References
Abdel-Khalik J, Crick PJ, Yutuc E, DeBarber AE, Duell PB, Steiner RD, et al. (2018). Identification of 7alpha,24-dihydroxy-3-oxocholest-4-en-26-oic and 7alpha,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human cerebrospinal fluid and plasma. Biochimie 153: 86-98.
Axelson M, Larsson O, Zhang J, Shoda J, & Sjovall J (1995). Structural specificity in the suppression of HMG-CoA reductase in human fibroblasts by intermediates in bile acid biosynthesis. J Lipid Res 36:290-298.
Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, & Russell DW (2009). 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci U S A 106: 16764-16769.
Beck KR, Inderbinen SG, Kanagaratnam S, Kratschmar DV, Jetten AM, Yamaguchi H, et al. (2019a). 11beta-hydroxysteroid dehydrogenases control access of 7beta,27-dihydroxycholesterol to retinoid-related orphan receptor gamma. J Lipid Res.
Beck KR, Kanagaratnam S, Kratschmar DV, Birk J, Yamaguchi H, Sailer AW, et al. (2019b). Enzymatic interconversion of the oxysterols 7beta,25-dihydroxycholesterol and 7-keto,25-hydroxycholesterol by 11beta-hydroxysteroid dehydrogenase type 1 and 2. J Steroid Biochem Mol Biol 190: 19-28.
Bjorkhem I (2007). Rediscovery of cerebrosterol. Lipids 42:5-14.
Bjorkhem I (2013). Cerebrotendinous xanthomatosis. Curr Opin Lipidol 24: 283-287.
Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, et al. (2013). The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38: 106-118.
Boussicault L, Alves S, Lamaziere A, Planques A, Heck N, Moumne L, et al. (2016). CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain 139: 953-970.
Brown MS, Radhakrishnan A, & Goldstein JL (2018). Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 87: 783-807.
Burlot MA, Braudeau J, Michaelsen-Preusse K, Potier B, Ayciriex S, Varin J, et al. (2015). Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 24: 5965-5976.
Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, et al. (2016). Structural basis of Smoothened regulation by its extracellular domains. Nature 535: 517-522.
Chen L, Ma MY, Sun M, Jiang LY, Zhao XT, Fang XX, et al. (2019). Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and SREBP-2 processing. J Lipid Res 60: 1765-1775.
Clayton PT (2011). Disorders of bile acid synthesis. J Inherit Metab Dis 34: 593-604.
Clottu AS, Mathias A, Sailer AW, Schluep M, Seebach JD, Du Pasquier R, et al. (2017). EBI2 Expression and Function: Robust in Memory Lymphocytes and Increased by Natalizumab in Multiple Sclerosis. Cell Rep 18: 213-224.
Coates HW, & Brown AJ (2019). A wolf in sheep’s clothing: unmasking the lanosterol-induced degradation of HMG-CoA reductase. J Lipid Res 60: 1643-1645.
Cobice DF, Mackay CL, Goodwin RJ, McBride A, Langridge-Smith PR, Webster SP, et al. (2013). Mass spectrometry imaging for dissecting steroid intracrinology within target tissues. Anal Chem 85:11576-11584.
Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, et al. (2003). A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 33: 508-513.
Corcoran RB, & Scott MP (2006). Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci U S A 103: 8408-8413.
Crick PJ, William Bentley T, Abdel-Khalik J, Matthews I, Clayton PT, Morris AA, et al. (2015). Quantitative charge-tags for sterol and oxysterol analysis. Clin Chem 61: 400-411.
Das A, Smith JA, Gibson C, Varma AK, Ray SK, & Banik NL (2011). Estrogen receptor agonists and estrogen attenuate TNF-alpha-induced apoptosis in VSC4.1 motoneurons. J Endocrinol 208: 171-182.
Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, & Rosenkilde MM (2014). Oxysterol-EBI2 signaling in immune regulation and viral infection. Eur J Immunol 44: 1904-1912.
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, & Joels M (2018). Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 49: 124-145.
de Medina P, Paillasse MR, Segala G, Poirot M, & Silvente-Poirot S (2010). Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci U S A 107: 13520-13525.
Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, et al.(2019). Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571: 284-288.
Dietschy JM, & Turley SD (2004). Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375-1397.
Duc D, Vigne S, & Pot C (2019). Oxysterols in Autoimmunity. Int J Mol Sci 20.
DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, & McDonnell DP (2008). 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol 22: 65-77.
Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, & Parhami F (2007). Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 282: 8959-8968.
Dzeletovic S, Breuer O, Lund E, & Diczfalusy U (1995). Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem 225: 73-80.
Ercoli A, & Ruggieri P (1953). The constitution of cerebrosterol, a hydroxycholesterol isolated from horse brain. J Am Chem Soc 75:3284.
Evans RM, & Mangelsdorf DJ (2014). Nuclear Receptors, RXR, and the Big Bang. Cell 157: 255-266.
Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Jr., Murphy RC, et al. (2005). A comprehensive classification system for lipids. J Lipid Res 46: 839-861.
Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, et al.(2001). 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 276:38378-38387.
Gill S, Chow R, & Brown AJ (2008). Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised. Prog Lipid Res 47: 391-404.
Goldstein JL, DeBose-Boyd RA, & Brown MS (2006). Protein sensors for membrane sterols. Cell 124: 35-46.
Goyal S, Xiao Y, Porter NA, Xu L, & Guengerich FP (2014). Oxidation of 7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1. J Lipid Res 55: 1933-1943.
Griffiths WJ, Crick PJ, Meljon A, Theofilopoulos S, Abdel-Khalik J, Yutuc E, et al. (2019a). Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma. Biochim Biophys Acta Mol Cell Biol Lipids 1864: 191-211.
Griffiths WJ, Crick PJ, Wang Y, Ogundare M, Tuschl K, Morris AA, et al. (2013). Analytical strategies for characterization of oxysterol lipidomes: liver X receptor ligands in plasma. Free Radic Biol Med 59: 69-84.
Griffiths WJ, & Wang Y (2020). Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 147: 106381.
Griffiths WJ, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, et al. (2019b). Metabolism of Non-Enzymatically Derived Oxysterols: Clues from sterol metabolic disorders. Free Radic Biol Med 144: 124-133.
Han M, Wang S, Yang N, Wang X, Zhao W, Saed HS, et al. (2020). Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma. EMBO Mol Med 12: e10924.
Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, et al. (2011). Oxysterols direct immune cell migration via EBI2. Nature 475: 524-527.
Hauser S, Poenisch M, Schelling Y, Hoflinger P, Schuster S, Teegler A, et al. (2019). mRNA as a Novel Treatment Strategy for Hereditary Spastic Paraplegia Type 5. Mol Ther Methods Clin Dev 15: 359-370.
Heine VM, & Rowitch DH (2009). Hedgehog signaling has a protective effect in glucocorticoid-induced mouse neonatal brain injury through an 11betaHSD2-dependent mechanism. J Clin Invest 119: 267-277.
Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, et al. (2004). Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 45: 186-193.
Holmes MC, Sangra M, French KL, Whittle IR, Paterson J, Mullins JJ, et al. (2006). 11beta-Hydroxysteroid dehydrogenase type 2 protects the neonatal cerebellum from deleterious effects of glucocorticoids. Neuroscience 137: 865-873.
Holmes MC, & Seckl JR (2006). The role of 11beta-hydroxysteroid dehydrogenases in the brain. Mol Cell Endocrinol 248: 9-14.
Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, et al. (2009). Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res 50: 350-357.
Horton JD, Goldstein JL, & Brown MS (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125-1131.
Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, et al.(2016). Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling. Cell 166: 1176-1187 e1114.
Hult M, Elleby B, Shafqat N, Svensson S, Rane A, Jornvall H, et al. (2004). Human and rodent type 1 11beta-hydroxysteroid dehydrogenases are 7beta-hydroxycholesterol dehydrogenases involved in oxysterol metabolism. Cell Mol Life Sci 61: 992-999.
Iuliano L, Crick PJ, Zerbinati C, Tritapepe L, Abdel-Khalik J, Poirot M, et al. (2015). Cholesterol metabolites exported from human brain. Steroids 99: 189-193.
Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, et al. (1999). Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 96: 266-271.
Janowski BA, Willy PJ, Devi TR, Falck JR, & Mangelsdorf DJ (1996). An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383: 728-731.
Javitt NB (2008). Oxysterols: novel biologic roles for the 21st century. Steroids 73: 149-157.
Jetten AM, & Joo JH (2006). Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. Adv Dev Biol 16: 313-355.
Jin L, Martynowski D, Zheng S, Wada T, Xie W, & Li Y (2010). Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Mol Endocrinol 24: 923-929.
Kacher R, Lamaziere A, Heck N, Kappes V, Mounier C, Despres G, et al. (2019). CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain 142:2432-2450.
Kallen J, Schlaeppi JM, Bitsch F, Delhon I, & Fournier B (2004). Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J Biol Chem 279:14033-14038.
Kandutsch AA, Chen HW, & Heiniger HJ (1978). Biological activity of some oxygenated sterols. Science 201: 498-501.
Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G, et al. (2007). Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. J Lipid Res 48: 976-987.
Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K, Jones MC, et al. (1996). Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 66: 478-484.
Kim WK, Meliton V, Amantea CM, Hahn TJ, & Parhami F (2007). 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J Bone Miner Res 22: 1711-1719.
Kinnebrew M, Iverson EJ, Patel BB, Pusapati GV, Kong JH, Johnson KA, et al. (2019). Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. Elife 8.
Kong JH, Siebold C, & Rohatgi R (2019). Biochemical mechanisms of vertebrate hedgehog signaling. Development 146.
Kotti T, Head DD, McKenna CE, & Russell DW (2008). Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proc Natl Acad Sci U S A 105: 11394-11399.
Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, & Russell DW (2006). Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci U S A 103: 3869-3874.
Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Canizal MCA, et al. (2020). Structural insight into small molecule action on Frizzleds. Nat Commun 11: 414.
Lange Y, & Steck TL (1998). Four cholesterol-sensing proteins. Curr Opin Struct Biol 8: 435-439.
Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, et al. (1997). Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272: 3137-3140.
Li-Hawkins J, Lund EG, Bronson AD, & Russell DW (2000). Expression cloning of an oxysterol 7alpha-hydroxylase selective for 24-hydroxycholesterol. J Biol Chem 275: 16543-16549.
Li J, & Gibbs RB (2019). Detection of estradiol in rat brain tissues: Contribution of local versus systemic production. Psychoneuroendocrinology 102: 84-94.
Linsenbardt AJ, Taylor A, Emnett CM, Doherty JJ, Krishnan K, Covey DF, et al. (2014). Different oxysterols have opposing actions at N-methyl-D-aspartate receptors. Neuropharmacology 85: 232-242.
Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, et al. (2011). Oxysterols direct B-cell migration through EBI2. Nature 475:519-523.
Liu S, Sjovall J, & Griffiths WJ (2003). Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal Chem 75:5835-5846.
Lund EG, Guileyardo JM, & Russell DW (1999). cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 96: 7238-7243.
Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, & Russell DW (2003). Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278: 22980-22988.
Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa H, et al. (2017). Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology 123: 465-476.
McCabe JM, & Leahy DJ (2015). Smoothened goes molecular: new pieces in the hedgehog signaling puzzle. J Biol Chem 290: 3500-3507.
McDonald JG, Smith DD, Stiles AR, & Russell DW (2012). A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma. J Lipid Res 53: 1399-1409.
Meaney S, Bodin K, Diczfalusy U, & Bjorkhem I (2002). On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J Lipid Res 43: 2130-2135.
Meaney S, Lutjohann D, Diczfalusy U, & Bjorkhem I (2000). Formation of oxysterols from different pools of cholesterol as studied by stable isotope technique: cerebral origin of most circulating 24S-hydroxycholesterol in rats, but not in mice. Biochim Biophys Acta 1486: 293-298.
Meljon A, Crick PJ, Yutuc E, Yau JL, Seckl JR, Theofilopoulos S, et al. (2019). Mining for Oxysterols in Cyp7b1(-/-) Mouse Brain and Plasma: Relevance to Spastic Paraplegia Type 5. Biomolecules 9.
Meljon A, Theofilopoulos S, Shackleton CH, Watson GL, Javitt NB, Knolker HJ, et al. (2012). Analysis of bioactive oxysterols in newborn mouse brain by LC/MS. J Lipid Res 53: 2469-2483.
Meljon A, Wang Y, & Griffiths WJ (2014). Oxysterols in the brain of the cholesterol 24-hydroxylase knockout mouse. Biochem Biophys Res Commun 446: 768-774.
Meljon A, Watson GL, Wang Y, Shackleton CH, & Griffiths WJ (2013). Analysis by liquid chromatography-mass spectrometry of sterols and oxysterols in brain of the newborn Dhcr7(Delta3-5/T93M) mouse: a model of Smith-Lemli-Opitz syndrome. Biochem Pharmacol 86: 43-55.
Mitic T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, et al. (2013). 11beta-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem Pharmacol 86: 146-153.
Murphy RC, & Johnson KM (2008). Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem 283: 15521-15525.
Myers BR, Sever N, Chong YC, Kim J, Belani JD, Rychnovsky S, et al. (2013). Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 26:346-357.
Nachtergaele S, Mydock LK, Krishnan K, Rammohan J, Schlesinger PH, Covey DF, et al. (2012). Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol 8: 211-220.
Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, et al. (2013). Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. Elife 2:e01340.
Nedelcu D, Liu J, Xu Y, Jao C, & Salic A (2013). Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat Chem Biol 9: 557-564.
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342: 1094-1098.
Nelson JA, Steckbeck SR, & Spencer TA (1981). Biosynthesis of 24,25-epoxycholesterol from squalene 2,3;22,23-dioxide. J Biol Chem 256: 1067-1068.
Nobrega C, Mendonca L, Marcelo A, Lamaziere A, Tome S, Despres G, et al. (2019). Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol 138: 837-858.
Ogundare M, Theofilopoulos S, Lockhart A, Hall LJ, Arenas E, Sjovall J, et al. (2010). Cerebrospinal fluid steroidomics: are bioactive bile acids present in brain? J Biol Chem 285: 4666-4679.
Olkkonen VM, & Hynynen R (2009). Interactions of oxysterols with membranes and proteins. Mol Aspects Med 30: 123-133.
Paul SM, Doherty JJ, Robichaud AJ, Belfort GM, Chow BY, Hammond RS, et al. (2013). The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 33: 17290-17300.
Pfeffer SR (2019). NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes. J Biol Chem 294: 1706-1709.
Qi X, Liu H, Thompson B, McDonald J, Zhang C, & Li X (2019). Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature 571: 279-283.
Radhakrishnan A, Anderson TG, & McConnell HM (2000). Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc Natl Acad Sci U S A 97: 12422-12427.
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, & Goldstein JL (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A 104: 6511-6518.
Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM, Thompson BM, et al. (2018). Cilia-Associated Oxysterols Activate Smoothened. Mol Cell 72: 316-327 e315.
Roberg-Larsen H, Lund K, Vehus T, Solberg N, Vesterdal C, Misaghian D, et al. (2014). Highly automated nano-LC/MS-based approach for thousand cell-scale quantification of side chain-hydroxylated oxysterols. J Lipid Res 55: 1531-1536.
Rohatgi R, Milenkovic L, Corcoran RB, & Scott MP (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci U S A 106: 3196-3201.
Rose KA, Stapleton G, Dott K, Kieny MP, Best R, Schwarz M, et al.(1997). Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone. Proc Natl Acad Sci U S A 94: 4925-4930.
Russell DW, Halford RW, Ramirez DM, Shah R, & Kotti T (2009). Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 78: 1017-1040.
Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, et al. (2009). Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5: 409-419.
Saeed AA, Genove G, Li T, Lutjohann D, Olin M, Mast N, et al.(2014). Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. J Biol Chem 289: 23712-23722.
Salen G, & Steiner RD (2017). Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). J Inherit Metab Dis 40:771-781.
Saucier SE, Kandutsch AA, Gayen AK, Nelson JA, & Spencer TA (1990). Oxygenation of desmosterol and cholesterol in cell cultures. J Lipid Res 31: 2179-2185.
Schols L, Rattay TW, Martus P, Meisner C, Baets J, Fischer I, et al. (2017). Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain 140:3112-3127.
Schott HF, & Lutjohann D (2015). Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples. Steroids 99:139-150.
Schroepfer GJ, Jr. (2000). Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80: 361-554.
Schweizer RA, Zurcher M, Balazs Z, Dick B, & Odermatt A (2004). Rapid hepatic metabolism of 7-ketocholesterol by 11beta-hydroxysteroid dehydrogenase type 1: species-specific differences between the rat, human, and hamster enzyme. J Biol Chem 279: 18415-18424.
Segala G, David M, de Medina P, Poirot MC, Serhan N, Vergez F, et al. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nat Commun 8: 1903.
Sengupta D, & Chattopadhyay A (2015). Molecular dynamics simulations of GPCR-cholesterol interaction: An emerging paradigm. Biochim Biophys Acta 1848: 1775-1782.
Serafini B, Rosicarelli B, Veroni C, Zhou L, Reali C, & Aloisi F (2016). RORgammat Expression and Lymphoid Neogenesis in the Brain of Patients with Secondary Progressive Multiple Sclerosis. J Neuropathol Exp Neurol 75: 877-888.
Sever N, Mann RK, Xu L, Snell WJ, Hernandez-Lara CI, Porter NA, et al. (2016). Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci U S A 113: 5904-5909.
Shafaati M, Olin M, Bavner A, Pettersson H, Rozell B, Meaney S, et al. (2011). Enhanced production of 24S-hydroxycholesterol is not sufficient to drive liver X receptor target genes in vivo. J Intern Med 270: 377-387.
Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, & Guengerich FP (2011). Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem 286: 33021-33028.
Sidhu R, Jiang H, Farhat NY, Carrillo-Carrasco N, Woolery M, Ottinger E, et al. (2015). A validated LC-MS/MS assay for quantification of 24(S)-hydroxycholesterol in plasma and cerebrospinal fluid. J Lipid Res 56: 1222-1233.
Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, et al. (2016). Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res 18: 58.
Song BL, Javitt NB, & DeBose-Boyd RA (2005). Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab 1: 179-189.
Song C, & Liao S (2000). Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 141:4180-4184.
Soroosh P, Wu J, Xue X, Song J, Sutton SW, Sablad M, et al.(2014). Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation. Proc Natl Acad Sci U S A 111: 12163-12168.
Spence RD, Wisdom AJ, Cao Y, Hill HM, Mongerson CR, Stapornkul B, et al. (2013). Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J Neurosci 33: 10924-10933.
Stiles AR, Kozlitina J, Thompson BM, McDonald JG, King KS, & Russell DW (2014). Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A 111:E4006-4014.
Sun LP, Seemann J, Goldstein JL, & Brown MS (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci U S A 104: 6519-6526.
Suzuki H, Barros RP, Sugiyama N, Krishnan V, Yaden BC, Kim HJ, et al. (2013). Involvement of estrogen receptor beta in maintenance of serotonergic neurons of the dorsal raphe. Mol Psychiatry 18:674-680.
Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, & Maeda N (1997). Glucocorticoid- and mineralocorticoid receptors in microglial cells: the two receptors mediate differential effects of corticosteroids. Glia 20: 23-37.
Theofilopoulos S, Abreu de Oliveira WA, Yang S, Yutuc E, Saeed A, Abdel-Khalik J, et al. (2019). 24(S),25-Epoxycholesterol and cholesterol 24S-hydroxylase (CYP46A1) overexpression promote midbrain dopaminergic neurogenesis in vivo. J Biol Chem 294: 4169-4176.
Theofilopoulos S, Griffiths WJ, Crick PJ, Yang S, Meljon A, Ogundare M, et al. (2014). Cholestenoic acids regulate motor neuron survival via liver X receptors. J Clin Invest 124: 4829-4842.
Theofilopoulos S, Wang Y, Kitambi SS, Sacchetti P, Sousa KM, Bodin K, et al. (2013). Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Biol 9:126-133.
Tint GS, Yu H, Shang Q, Xu G, & Patel SB (2006). The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols. J Lipid Res 47: 1535-1541.
Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, et al. (2007). 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med 13: 1185-1192.
Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier J, et al. (2017). Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 114: E9346-E9355.
Wada T, Kang HS, Angers M, Gong H, Bhatia S, Khadem S, et al.(2008). Identification of oxysterol 7alpha-hydroxylase (Cyp7b1) as a novel retinoid-related orphan receptor alpha (RORalpha) (NR1F1) target gene and a functional cross-talk between RORalpha and liver X receptor (NR1H3). Mol Pharmacol 73: 891-899.
Wang L, Andersson S, Warner M, & Gustafsson JA (2003). Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain. Proc Natl Acad Sci U S A 100: 703-708.
Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, & Gustafsson JA (2002). Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci U S A 99: 13878-13883.
Wang Y, Kumar N, Crumbley C, Griffin PR, & Burris TP (2010). A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim Biophys Acta 1801: 917-923.
Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, et al. (2010). Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J Biol Chem 285: 5013-5025.
Wang Y, Muneton S, Sjovall J, Jovanovic JN, & Griffiths WJ (2008). The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome. J Proteome Res 7: 1606-1614.
Wang Y, Sousa KM, Bodin K, Theofilopoulos S, Sacchetti P, Hornshaw M, et al. (2009). Targeted lipidomic analysis of oxysterols in the embryonic central nervous system. Mol Biosyst 5: 529-541.
Wanke F, Moos S, Croxford AL, Heinen AP, Graf S, Kalt B, et al.(2017). EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4 T Cells. Cell Rep 18: 1270-1284.
Wardell SE, Nelson ER, & McDonnell DP (2014). From empirical to mechanism-based discovery of clinically useful Selective Estrogen Receptor Modulators (SERMs). Steroids 90: 30-38.
Warner M, & Gustafsson JA (2015). Estrogen receptor beta and Liver X receptor beta: biology and therapeutic potential in CNS diseases. Mol Psychiatry 20: 18-22.
Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, et al. (2013). 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 5: 637-645.
Wu WF, Tan XJ, Dai YB, Krishnan V, Warner M, & Gustafsson JA (2013). Targeting estrogen receptor beta in microglia and T cells to treat experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 110: 3543-3548.
Xu L, Korade Z, Rosado DA, Jr., Liu W, Lamberson CR, & Porter NA (2011). An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res 52: 1222-1233.
Xu L, Mirnics K, Bowman AB, Liu W, Da J, Porter NA, et al.(2012). DHCEO accumulation is a critical mediator of pathophysiology in a Smith-Lemli-Opitz syndrome model. Neurobiol Dis 45: 923-929.
Yutuc E, Angelini R, Baumert M, Mast N, Pikuleva I, Newton J, et al. (2020). Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc Natl Acad Sci U S A 117: 5749-5760.