AJ, Belfort GM, Chow BY, Hammond
RS, et al. (2013). The major brain cholesterol metabolite
24(S)-hydroxycholesterol is a potent allosteric modulator of
N-methyl-D-aspartate receptors. J Neurosci 33: 17290-17300.
Pfeffer SR (2019). NPC intracellular cholesterol transporter 1
(NPC1)-mediated cholesterol export from lysosomes. J Biol Chem
294: 1706-1709.
Qi X, Liu H, Thompson B, McDonald J, Zhang C, & Li X (2019). Cryo-EM
structure of oxysterol-bound human Smoothened coupled to a
heterotrimeric Gi. Nature 571: 279-283.
Radhakrishnan A, Anderson TG, & McConnell HM (2000). Condensed
complexes, rafts, and the chemical activity of cholesterol in membranes.
Proc Natl Acad Sci U S A 97: 12422-12427.
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, & Goldstein JL (2007).
Sterol-regulated transport of SREBPs from endoplasmic reticulum to
Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad
Sci U S A 104: 6511-6518.
Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM, Thompson BM, et
al. (2018). Cilia-Associated Oxysterols Activate Smoothened. Mol Cell
72: 316-327 e315.
Roberg-Larsen H, Lund K, Vehus T, Solberg N, Vesterdal C, Misaghian
D, et al. (2014). Highly automated nano-LC/MS-based approach for
thousand cell-scale quantification of side chain-hydroxylated
oxysterols. J Lipid Res 55: 1531-1536.
Rohatgi R, Milenkovic L, Corcoran RB, & Scott MP (2009). Hedgehog
signal transduction by Smoothened: pharmacologic evidence for a 2-step
activation process. Proc Natl Acad Sci U S A 106: 3196-3201.
Rose KA, Stapleton G, Dott K, Kieny MP, Best R, Schwarz M, et al.(1997). Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of
neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy
pregnenolone. Proc Natl Acad Sci U S A 94: 4925-4930.
Russell DW, Halford RW, Ramirez DM, Shah R, & Kotti T (2009).
Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the
brain. Annu Rev Biochem 78: 1017-1040.
Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos
S, et al. (2009). Liver X receptors and oxysterols promote
ventral midbrain neurogenesis in vivo and in human embryonic stem cells.
Cell Stem Cell 5: 409-419.
Saeed AA, Genove G, Li T, Lutjohann D, Olin M, Mast N, et al.(2014). Effects of a disrupted blood-brain barrier on cholesterol
homeostasis in the brain. J Biol Chem 289: 23712-23722.
Salen G, & Steiner RD (2017). Epidemiology, diagnosis, and treatment of
cerebrotendinous xanthomatosis (CTX). J Inherit Metab Dis 40:771-781.
Saucier SE, Kandutsch AA, Gayen AK, Nelson JA, & Spencer TA (1990).
Oxygenation of desmosterol and cholesterol in cell cultures. J Lipid Res
31: 2179-2185.
Schols L, Rattay TW, Martus P, Meisner C, Baets J, Fischer I, et
al. (2017). Hereditary spastic paraplegia type 5: natural history,
biomarkers and a randomized controlled trial. Brain 140:3112-3127.
Schott HF, & Lutjohann D (2015). Validation of an isotope dilution gas
chromatography-mass spectrometry method for combined analysis of
oxysterols and oxyphytosterols in serum samples. Steroids 99:139-150.
Schroepfer GJ, Jr. (2000). Oxysterols: modulators of cholesterol
metabolism and other processes. Physiol Rev 80: 361-554.
Schweizer RA, Zurcher M, Balazs Z, Dick B, & Odermatt A (2004). Rapid
hepatic metabolism of 7-ketocholesterol by 11beta-hydroxysteroid
dehydrogenase type 1: species-specific differences between the rat,
human, and hamster enzyme. J Biol Chem 279: 18415-18424.
Segala G, David M, de Medina P, Poirot MC, Serhan N, Vergez F, et
al. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in
cancers. Nat Commun 8: 1903.
Sengupta D, & Chattopadhyay A (2015). Molecular dynamics simulations of
GPCR-cholesterol interaction: An emerging paradigm. Biochim Biophys Acta
1848: 1775-1782.
Serafini B, Rosicarelli B, Veroni C, Zhou L, Reali C, & Aloisi F
(2016). RORgammat Expression and Lymphoid Neogenesis in the Brain of
Patients with Secondary Progressive Multiple Sclerosis. J Neuropathol
Exp Neurol 75: 877-888.
Sever N, Mann RK, Xu L, Snell WJ, Hernandez-Lara CI, Porter NA, et
al. (2016). Endogenous B-ring oxysterols inhibit the Hedgehog component
Smoothened in a manner distinct from cyclopamine or side-chain
oxysterols. Proc Natl Acad Sci U S A 113: 5904-5909.
Shafaati M, Olin M, Bavner A, Pettersson H, Rozell B, Meaney S, et
al. (2011). Enhanced production of 24S-hydroxycholesterol is not
sufficient to drive liver X receptor target genes in vivo. J Intern Med
270: 377-387.
Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, & Guengerich FP
(2011). Conversion of 7-dehydrocholesterol to 7-ketocholesterol is
catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation
without an epoxide intermediate. J Biol Chem 286: 33021-33028.
Sidhu R, Jiang H, Farhat NY, Carrillo-Carrasco N, Woolery M, Ottinger
E, et al. (2015). A validated LC-MS/MS assay for quantification
of 24(S)-hydroxycholesterol in plasma and cerebrospinal fluid. J Lipid
Res 56: 1222-1233.
Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas
R, et al. (2016). Cholesterol biosynthesis pathway as a novel
mechanism of resistance to estrogen deprivation in estrogen
receptor-positive breast cancer. Breast Cancer Res 18: 58.
Song BL, Javitt NB, & DeBose-Boyd RA (2005). Insig-mediated degradation
of HMG CoA reductase stimulated by lanosterol, an intermediate in the
synthesis of cholesterol. Cell Metab 1: 179-189.
Song C, & Liao S (2000). Cholestenoic acid is a naturally occurring
ligand for liver X receptor alpha. Endocrinology 141:4180-4184.
Soroosh P, Wu J, Xue X, Song J, Sutton SW, Sablad M, et al.(2014). Oxysterols are agonist ligands of RORgammat and drive Th17 cell
differentiation. Proc Natl Acad Sci U S A 111: 12163-12168.
Spence RD, Wisdom AJ, Cao Y, Hill HM, Mongerson CR, Stapornkul B,
et al. (2013). Estrogen mediates neuroprotection and anti-inflammatory
effects during EAE through ERalpha signaling on astrocytes but not
through ERbeta signaling on astrocytes or neurons. J Neurosci
33: 10924-10933.
Stiles AR, Kozlitina J, Thompson BM, McDonald JG, King KS, & Russell DW
(2014). Genetic, anatomic, and clinical determinants of human serum
sterol and vitamin D levels. Proc Natl Acad Sci U S A 111:E4006-4014.
Sun LP, Seemann J, Goldstein JL, & Brown MS (2007). Sterol-regulated
transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders
sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad
Sci U S A 104: 6519-6526.
Suzuki H, Barros RP, Sugiyama N, Krishnan V, Yaden BC, Kim HJ, et
al. (2013). Involvement of estrogen receptor beta in maintenance of
serotonergic neurons of the dorsal raphe. Mol Psychiatry 18:674-680.
Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, & Maeda N (1997).
Glucocorticoid- and mineralocorticoid receptors in microglial cells: the
two receptors mediate differential effects of corticosteroids. Glia
20: 23-37.
Theofilopoulos S, Abreu de Oliveira WA, Yang S, Yutuc E, Saeed A,
Abdel-Khalik J, et al. (2019). 24(S),25-Epoxycholesterol and
cholesterol 24S-hydroxylase (CYP46A1) overexpression promote midbrain
dopaminergic neurogenesis in vivo. J Biol Chem 294: 4169-4176.
Theofilopoulos S, Griffiths WJ, Crick PJ, Yang S, Meljon A, Ogundare
M, et al. (2014). Cholestenoic acids regulate motor neuron
survival via liver X receptors. J Clin Invest 124: 4829-4842.
Theofilopoulos S, Wang Y, Kitambi SS, Sacchetti P, Sousa KM, Bodin
K, et al. (2013). Brain endogenous liver X receptor ligands
selectively promote midbrain neurogenesis. Nat Chem Biol 9:126-133.
Tint GS, Yu H, Shang Q, Xu G, & Patel SB (2006). The use of the Dhcr7
knockout mouse to accurately determine the origin of fetal sterols. J
Lipid Res 47: 1535-1541.
Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt
NB, et al. (2007). 27-Hydroxycholesterol is an endogenous SERM
that inhibits the cardiovascular effects of estrogen. Nat Med
13: 1185-1192.
Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier
J, et al. (2017). Identification of a tumor-promoter cholesterol
metabolite in human breast cancers acting through the glucocorticoid
receptor. Proc Natl Acad Sci U S A 114: E9346-E9355.
Wada T, Kang HS, Angers M, Gong H, Bhatia S, Khadem S, et al.(2008). Identification of oxysterol 7alpha-hydroxylase (Cyp7b1) as a
novel retinoid-related orphan receptor alpha (RORalpha) (NR1F1) target
gene and a functional cross-talk between RORalpha and liver X receptor
(NR1H3). Mol Pharmacol 73: 891-899.
Wang L, Andersson S, Warner M, & Gustafsson JA (2003). Estrogen
receptor (ER)beta knockout mice reveal a role for ERbeta in migration of
cortical neurons in the developing brain. Proc Natl Acad Sci U S A
100: 703-708.
Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, & Gustafsson JA
(2002). Liver X receptors in the central nervous system: from lipid
homeostasis to neuronal degeneration. Proc Natl Acad Sci U S A
99: 13878-13883.
Wang Y, Kumar N, Crumbley C, Griffin PR, & Burris TP (2010). A second
class of nuclear receptors for oxysterols: Regulation of RORalpha and
RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim
Biophys Acta 1801: 917-923.
Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C,
et al. (2010). Modulation of retinoic acid receptor-related orphan
receptor alpha and gamma activity by 7-oxygenated sterol ligands. J Biol
Chem 285: 5013-5025.
Wang Y, Muneton S, Sjovall J, Jovanovic JN, & Griffiths WJ (2008). The
effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons:
quantitative changes to the cortical neuron proteome. J Proteome Res
7: 1606-1614.
Wang Y, Sousa KM, Bodin K, Theofilopoulos S, Sacchetti P, Hornshaw
M, et al. (2009). Targeted lipidomic analysis of oxysterols in
the embryonic central nervous system. Mol Biosyst 5: 529-541.
Wanke F, Moos S, Croxford AL, Heinen AP, Graf S, Kalt B, et al.(2017). EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and
Promotes Early CNS Migration of Encephalitogenic CD4 T Cells. Cell Rep
18: 1270-1284.
Wardell SE, Nelson ER, & McDonnell DP (2014). From empirical to
mechanism-based discovery of clinically useful Selective Estrogen
Receptor Modulators (SERMs). Steroids 90: 30-38.
Warner M, & Gustafsson JA (2015). Estrogen receptor beta and Liver X
receptor beta: biology and therapeutic potential in CNS diseases. Mol
Psychiatry 20: 18-22.
Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, et
al. (2013). 27-Hydroxycholesterol promotes cell-autonomous, ER-positive
breast cancer growth. Cell Rep 5: 637-645.
Wu WF, Tan XJ, Dai YB, Krishnan V, Warner M, & Gustafsson JA (2013).
Targeting estrogen receptor beta in microglia and T cells to treat
experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A
110: 3543-3548.
Xu L, Korade Z, Rosado DA, Jr., Liu W, Lamberson CR, & Porter NA
(2011). An oxysterol biomarker for 7-dehydrocholesterol oxidation in
cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res
52: 1222-1233.
Xu L, Mirnics K, Bowman AB, Liu W, Da J, Porter NA, et al.(2012). DHCEO accumulation is a critical mediator of pathophysiology in
a Smith-Lemli-Opitz syndrome model. Neurobiol Dis 45: 923-929.
Yutuc E, Angelini R, Baumert M, Mast N, Pikuleva I, Newton J, et
al. (2020). Localization of sterols and oxysterols in mouse brain
reveals distinct spatial cholesterol metabolism. Proc Natl Acad Sci U S
A 117: 5749-5760.