Nature Reviews Drug Discovery
de Castro-Miro M, Tonda R, Escudero-Ferruz P, Andres R, Mayor-Lorenzo Aet al. (2016). Novel Candidate Genes and a Wide Spectrum of
Structural and Point Mutations Responsible for Inherited Retinal
Dystrophies Revealed by Exome Sequencing. PLoS One 11 :
e0168966 https://www.ncbi.nlm.nih.gov/pubmed/28005958
de Haan CA and Rottier PJ (2005). Molecular interactions in the assembly
of coronaviruses. Adv Virus Res 64 : 165-230
https://www.ncbi.nlm.nih.gov/pubmed/16139595
de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T et al.(2013). The Middle East respiratory syndrome coronavirus (MERS-CoV) does
not replicate in Syrian hamsters. PLoS One 8 : e69127
https://www.ncbi.nlm.nih.gov/pubmed/23844250
de Wit E, van Doremalen N, Falzarano D and Munster VJ (2016). SARS and
MERS: recent insights into emerging coronaviruses. Nat Rev
Microbiol 14 : 523-34
https://www.ncbi.nlm.nih.gov/pubmed/27344959
de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A et al.(2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in
the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci
U S A 117 : 6771-6776
https://www.ncbi.nlm.nih.gov/pubmed/32054787
Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B et al.(2008). Coronavirus nonstructural protein 16 is a cap-0 binding enzyme
possessing (nucleoside-2’O)-methyltransferase activity. J Virol82 : 8071-84 https://www.ncbi.nlm.nih.gov/pubmed/18417574
Delanghe JR, Speeckaert MM and De Buyzere ML (2020). The host’s
angiotensin-converting enzyme polymorphism may explain epidemiological
findings in COVID-19 infections. Clin Chim Acta 505 :
192-193 https://www.ncbi.nlm.nih.gov/pubmed/32220422
Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L et
al. (2019). Human Coronaviruses and Other Respiratory Viruses:
Underestimated Opportunistic Pathogens of the Central Nervous System?Viruses 12 : https://www.ncbi.nlm.nih.gov/pubmed/31861926
Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C et al. (2010).
Peroxisomes are signaling platforms for antiviral innate immunity.Cell 141 : 668-81
https://www.ncbi.nlm.nih.gov/pubmed/20451243
Dong S, Sun J, Mao Z, Wang L, Lu YL et al. (2020). A guideline
for homology modeling of the proteins from newly discovered
betacoronavirus, 2019 novel coronavirus (2019-nCoV). J Med Virolhttps://www.ncbi.nlm.nih.gov/pubmed/32181901
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M et al.(2000). A novel angiotensin-converting enzyme-related carboxypeptidase
(ACE2) converts angiotensin I to angiotensin 1-9. Circ Res87 : E1-9 https://www.ncbi.nlm.nih.gov/pubmed/10969042
Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P et al.(2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene program.Immunity 17 : 251-63
https://www.ncbi.nlm.nih.gov/pubmed/12354379
Eckerle LD, Becker MM, Halpin RA, Li K, Venter E et al. (2010).
Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is
revealed by complete genome sequencing. PLoS Pathog 6 :
e1000896 https://www.ncbi.nlm.nih.gov/pubmed/20463816
Elfiky AA (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and
Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A
molecular docking study. Life Sci 117592
https://www.ncbi.nlm.nih.gov/pubmed/32222463
Esler M and Esler D (2020). Can angiotensin receptor-blocking drugs
perhaps be harmful in the COVID-19 pandemic? J Hypertens38 : 781-782 https://www.ncbi.nlm.nih.gov/pubmed/32195824
Ewart GD, Mills K, Cox GB and Gage PW (2002). Amiloride derivatives
block ion channel activity and enhancement of virus-like particle
budding caused by HIV-1 protein Vpu. Eur Biophys J 31 :
26-35 https://www.ncbi.nlm.nih.gov/pubmed/12046895
Ewart GD, Nasr N, Naif H, Cox GB, Cunningham AL et al. (2004).
Potential new anti-human immunodeficiency virus type 1 compounds depress
virus replication in cultured human macrophages. Antimicrob Agents
Chemother 48 : 2325-30
https://www.ncbi.nlm.nih.gov/pubmed/15155246
Fairweather SJ, Broer A, O’Mara ML and Broer S (2012). Intestinal
peptidases form functional complexes with the neutral amino acid
transporter B(0)AT1. Biochem J 446 : 135-48
https://www.ncbi.nlm.nih.gov/pubmed/22677001
Fan H, Ooi A, Tan YW, Wang S, Fang S et al. (2005). The
nucleocapsid protein of coronavirus infectious bronchitis virus: crystal
structure of its N-terminal domain and multimerization properties.Structure 13 : 1859-68
https://www.ncbi.nlm.nih.gov/pubmed/16338414
Fehr AR and Perlman S (2015). Coronaviruses: an overview of their
replication and pathogenesis. Methods Mol Biol 1282 :
1-23 https://www.ncbi.nlm.nih.gov/pubmed/25720466
Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB et
al. (2005). Effect of angiotensin-converting enzyme inhibition and
angiotensin II receptor blockers on cardiac angiotensin-converting
enzyme 2. Circulation 111 : 2605-10
https://www.ncbi.nlm.nih.gov/pubmed/15897343
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E et al.(2003). IKKepsilon and TBK1 are essential components of the IRF3
signaling pathway. Nat Immunol 4 : 491-6
https://www.ncbi.nlm.nih.gov/pubmed/12692549
Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y et al.(2015). La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine
(TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J
Biol Chem 290 : 15996-6020
https://www.ncbi.nlm.nih.gov/pubmed/25940091
Fung SY, Yuen KS, Ye ZW, Chan CP and Jin DY (2020). A tug-of-war between
severe acute respiratory syndrome coronavirus 2 and host antiviral
defence: lessons from other pathogenic viruses. Emerg Microbes
Infect 9 : 558-570 https://www.ncbi.nlm.nih.gov/pubmed/32172672
Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM et al.(2012). Quantitative analysis of the lipidomes of the influenza virus
envelope and MDCK cell apical membrane. J Cell Biol 196 :
213-21 https://www.ncbi.nlm.nih.gov/pubmed/22249292
Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X et
al. (2008). Importance of cholesterol-rich membrane microdomains in the
interaction of the S protein of SARS-coronavirus with the cellular
receptor angiotensin-converting enzyme 2. Virology 381 :
215-21 https://www.ncbi.nlm.nih.gov/pubmed/18814896
Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M et al. (2007).
Substrate specificity profiling and identification of a new class of
inhibitor for the major protease of the SARS coronavirus.Biochemistry 46 : 8744-52
https://www.ncbi.nlm.nih.gov/pubmed/17605471
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP and Gotte M (2020). The
antiviral compound remdesivir potently inhibits RNA-dependent RNA
polymerase from Middle East respiratory syndrome coronavirus. J
Biol Chem https://www.ncbi.nlm.nih.gov/pubmed/32094225
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K et al. (2020).
A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets
and Potential Drug Repurposing. bioRxivhttps://www.biorxiv.org/content/10.1101/2020.03.22.002386v3
https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3
Gotz C and Montenarh M (2017). Protein kinase CK2 in development and
differentiation. Biomed Rep 6 : 127-133
https://www.ncbi.nlm.nih.gov/pubmed/28357063
Goubau D, Deddouche S and Reis e Sousa C (2013). Cytosolic sensing of
viruses. Immunity 38 : 855-69
https://www.ncbi.nlm.nih.gov/pubmed/23706667
Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T et
al. (2014). Antiviral immunity via RIG-I-mediated recognition of RNA
bearing 5’-diphosphates. Nature 514 : 372-375
https://www.ncbi.nlm.nih.gov/pubmed/25119032
Guo L, Fare CM and Shorter J (2019). Therapeutic Dissolution of Aberrant
Phases by Nuclear-Import Receptors. Trends Cell Biol 29 :
308-322 https://www.ncbi.nlm.nih.gov/pubmed/30660504
Hackbart M, Deng X and Baker SC (2020). Coronavirus endoribonuclease
targets viral polyuridine sequences to evade activating host sensors.Proc Natl Acad Sci U S A 117 : 8094-8103
https://www.ncbi.nlm.nih.gov/pubmed/32198201
Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K et al.(2008). Modulation of TNF-alpha-converting enzyme by the spike protein
of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral
entry. Proc Natl Acad Sci U S A 105 : 7809-14
https://www.ncbi.nlm.nih.gov/pubmed/18490652
Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KMet al. (2004). Identification of severe acute respiratory
syndrome coronavirus replicase products and characterization of
papain-like protease activity. J Virol 78 : 13600-12
https://www.ncbi.nlm.nih.gov/pubmed/15564471
Hatesuer B, Bertram S, Mehnert N, Bahgat MM, Nelson PS et al.(2013). Tmprss2 is essential for influenza H1N1 virus pathogenesis in
mice. PLoS Pathog 9 : e1003774
https://www.ncbi.nlm.nih.gov/pubmed/24348248
Heaton NS and Randall G (2011). Multifaceted roles for lipids in viral
infection. Trends Microbiol 19 : 368-75
https://www.ncbi.nlm.nih.gov/pubmed/21530270
Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z et al. (2007).
Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and
angiotensin-(1-7) levels in experimental biliary fibrosis. J
Hepatol 47 : 387-95
https://www.ncbi.nlm.nih.gov/pubmed/17532087
Hernandez Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y et
al. (2008). Structure-based identification of small-molecule
angiotensin-converting enzyme 2 activators as novel antihypertensive
agents. Hypertension 51 : 1312-7
https://www.ncbi.nlm.nih.gov/pubmed/18391097
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T et
al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
Blocked by a Clinically Proven Protease Inhibitor. Cellhttps://www.ncbi.nlm.nih.gov/pubmed/32142651
Hogan PG, Chen L, Nardone J and Rao A (2003). Transcriptional regulation
by calcium, calcineurin, and NFAT. Genes Dev 17 : 2205-32
https://www.ncbi.nlm.nih.gov/pubmed/12975316
Holsinger LJ, Nichani D, Pinto LH and Lamb RA (1994). Influenza A virus
M2 ion channel protein: a structure-function analysis. J Virol68 : 1551-63 https://www.ncbi.nlm.nih.gov/pubmed/7508997
Hong S, Freeberg MA, Han T, Kamath A, Yao Y et al. (2017). LARP1
functions as a molecular switch for mTORC1-mediated translation of an
essential class of mRNAs. Elife 6 :
https://www.ncbi.nlm.nih.gov/pubmed/28650797
Huang L, Sexton DJ, Skogerson K, Devlin M, Smith R et al. (2003).
Novel peptide inhibitors of angiotensin-converting enzyme 2. J
Biol Chem 278 : 15532-40
https://www.ncbi.nlm.nih.gov/pubmed/12606557
Imai Y, Kuba K, Rao S, Huan Y, Guo F et al. (2005).
Angiotensin-converting enzyme 2 protects from severe acute lung failure.Nature 436 : 112-6
https://www.ncbi.nlm.nih.gov/pubmed/16001071
Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K et al. (2007).
Clathrin-dependent entry of severe acute respiratory syndrome
coronavirus into target cells expressing ACE2 with the cytoplasmic tail
deleted. J Virol 81 : 8722-9
https://www.ncbi.nlm.nih.gov/pubmed/17522231
Janeczko M, Orzeszko A, Kazimierczuk Z, Szyszka R and Baier A (2012).
CK2alpha and CK2alpha’ subunits differ in their sensitivity to
4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives.Eur J Med Chem 47 : 345-50
https://www.ncbi.nlm.nih.gov/pubmed/22115617
Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J et al.(2010). Acute cardiovascular effects of apelin in humans: potential role
in patients with chronic heart failure. Circulation 121 :
1818-27 https://www.ncbi.nlm.nih.gov/pubmed/20385929
Jeon S, Ko M, Lee J, Choi I, Byun SY et al. (2020).
Identification of antiviral drug candidates against SARS-CoV-2 from
FDA-approved drugs. bioRxivhttps://www.biorxiv.org/content/10.1101/2020.03.20.999730v3
https://www.biorxiv.org/content/10.1101/2020.03.20.999730v3
Jin Z, Du X, Xu Y, Deng Y, Liu M et al. (2020). Structure of
Mpro from COVID-19 virus and discovery of its
inhibitors. Nature https://www.ncbi.nlm.nih.gov/pubmed/32272481
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M et al. (2006).
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA
viruses. Nature 441 : 101-5
https://www.ncbi.nlm.nih.gov/pubmed/16625202
Kawase M, Shirato K, van der Hoek L, Taguchi F and Matsuyama S (2012).
Simultaneous treatment of human bronchial epithelial cells with serine
and cysteine protease inhibitors prevents severe acute respiratory
syndrome coronavirus entry. J Virol 86 : 6537-45
https://www.ncbi.nlm.nih.gov/pubmed/22496216
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J et al. (2017). A
pilot clinical trial of recombinant human angiotensin-converting enzyme
2 in acute respiratory distress syndrome. Crit Care 21 :
234 https://www.ncbi.nlm.nih.gov/pubmed/28877748
Kim SS, Sze L, Liu C and Lam KP (2019). The stress granule protein G3BP1
binds viral dsRNA and RIG-I to enhance interferon-beta response. J
Biol Chem 294 : 6430-6438
https://www.ncbi.nlm.nih.gov/pubmed/30804210
Kim TS, Heinlein C, Hackman RC and Nelson PS (2006). Phenotypic analysis
of mice lacking the Tmprss2 -encoded protease. Mol Cell
Biol 26 : 965-75 https://www.ncbi.nlm.nih.gov/pubmed/16428450
Kindler E, Thiel V and Weber F (2016). Interaction of SARS and MERS
Coronaviruses with the Antiviral Interferon Response. Adv Virus
Res 96 : 219-243 https://www.ncbi.nlm.nih.gov/pubmed/27712625
Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Yet al. (2008). SARS-coronavirus replication is supported by a
reticulovesicular network of modified endoplasmic reticulum. PLoS
Biol 6 : e226 https://www.ncbi.nlm.nih.gov/pubmed/18798692
Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA and Palese
P (2007). Severe acute respiratory syndrome coronavirus open reading
frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon
antagonists. J Virol 81 : 548-57
https://www.ncbi.nlm.nih.gov/pubmed/17108024
Kosyna FK and Depping R (2018). Controlling the Gatekeeper: Therapeutic
Targeting of Nuclear Transport. Cells 7 :
https://www.ncbi.nlm.nih.gov/pubmed/30469340
Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE et al.(2008). A protein complex in the brush-border membrane explains a
Hartnup disorder allele. FASEB J 22 : 2880-7
https://www.ncbi.nlm.nih.gov/pubmed/18424768
Krzystyniak K and Dupuy JM (1984). Entry of mouse hepatitis virus 3 into
cells. J Gen Virol 65 ( Pt 1) : 227-31
https://www.ncbi.nlm.nih.gov/pubmed/6319570
Kuba K, Imai Y, Rao S, Gao H, Guo F et al. (2005). A crucial role
of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced
lung injury. Nat Med 11 : 875-9
https://www.ncbi.nlm.nih.gov/pubmed/16007097
Kuba K, Imai Y, Ohto-Nakanishi T and Penninger JM (2010). Trilogy of
ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and
a partner for amino acid transporters. Pharmacol Ther128 : 119-28 https://www.ncbi.nlm.nih.gov/pubmed/20599443
Kulemina LV and Ostrov DA (2011). Prediction of off-target effects on
angiotensin-converting enzyme 2. J Biomol Screen 16 :
878-85 https://www.ncbi.nlm.nih.gov/pubmed/21859683
Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET et al.(2005). Tumor necrosis factor-alpha convertase (ADAM17) mediates
regulated ectodomain shedding of the severe-acute respiratory
syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting
enzyme-2 (ACE2). J Biol Chem 280 : 30113-9
https://www.ncbi.nlm.nih.gov/pubmed/15983030
Lei C, Fu W, Qian K, Li T, Zhang S et al. (2020). Potent
neutralization of 2019 novel coronavirus by recombinant ACE2-Ig.bioRxivhttps://www.biorxiv.org/content/10.1101/2020.02.01.929976v2
https://www.biorxiv.org/content/10.1101/2020.02.01.929976v2
Lei J, Kusov Y and Hilgenfeld R (2018). Nsp3 of coronaviruses:
Structures and functions of a large multi-domain protein.Antiviral Res 149 : 58-74
https://www.ncbi.nlm.nih.gov/pubmed/29128390
Lemmon MA (2008). Membrane recognition by phospholipid-binding domains.Nat Rev Mol Cell Biol 9 : 99-111
https://www.ncbi.nlm.nih.gov/pubmed/18216767
Letko M, Marzi A and Munster V (2020). Functional assessment of cell
entry and receptor usage for SARS-CoV-2 and other lineage B
betacoronaviruses. Nat Microbiol 5 : 562-569
https://www.ncbi.nlm.nih.gov/pubmed/32094589
Lew RA, Warner FJ, Hanchapola I, Yarski MA, Ramchand J et al.(2008). Angiotensin-converting enzyme 2 catalytic activity in human
plasma is masked by an endogenous inhibitor. Exp Physiol93 : 685-93 https://www.ncbi.nlm.nih.gov/pubmed/18223027
Li B, Yang J, Zhao F, Zhi L, Wang X et al. (2020). Prevalence and
impact of cardiovascular metabolic diseases on COVID-19 in China.Clin Res Cardiol https://www.ncbi.nlm.nih.gov/pubmed/32161990
Li F, Li W, Farzan M and Harrison SC (2005). Structure of SARS
coronavirus spike receptor-binding domain complexed with receptor.Science 309 : 1864-8
https://www.ncbi.nlm.nih.gov/pubmed/16166518
Li G and De Clercq E (2020). Therapeutic options for the 2019 novel
coronavirus (2019-nCoV). Nat Rev Drug Discov 19 : 149-150
https://www.ncbi.nlm.nih.gov/pubmed/32127666
Li R, Qiao S and Zhang G (2020). Analysis of angiotensin-converting
enzyme 2 (ACE2) from different species sheds some light on cross-species
receptor usage of a novel coronavirus 2019-nCoV. J Infect80 : 469-496 https://www.ncbi.nlm.nih.gov/pubmed/32092392
Li TC, Chan MC and Lee N (2015). Clinical Implications of Antiviral
Resistance in Influenza. Viruses 7 : 4929-44
https://www.ncbi.nlm.nih.gov/pubmed/26389935
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. (2003).
Angiotensin-converting enzyme 2 is a functional receptor for the SARS
coronavirus. Nature 426 : 450-4
https://www.ncbi.nlm.nih.gov/pubmed/14647384
Lin B, Ferguson C, White JT, Wang S, Vessella R et al. (1999).
Prostate-localized and androgen-regulated expression of the
membrane-bound serine protease TMPRSS2. Cancer Res 59 :
4180-4 https://www.ncbi.nlm.nih.gov/pubmed/10485450
Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T et
al. (2005). The papain-like protease from the severe acute respiratory
syndrome coronavirus is a deubiquitinating enzyme. J Virol79 : 15199-208 https://www.ncbi.nlm.nih.gov/pubmed/16306591
Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E et al. (2007).
Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus
papain-like protease. Arch Biochem Biophys 466 : 8-14
https://www.ncbi.nlm.nih.gov/pubmed/17692280
Lippi G, Lavie CJ and Sanchis-Gomar F (2020). Cardiac troponin I in
patients with coronavirus disease 2019 (COVID-19): Evidence from a
meta-analysis. Prog Cardiovasc Dishttps://www.ncbi.nlm.nih.gov/pubmed/32169400
Liu XY, Wei B, Shi HX, Shan YF and Wang C (2010). Tom70 mediates
activation of interferon regulatory factor 3 on mitochondria. Cell
Res 20 : 994-1011 https://www.ncbi.nlm.nih.gov/pubmed/20628368
Liu ZS, Cai H, Xue W, Wang M, Xia T et al. (2019). G3BP1 promotes
DNA binding and activation of cGAS. Nat Immunol 20 :
18-28 https://www.ncbi.nlm.nih.gov/pubmed/30510222
Lopez LA, Riffle AJ, Pike SL, Gardner D and Hogue BG (2008). Importance
of conserved cysteine residues in the coronavirus envelope protein.J Virol 82 : 3000-10
https://www.ncbi.nlm.nih.gov/pubmed/18184703
Lu G, Wang Q and Gao GF (2015). Bat-to-human: spike features determining
’host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond.Trends Microbiol 23 : 468-78
https://www.ncbi.nlm.nih.gov/pubmed/26206723
Lu IL, Mahindroo N, Liang PH, Peng YH, Kuo CJ et al. (2006).
Structure-based drug design and structural biology study of novel
nonpeptide inhibitors of severe acute respiratory syndrome coronavirus
main protease. J Med Chem 49 : 5154-61
https://www.ncbi.nlm.nih.gov/pubmed/16913704
Lu R, Zhao X, Li J, Niu P, Yang B et al. (2020). Genomic
characterisation and epidemiology of 2019 novel coronavirus:
implications for virus origins and receptor binding. Lancet395 : 565-574 https://www.ncbi.nlm.nih.gov/pubmed/32007145
Lu W, Zheng BJ, Xu K, Schwarz W, Du L et al. (2006). Severe acute
respiratory syndrome-associated coronavirus 3a protein forms an ion
channel and modulates virus release. Proc Natl Acad Sci U S A103 : 12540-5 https://www.ncbi.nlm.nih.gov/pubmed/16894145
Luan J, Lu Y, Jin X and Zhang L (2020). Spike protein recognition of
mammalian ACE2 predicts the host range and an optimized ACE2 for
SARS-CoV-2 infection. Biochem Biophys Res Communhttps://www.ncbi.nlm.nih.gov/pubmed/32201080
Lucas JM, True L, Hawley S, Matsumura M, Morrissey C et al.(2008). The androgen-regulated type II serine protease TMPRSS2 is
differentially expressed and mislocalized in prostate adenocarcinoma.J Pathol 215 : 118-25
https://www.ncbi.nlm.nih.gov/pubmed/18338334
Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS et al.(2014). The androgen-regulated protease TMPRSS2 activates a proteolytic
cascade involving components of the tumor microenvironment and promotes
prostate cancer metastasis. Cancer Discov 4 : 1310-25
https://www.ncbi.nlm.nih.gov/pubmed/25122198
Lukassen S, Lorenz Chua R, Trefzer T, Kahn NC, Schneider MA et
al. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily
expressed in bronchial transient secretory cells. EMBO Jhttps://www.ncbi.nlm.nih.gov/pubmed/32246845
Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD et al.(2018). Targeting the NLRP3 inflammasome in inflammatory diseases.Nat Rev Drug Discov 17 : 588-606
https://www.ncbi.nlm.nih.gov/pubmed/30026524
Masters PS (2006). The molecular biology of coronaviruses. Adv
Virus Res 66 : 193-292
https://www.ncbi.nlm.nih.gov/pubmed/16877062
Matsuyama S, Nao N, Shirato K, Kawase M, Saito S et al. (2020).
Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc
Natl Acad Sci U S A 117 : 7001-7003
https://www.ncbi.nlm.nih.gov/pubmed/32165541
Mazzon M and Mercer J (2014). Lipid interactions during virus entry and
infection. Cell Microbiol 16 : 1493-502
https://www.ncbi.nlm.nih.gov/pubmed/25131438
McBride R, van Zyl M and Fielding BC (2014). The coronavirus
nucleocapsid is a multifunctional protein. Viruses 6 :
2991-3018 https://www.ncbi.nlm.nih.gov/pubmed/25105276
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS et al.(2020). COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet 395 : 1033-1034
https://www.ncbi.nlm.nih.gov/pubmed/32192578
Mesel-Lemoine M, Millet J, Vidalain PO, Law H, Vabret A et al.(2012). A human coronavirus responsible for the common cold massively
kills dendritic cells but not monocytes. J Virol 86 :
7577-87 https://www.ncbi.nlm.nih.gov/pubmed/22553325
Meyer D, Sielaff F, Hammami M, Bottcher-Friebertshauser E, Garten Wet al. (2013). Identification of the first synthetic inhibitors
of the type II transmembrane serine protease TMPRSS2 suitable for
inhibition of influenza virus activation. Biochem J 452 :
331-43 https://www.ncbi.nlm.nih.gov/pubmed/23527573
Millet JK and Whittaker GR (2015). Host cell proteases: Critical
determinants of coronavirus tropism and pathogenesis. Virus Res202 : 120-34 https://www.ncbi.nlm.nih.gov/pubmed/25445340
Minakshi R, Padhan K, Rehman S, Hassan MI and Ahmad F (2014). The SARS
Coronavirus 3a protein binds calcium in its cytoplasmic domain.Virus Res 191 : 180-3
https://www.ncbi.nlm.nih.gov/pubmed/25116391
Minato T, Nirasawa S, Sato T, Yamaguchi T, Hoshizaki M et al.(2020). B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses
hypertension and cardiac dysfunction. Nat Commun 11 :
1058 https://www.ncbi.nlm.nih.gov/pubmed/32103002
Mizzen L, Hilton A, Cheley S and Anderson R (1985). Attenuation of
murine coronavirus infection by ammonium chloride. Virology142 : 378-88 https://www.ncbi.nlm.nih.gov/pubmed/2997991
Mores A, Matziari M, Beau F, Cuniasse P, Yiotakis A et al.(2008). Development of potent and selective phosphinic peptide
inhibitors of angiotensin-converting enzyme 2. J Med Chem51 : 2216-26 https://www.ncbi.nlm.nih.gov/pubmed/18324760
Muller C, Hardt M, Schwudke D, Neuman BW, Pleschka S et al.(2018). Inhibition of Cytosolic Phospholipase A2α
Impairs an Early Step of Coronavirus Replication in Cell Culture.J Virol 92 : https://www.ncbi.nlm.nih.gov/pubmed/29167338
Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL et al. (2015).
Structure guided design of potent and selective ponatinib-based hybrid
inhibitors for RIPK1. Cell Rep 10 : 1850-60
https://www.ncbi.nlm.nih.gov/pubmed/25801024
Nakagawa K, Narayanan K, Wada M and Makino S (2018). Inhibition of
Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus
4a Accessory Protein Facilitates Viral Translation, Leading to Efficient
Virus Replication. J Virol 92 :
https://www.ncbi.nlm.nih.gov/pubmed/30068649
Nelson PH, Eugui E, Wang CC and Allison AC (1990). Synthesis and
immunosuppressive activity of some side-chain variants of mycophenolic
acid. J Med Chem 33 : 833-8
https://www.ncbi.nlm.nih.gov/pubmed/1967654
Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM,
Regla-Nava JA et al. (2014). Severe acute respiratory syndrome
coronavirus envelope protein ion channel activity promotes virus fitness
and pathogenesis. PLoS Pathog 10 : e1004077
https://www.ncbi.nlm.nih.gov/pubmed/24788150
Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA,
Castano-Rodriguez C et al. (2015). Severe acute respiratory
syndrome coronavirus E protein transports calcium ions and activates the
NLRP3 inflammasome. Virology 485 : 330-9
https://www.ncbi.nlm.nih.gov/pubmed/26331680
Ocaranza MP, Godoy I, Jalil JE, Varas M, Collantes P et al.(2006). Enalapril attenuates downregulation of Angiotensin-converting
enzyme 2 in the late phase of ventricular dysfunction in myocardial
infarcted rat. Hypertension 48 : 572-8
https://www.ncbi.nlm.nih.gov/pubmed/16908757
Olds JL and Kabbani N (2020). Is nicotine exposure linked to
cardiopulmonary vulnerability to COVID-19 in the general population?FEBS J https://www.ncbi.nlm.nih.gov/pubmed/32189428
Oostra M, de Haan CA and Rottier PJ (2007). The 29-nucleotide deletion
present in human but not in animal severe acute respiratory syndrome
coronaviruses disrupts the functional expression of open reading frame
8. J Virol 81 : 13876-88
https://www.ncbi.nlm.nih.gov/pubmed/17928347
Oudit GY, Liu GC, Zhong J, Basu R, Chow FL et al. (2010). Human
recombinant ACE2 reduces the progression of diabetic nephropathy.Diabetes 59 : 529-38
https://www.ncbi.nlm.nih.gov/pubmed/19934006
Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C and Antonarakis SE
(1997). Cloning of the TMPRSS2 gene, which encodes a novel serine
protease with transmembrane, LDLRA, and SRCR domains and maps to
21q22.3. Genomics 44 : 309-20
https://www.ncbi.nlm.nih.gov/pubmed/9325052
Paszti-Gere E, Czimmermann E, Ujhelyi G, Balla P, Maiwald A et
al. (2016). In vitro characterization of TMPRSS2 inhibition in IPEC-J2
cells. J Enzyme Inhib Med Chem 31 : 123-129
https://www.ncbi.nlm.nih.gov/pubmed/27277342
Pervushin K, Tan E, Parthasarathy K, Lin X, Jiang FL et al.(2009). Structure and inhibition of the SARS coronavirus envelope
protein ion channel. PLoS Pathog 5 : e1000511
https://www.ncbi.nlm.nih.gov/pubmed/19593379
Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M et al.(2005). Genetic analysis of the SARS-coronavirus spike glycoprotein
functional domains involved in cell-surface expression and cell-to-cell
fusion. Virology 341 : 215-30
https://www.ncbi.nlm.nih.gov/pubmed/16099010
Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M et al.(2007). Palmitoylation of the cysteine-rich endodomain of the
SARS-coronavirus spike glycoprotein is important for spike-mediated cell
fusion. Virology 360 : 264-74
https://www.ncbi.nlm.nih.gov/pubmed/17134730
Pfefferle S, Schopf J, Kogl M, Friedel CC, Muller MA et al.(2011). The SARS-coronavirus-host interactome: identification of
cyclophilins as target for pan-coronavirus inhibitors. PLoS
Pathog 7 : e1002331
https://www.ncbi.nlm.nih.gov/pubmed/22046132
Philippe L, van den Elzen AMG, Watson MJ and Thoreen CC (2020). Global
analysis of LARP1 translation targets reveals tunable and dynamic
features of 5’ TOP motifs. Proc Natl Acad Sci U S A 117 :
5319-5328 https://www.ncbi.nlm.nih.gov/pubmed/32094190
Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P et al.(2011). Discovery and SAR of
5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic
acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2
for the treatment of cancer. J Med Chem 54 : 635-54
https://www.ncbi.nlm.nih.gov/pubmed/21174434
Pillaiyar T, Meenakshisundaram S and Manickam M (2020). Recent discovery
and development of inhibitors targeting coronaviruses. Drug Discov
Today https://www.ncbi.nlm.nih.gov/pubmed/32006468
Pinto LH, Holsinger LJ and Lamb RA (1992). Influenza virus
M2 protein has ion channel activity. Cell69 : 517-28 https://www.ncbi.nlm.nih.gov/pubmed/1374685
Putics A, Filipowicz W, Hall J, Gorbalenya AE and Ziebuhr J (2005).
ADP-ribose-1”-monophosphatase: a conserved coronavirus enzyme that is
dispensable for viral replication in tissue culture. J Virol79 : 12721-31 https://www.ncbi.nlm.nih.gov/pubmed/16188975
Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA et al. (2013).
Dipeptidyl peptidase 4 is a functional receptor for the emerging human
coronavirus-EMC. Nature 495 : 251-4
https://www.ncbi.nlm.nih.gov/pubmed/23486063
Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC et
al. (2006). Severe acute respiratory syndrome coronavirus papain-like
protease: structure of a viral deubiquitinating enzyme. Proc Natl
Acad Sci U S A 103 : 5717-22
https://www.ncbi.nlm.nih.gov/pubmed/16581910
Ratia K, Kilianski A, Baez-Santos YM, Baker SC and Mesecar A (2014).
Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating
activity of SARS-CoV papain-like protease. PLoS Pathog10 : e1004113 https://www.ncbi.nlm.nih.gov/pubmed/24854014
Roberts A, Vogel L, Guarner J, Hayes N, Murphy B et al. (2005).
Severe acute respiratory syndrome coronavirus infection of golden Syrian
hamsters. J Virol 79 : 503-11
https://www.ncbi.nlm.nih.gov/pubmed/15596843
Roberts A, Thomas WD, Guarner J, Lamirande EW, Babcock GJ et al.(2006). Therapy with a severe acute respiratory syndrome-associated
coronavirus-neutralizing human monoclonal antibody reduces disease
severity and viral burden in golden Syrian hamsters. J Infect Dis193 : 685-92 https://www.ncbi.nlm.nih.gov/pubmed/16453264
Ruch TR and Machamer CE (2012). The coronavirus E protein: assembly and
beyond. Viruses 4 : 363-82
https://www.ncbi.nlm.nih.gov/pubmed/22590676
Schlee M (2013). Master sensors of pathogenic RNA - RIG-I like
receptors. Immunobiology 218 : 1322-35
https://www.ncbi.nlm.nih.gov/pubmed/23896194
Sevajol M, Subissi L, Decroly E, Canard B and Imbert I (2014). Insights
into RNA synthesis, capping, and proofreading mechanisms of
SARS-coronavirus. Virus Res 194 : 90-9
https://www.ncbi.nlm.nih.gov/pubmed/25451065
Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R et al. (2003).
Triggering the interferon antiviral response through an IKK-related
pathway. Science 300 : 1148-51
https://www.ncbi.nlm.nih.gov/pubmed/12702806
Shi J, Wen Z, Zhong G, Yang H, Wang C et al. (2020).
Susceptibility of ferrets, cats, dogs, and different domestic animals to
SARS-coronavirus-2. bioRxivhttps://www.biorxiv.org/content/10.1101/2020.03.30.015347v1
https://www.biorxiv.org/content/10.1101/2020.03.30.015347v1
Shi Y, Wang Y, Shao C, Huang J, Gan J et al. (2020). COVID-19
infection: the perspectives on immune responses. Cell Death
Differ https://www.ncbi.nlm.nih.gov/pubmed/32205856
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL et al.(2005). Inhibitors of cathepsin L prevent severe acute respiratory
syndrome coronavirus entry. Proc Natl Acad Sci U S A102 : 11876-81 https://www.ncbi.nlm.nih.gov/pubmed/16081529
Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schafer A et al.(2013). Release of severe acute respiratory syndrome coronavirus nuclear
import block enhances host transcription in human lung cells. J
Virol 87 : 3885-902
https://www.ncbi.nlm.nih.gov/pubmed/23365422
Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML et al.(2019). Severe acute respiratory syndrome coronavirus ORF3a protein
activates the NLRP3 inflammasome by promoting TRAF3-dependent
ubiquitination of ASC. FASEB J 33 : 8865-8877
https://www.ncbi.nlm.nih.gov/pubmed/31034780
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J et al.(2003). Unique and conserved features of genome and proteome of
SARS-coronavirus, an early split-off from the coronavirus group 2
lineage. J Mol Biol 331 : 991-1004
https://www.ncbi.nlm.nih.gov/pubmed/12927536
Song Z, Xu Y, Bao L, Zhang L, Yu P et al. (2019). From SARS to
MERS, Thrusting Coronaviruses into the Spotlight. Viruses11 : https://www.ncbi.nlm.nih.gov/pubmed/30646565
Srinivasan S, Cui H, Gao Z, Liu M, Lu S et al. (2020). Structural
Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional
Regions of Viral Proteins. Viruses 12 :
https://www.ncbi.nlm.nih.gov/pubmed/32218151
Sriramula S, Pedersen KB, Xia H and Lazartigues E (2017). Determining
the Enzymatic Activity of Angiotensin-Converting Enzyme 2 (ACE2) in
Brain Tissue and Cerebrospinal Fluid Using a Quenched Fluorescent
Substrate. Methods Mol Biol 1527 : 117-126
https://www.ncbi.nlm.nih.gov/pubmed/28116711
Surya W, Li Y, Verdia-Baguena C, Aguilella VM and Torres J (2015). MERS
coronavirus envelope protein has a single transmembrane domain that
forms pentameric ion channels. Virus Res 201 : 61-6
https://www.ncbi.nlm.nih.gov/pubmed/25733052
Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK et al.(2005). DHHC9 and GCP16 constitute a human protein fatty acyltransferase
with specificity for H- and N-Ras. J Biol Chem 280 :
31141-8 https://www.ncbi.nlm.nih.gov/pubmed/16000296
Tanabe LM and List K (2017). The role of type II transmembrane serine
protease-mediated signaling in cancer. FEBS J 284 :
1421-1436 https://www.ncbi.nlm.nih.gov/pubmed/27870503
Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H et al. (2014).
TMPRSS2 is a host factor that is essential for pneumotropism and
pathogenicity of H7N9 influenza A virus in mice. J Virol88 : 4744-51 https://www.ncbi.nlm.nih.gov/pubmed/24522916
Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B et al. (2003).
Mechanisms and enzymes involved in SARS coronavirus genome expression.J Gen Virol 84 : 2305-2315
https://www.ncbi.nlm.nih.gov/pubmed/12917450
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G et al. (2000).
A human homolog of angiotensin-converting enzyme. Cloning and functional
expression as a captopril-insensitive carboxypeptidase. J Biol
Chem 275 : 33238-43
https://www.ncbi.nlm.nih.gov/pubmed/10924499
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R et al.(2005). Recurrent fusion of TMPRSS2 and ETS transcription factor
genes in prostate cancer. Science 310 : 644-8
https://www.ncbi.nlm.nih.gov/pubmed/16254181
Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX et al.(2007). Conductance and amantadine binding of a pore formed by a
lysine-flanked transmembrane domain of SARS coronavirus envelope
protein. Protein Sci 16 : 2065-71
https://www.ncbi.nlm.nih.gov/pubmed/17766393
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P et al.(2015). Proteomics. Tissue-based map of the human proteome.Science 347 : 1260419
https://www.ncbi.nlm.nih.gov/pubmed/25613900
Vanle B, Olcott W, Jimenez J, Bashmi L, Danovitch I et al.(2018). NMDA antagonists for treating the non-motor symptoms in
Parkinson’s disease. Transl Psychiatry 8 : 117
https://www.ncbi.nlm.nih.gov/pubmed/29907742
Vardavas CI and Nikitara K (2020). COVID-19 and smoking: A systematic
review of the evidence. Tob Induc Dis 18 : 20
https://www.ncbi.nlm.nih.gov/pubmed/32206052
Vickers C, Hales P, Kaushik V, Dick L, Gavin J et al. (2002).
Hydrolysis of biological peptides by human angiotensin-converting
enzyme-related carboxypeptidase. J Biol Chem 277 :
14838-43 https://www.ncbi.nlm.nih.gov/pubmed/11815627
Viruses CSGotICoTo (2020). The species Severe acute respiratory
syndrome-related coronavirus: classifying 2019-nCoV and naming it
SARS-CoV-2. Nat Microbiol 5 : 536-544
https://www.ncbi.nlm.nih.gov/pubmed/32123347
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT et al.(2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein. Cell https://www.ncbi.nlm.nih.gov/pubmed/32155444
Wang C, Takeuchi K, Pinto LH and Lamb RA (1993). Ion channel activity of
influenza A virus M2 protein: characterization of the amantadine block.J Virol 67 : 5585-94
https://www.ncbi.nlm.nih.gov/pubmed/7688826
Wang C, Chen T, Zhang J, Yang M, Li N et al. (2009). The E3
ubiquitin ligase Nrdp1 ’preferentially’ promotes TLR-mediated production
of type I interferon. Nat Immunol 10 : 744-52
https://www.ncbi.nlm.nih.gov/pubmed/19483718
Wilson L, McKinlay C, Gage P and Ewart G (2004). SARS coronavirus E
protein forms cation-selective ion channels. Virology330 : 322-31 https://www.ncbi.nlm.nih.gov/pubmed/15527857
Wilson S, Greer B, Hooper J, Zijlstra A, Walker B et al. (2005).
The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in
prostate cancer cells. Biochem J 388 : 967-72
https://www.ncbi.nlm.nih.gov/pubmed/15537383
Wiser C, Kim B and Ascano M (2019). G3BP1 enhances cytoplasmic DNA
pattern recognition. Nat Immunol 20 : 5-7
https://www.ncbi.nlm.nih.gov/pubmed/30538338
Wittine K, Stipkovic Babic M, Makuc D, Plavec J, Kraljevic Pavelic Set al. (2012). Novel 1,2,4-triazole and imidazole derivatives of
L-ascorbic and imino-ascorbic acid: synthesis, anti-HCV and antitumor
activity evaluations. Bioorg Med Chem 20 : 3675-85
https://www.ncbi.nlm.nih.gov/pubmed/22555152
Wong LY, Lui PY and Jin DY (2016). A molecular arms race between host
innate antiviral response and emerging human coronaviruses. Virol
Sin 31 : 12-23 https://www.ncbi.nlm.nih.gov/pubmed/26786772
World Health Organization (2020). WHO Technical Guidance. Journalhttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL et al.(2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation. Science 367 : 1260-1263
https://www.ncbi.nlm.nih.gov/pubmed/32075877
Xia S, Liu M, Wang C, Xu W, Lan Q et al. (2020). Inhibition of
SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent
pan-coronavirus fusion inhibitor targeting its spike protein that
harbors a high capacity to mediate membrane fusion. Cell Res30 : 343-355 https://www.ncbi.nlm.nih.gov/pubmed/32231345
Xiao F and Burns KD (2017). Measurement of Angiotensin Converting Enzyme
2 Activity in Biological Fluid (ACE2). Methods Mol Biol1527 : 101-115 https://www.ncbi.nlm.nih.gov/pubmed/28116710
Xu J, Sriramula S, Xia H, Moreno-Walton L, Culicchia F et al.(2017). Clinical Relevance and Role of Neuronal AT1 Receptors in
ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension. Circ
Res 121 : 43-55 https://www.ncbi.nlm.nih.gov/pubmed/28512108
Xu Z, Shi L, Wang Y, Zhang J, Huang L et al. (2020). Pathological
findings of COVID-19 associated with acute respiratory distress
syndrome. Lancet Respir Med 8 : 420-422
https://www.ncbi.nlm.nih.gov/pubmed/32085846
Yager EJ and Konan KV (2019). Sphingolipids as Potential Therapeutic
Targets against Enveloped Human RNA Viruses. Viruses 11 :
https://www.ncbi.nlm.nih.gov/pubmed/31581580
Yan R, Zhang Y, Li Y, Xia L, Guo Y et al. (2020). Structural
basis for the recognition of SARS-CoV-2 by full-length human ACE2.Science 367 : 1444-1448
https://www.ncbi.nlm.nih.gov/pubmed/32132184
Yang P, Kuc RE, Brame AL, Dyson A, Singer M et al. (2017).
[Pyr1]Apelin-131-12 Is a
Biologically Active ACE2 Metabolite of the Endogenous Cardiovascular
Peptide [Pyr1]Apelin-13. Front Neurosci11 : 92 https://www.ncbi.nlm.nih.gov/pubmed/28293165
Yang S, Chen SJ, Hsu MF, Wu JD, Tseng CT et al. (2006).
Synthesis, crystal structure, structure-activity relationships, and
antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.J Med Chem 49 : 4971-80
https://www.ncbi.nlm.nih.gov/pubmed/16884309
Yang W, Ru Y, Ren J, Bai J, Wei J et al. (2019). G3BP1 inhibits
RNA virus replication by positively regulating RIG-I-mediated cellular
antiviral response. Cell Death Dis 10 : 946
https://www.ncbi.nlm.nih.gov/pubmed/31827077
Yang X, Chen X, Bian G, Tu J, Xing Y et al. (2014). Proteolytic
processing, deubiquitinase and interferon antagonist activities of
Middle East respiratory syndrome coronavirus papain-like protease.J Gen Virol 95 : 614-626
https://www.ncbi.nlm.nih.gov/pubmed/24362959
Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH et
al. (1992). Human aminopeptidase N is a receptor for human coronavirus
229E. Nature 357 : 420-2
https://www.ncbi.nlm.nih.gov/pubmed/1350662
Yeo C, Kaushal S and Yeo D (2020). Enteric involvement of coronaviruses:
is faecal-oral transmission of SARS-CoV-2 possible? Lancet
Gastroenterol Hepatol 5 : 335-337
https://www.ncbi.nlm.nih.gov/pubmed/32087098
Zhang L, Lin D, Kusov Y, Nian Y, Ma Q et al. (2020). α-Ketoamides
as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication:
Structure-Based Design, Synthesis, and Activity Assessment. J Med
Chem https://www.ncbi.nlm.nih.gov/pubmed/32045235
Zhang R, Wang K, Lv W, Yu W, Xie S et al. (2014). The ORF4a
protein of human coronavirus 229E functions as a viroporin that
regulates viral production. Biochim Biophys Acta 1838 :
1088-95 https://www.ncbi.nlm.nih.gov/pubmed/23906728
Zhao H, Zhu C, Qin C, Tao T, Li J et al. (2013). Fenofibrate
down-regulates the expressions of androgen receptor (AR) and AR target
genes and induces oxidative stress in the prostate cancer cell line
LNCaP. Biochem Biophys Res Commun 432 : 320-5
https://www.ncbi.nlm.nih.gov/pubmed/23399562
Zhao J, Yang Y, Huang H, Li D, Gu D et al. (2020). Relationship
between the ABO Blood Group and the COVID-19 Susceptibility.medRxivhttps://www.medrxiv.org/content/10.1101/2020.03.11.20031096v2
Zhao Q, Li S, Xue F, Zou Y, Chen C et al. (2008). Structure of
the main protease from a global infectious human coronavirus, HCoV-HKU1.J Virol 82 : 8647-55
https://www.ncbi.nlm.nih.gov/pubmed/18562531
Zhong J, Basu R, Guo D, Chow FL, Byrns S et al. (2010).
Angiotensin-converting enzyme 2 suppresses pathological hypertrophy,
myocardial fibrosis, and cardiac dysfunction. Circulation122 : 717-28, 18 p following 728
https://www.ncbi.nlm.nih.gov/pubmed/20679547
Zhou P, Fan H, Lan T, Yang XL, Shi WF et al. (2018). Fatal swine
acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat
origin. Nature 556 : 255-258
https://www.ncbi.nlm.nih.gov/pubmed/29618817
Zhou Z, Sun Y, Yan X, Tang X, Li Q et al. (2020). Swine acute
diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-beta
production via blocking IPS-1 and RIG-I. Virus Res 278 :
197843 https://www.ncbi.nlm.nih.gov/pubmed/31884203
Zhu N, Zhang D, Wang W, Li X, Yang B et al. (2020). A Novel
Coronavirus from Patients with Pneumonia in China, 2019. N Engl J
Med 382 : 727-733 https://www.ncbi.nlm.nih.gov/pubmed/31978945
Ziebuhr J, Schelle B, Karl N, Minskaia E, Bayer S et al. (2007).
Human coronavirus 229E papain-like proteases have overlapping
specificities but distinct functions in viral replication. J
Virol 81 : 3922-32 https://www.ncbi.nlm.nih.gov/pubmed/17251282
Zisman LS, Keller RS, Weaver B, Lin Q, Speth R et al. (2003).
Increased angiotensin-(1-7)-forming activity in failing human heart
ventricles: evidence for upregulation of the angiotensin-converting
enzyme Homologue ACE2. Circulation 108 : 1707-12
https://www.ncbi.nlm.nih.gov/pubmed/14504186
Zumla A, Chan JF, Azhar EI, Hui DS and Yuen KY (2016). Coronaviruses -
drug discovery and therapeutic options. Nat Rev Drug Discov15 : 327-47 https://www.ncbi.nlm.nih.gov/pubmed/26868298