Nature Reviews Drug Discovery
de Castro-Miro M, Tonda R, Escudero-Ferruz P, Andres R, Mayor-Lorenzo Aet al. (2016). Novel Candidate Genes and a Wide Spectrum of Structural and Point Mutations Responsible for Inherited Retinal Dystrophies Revealed by Exome Sequencing. PLoS One 11 : e0168966 https://www.ncbi.nlm.nih.gov/pubmed/28005958
de Haan CA and Rottier PJ (2005). Molecular interactions in the assembly of coronaviruses. Adv Virus Res 64 : 165-230 https://www.ncbi.nlm.nih.gov/pubmed/16139595
de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T et al.(2013). The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLoS One 8 : e69127 https://www.ncbi.nlm.nih.gov/pubmed/23844250
de Wit E, van Doremalen N, Falzarano D and Munster VJ (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14 : 523-34 https://www.ncbi.nlm.nih.gov/pubmed/27344959
de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A et al.(2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A 117 : 6771-6776 https://www.ncbi.nlm.nih.gov/pubmed/32054787
Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B et al.(2008). Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-methyltransferase activity. J Virol82 : 8071-84 https://www.ncbi.nlm.nih.gov/pubmed/18417574
Delanghe JR, Speeckaert MM and De Buyzere ML (2020). The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin Chim Acta 505 : 192-193 https://www.ncbi.nlm.nih.gov/pubmed/32220422
Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L et al. (2019). Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System?Viruses 12 : https://www.ncbi.nlm.nih.gov/pubmed/31861926
Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C et al. (2010). Peroxisomes are signaling platforms for antiviral innate immunity.Cell 141 : 668-81 https://www.ncbi.nlm.nih.gov/pubmed/20451243
Dong S, Sun J, Mao Z, Wang L, Lu YL et al. (2020). A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV). J Med Virolhttps://www.ncbi.nlm.nih.gov/pubmed/32181901
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M et al.(2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res87 : E1-9 https://www.ncbi.nlm.nih.gov/pubmed/10969042
Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P et al.(2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene program.Immunity 17 : 251-63 https://www.ncbi.nlm.nih.gov/pubmed/12354379
Eckerle LD, Becker MM, Halpin RA, Li K, Venter E et al. (2010). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 6 : e1000896 https://www.ncbi.nlm.nih.gov/pubmed/20463816
Elfiky AA (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci 117592 https://www.ncbi.nlm.nih.gov/pubmed/32222463
Esler M and Esler D (2020). Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J Hypertens38 : 781-782 https://www.ncbi.nlm.nih.gov/pubmed/32195824
Ewart GD, Mills K, Cox GB and Gage PW (2002). Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J 31 : 26-35 https://www.ncbi.nlm.nih.gov/pubmed/12046895
Ewart GD, Nasr N, Naif H, Cox GB, Cunningham AL et al. (2004). Potential new anti-human immunodeficiency virus type 1 compounds depress virus replication in cultured human macrophages. Antimicrob Agents Chemother 48 : 2325-30 https://www.ncbi.nlm.nih.gov/pubmed/15155246
Fairweather SJ, Broer A, O’Mara ML and Broer S (2012). Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1. Biochem J 446 : 135-48 https://www.ncbi.nlm.nih.gov/pubmed/22677001
Fan H, Ooi A, Tan YW, Wang S, Fang S et al. (2005). The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties.Structure 13 : 1859-68 https://www.ncbi.nlm.nih.gov/pubmed/16338414
Fehr AR and Perlman S (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282 : 1-23 https://www.ncbi.nlm.nih.gov/pubmed/25720466
Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB et al. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111 : 2605-10 https://www.ncbi.nlm.nih.gov/pubmed/15897343
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E et al.(2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4 : 491-6 https://www.ncbi.nlm.nih.gov/pubmed/12692549
Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y et al.(2015). La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem 290 : 15996-6020 https://www.ncbi.nlm.nih.gov/pubmed/25940091
Fung SY, Yuen KS, Ye ZW, Chan CP and Jin DY (2020). A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect 9 : 558-570 https://www.ncbi.nlm.nih.gov/pubmed/32172672
Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM et al.(2012). Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol 196 : 213-21 https://www.ncbi.nlm.nih.gov/pubmed/22249292
Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X et al. (2008). Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology 381 : 215-21 https://www.ncbi.nlm.nih.gov/pubmed/18814896
Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M et al. (2007). Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus.Biochemistry 46 : 8744-52 https://www.ncbi.nlm.nih.gov/pubmed/17605471
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP and Gotte M (2020). The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem https://www.ncbi.nlm.nih.gov/pubmed/32094225
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K et al. (2020). A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug Repurposing. bioRxivhttps://www.biorxiv.org/content/10.1101/2020.03.22.002386v3 https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3
Gotz C and Montenarh M (2017). Protein kinase CK2 in development and differentiation. Biomed Rep 6 : 127-133 https://www.ncbi.nlm.nih.gov/pubmed/28357063
Goubau D, Deddouche S and Reis e Sousa C (2013). Cytosolic sensing of viruses. Immunity 38 : 855-69 https://www.ncbi.nlm.nih.gov/pubmed/23706667
Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T et al. (2014). Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’-diphosphates. Nature 514 : 372-375 https://www.ncbi.nlm.nih.gov/pubmed/25119032
Guo L, Fare CM and Shorter J (2019). Therapeutic Dissolution of Aberrant Phases by Nuclear-Import Receptors. Trends Cell Biol 29 : 308-322 https://www.ncbi.nlm.nih.gov/pubmed/30660504
Hackbart M, Deng X and Baker SC (2020). Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors.Proc Natl Acad Sci U S A 117 : 8094-8103 https://www.ncbi.nlm.nih.gov/pubmed/32198201
Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K et al.(2008). Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci U S A 105 : 7809-14 https://www.ncbi.nlm.nih.gov/pubmed/18490652
Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KMet al. (2004). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78 : 13600-12 https://www.ncbi.nlm.nih.gov/pubmed/15564471
Hatesuer B, Bertram S, Mehnert N, Bahgat MM, Nelson PS et al.(2013). Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog 9 : e1003774 https://www.ncbi.nlm.nih.gov/pubmed/24348248
Heaton NS and Randall G (2011). Multifaceted roles for lipids in viral infection. Trends Microbiol 19 : 368-75 https://www.ncbi.nlm.nih.gov/pubmed/21530270
Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z et al. (2007). Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis. J Hepatol 47 : 387-95 https://www.ncbi.nlm.nih.gov/pubmed/17532087
Hernandez Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y et al. (2008). Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51 : 1312-7 https://www.ncbi.nlm.nih.gov/pubmed/18391097
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cellhttps://www.ncbi.nlm.nih.gov/pubmed/32142651
Hogan PG, Chen L, Nardone J and Rao A (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17 : 2205-32 https://www.ncbi.nlm.nih.gov/pubmed/12975316
Holsinger LJ, Nichani D, Pinto LH and Lamb RA (1994). Influenza A virus M2 ion channel protein: a structure-function analysis. J Virol68 : 1551-63 https://www.ncbi.nlm.nih.gov/pubmed/7508997
Hong S, Freeberg MA, Han T, Kamath A, Yao Y et al. (2017). LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. Elife 6 : https://www.ncbi.nlm.nih.gov/pubmed/28650797
Huang L, Sexton DJ, Skogerson K, Devlin M, Smith R et al. (2003). Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem 278 : 15532-40 https://www.ncbi.nlm.nih.gov/pubmed/12606557
Imai Y, Kuba K, Rao S, Huan Y, Guo F et al. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure.Nature 436 : 112-6 https://www.ncbi.nlm.nih.gov/pubmed/16001071
Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K et al. (2007). Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol 81 : 8722-9 https://www.ncbi.nlm.nih.gov/pubmed/17522231
Janeczko M, Orzeszko A, Kazimierczuk Z, Szyszka R and Baier A (2012). CK2alpha and CK2alpha’ subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives.Eur J Med Chem 47 : 345-50 https://www.ncbi.nlm.nih.gov/pubmed/22115617
Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J et al.(2010). Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121 : 1818-27 https://www.ncbi.nlm.nih.gov/pubmed/20385929
Jeon S, Ko M, Lee J, Choi I, Byun SY et al. (2020). Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. bioRxivhttps://www.biorxiv.org/content/10.1101/2020.03.20.999730v3 https://www.biorxiv.org/content/10.1101/2020.03.20.999730v3
Jin Z, Du X, Xu Y, Deng Y, Liu M et al. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature https://www.ncbi.nlm.nih.gov/pubmed/32272481
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441 : 101-5 https://www.ncbi.nlm.nih.gov/pubmed/16625202
Kawase M, Shirato K, van der Hoek L, Taguchi F and Matsuyama S (2012). Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 86 : 6537-45 https://www.ncbi.nlm.nih.gov/pubmed/22496216
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J et al. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 21 : 234 https://www.ncbi.nlm.nih.gov/pubmed/28877748
Kim SS, Sze L, Liu C and Lam KP (2019). The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-beta response. J Biol Chem 294 : 6430-6438 https://www.ncbi.nlm.nih.gov/pubmed/30804210
Kim TS, Heinlein C, Hackman RC and Nelson PS (2006). Phenotypic analysis of mice lacking the Tmprss2 -encoded protease. Mol Cell Biol 26 : 965-75 https://www.ncbi.nlm.nih.gov/pubmed/16428450
Kindler E, Thiel V and Weber F (2016). Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res 96 : 219-243 https://www.ncbi.nlm.nih.gov/pubmed/27712625
Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Yet al. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6 : e226 https://www.ncbi.nlm.nih.gov/pubmed/18798692
Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA and Palese P (2007). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81 : 548-57 https://www.ncbi.nlm.nih.gov/pubmed/17108024
Kosyna FK and Depping R (2018). Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 7 : https://www.ncbi.nlm.nih.gov/pubmed/30469340
Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE et al.(2008). A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J 22 : 2880-7 https://www.ncbi.nlm.nih.gov/pubmed/18424768
Krzystyniak K and Dupuy JM (1984). Entry of mouse hepatitis virus 3 into cells. J Gen Virol 65 ( Pt 1) : 227-31 https://www.ncbi.nlm.nih.gov/pubmed/6319570
Kuba K, Imai Y, Rao S, Gao H, Guo F et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11 : 875-9 https://www.ncbi.nlm.nih.gov/pubmed/16007097
Kuba K, Imai Y, Ohto-Nakanishi T and Penninger JM (2010). Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther128 : 119-28 https://www.ncbi.nlm.nih.gov/pubmed/20599443
Kulemina LV and Ostrov DA (2011). Prediction of off-target effects on angiotensin-converting enzyme 2. J Biomol Screen 16 : 878-85 https://www.ncbi.nlm.nih.gov/pubmed/21859683
Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET et al.(2005). Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 280 : 30113-9 https://www.ncbi.nlm.nih.gov/pubmed/15983030
Lei C, Fu W, Qian K, Li T, Zhang S et al. (2020). Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig.bioRxivhttps://www.biorxiv.org/content/10.1101/2020.02.01.929976v2 https://www.biorxiv.org/content/10.1101/2020.02.01.929976v2
Lei J, Kusov Y and Hilgenfeld R (2018). Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein.Antiviral Res 149 : 58-74 https://www.ncbi.nlm.nih.gov/pubmed/29128390
Lemmon MA (2008). Membrane recognition by phospholipid-binding domains.Nat Rev Mol Cell Biol 9 : 99-111 https://www.ncbi.nlm.nih.gov/pubmed/18216767
Letko M, Marzi A and Munster V (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5 : 562-569 https://www.ncbi.nlm.nih.gov/pubmed/32094589
Lew RA, Warner FJ, Hanchapola I, Yarski MA, Ramchand J et al.(2008). Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol93 : 685-93 https://www.ncbi.nlm.nih.gov/pubmed/18223027
Li B, Yang J, Zhao F, Zhi L, Wang X et al. (2020). Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China.Clin Res Cardiol https://www.ncbi.nlm.nih.gov/pubmed/32161990
Li F, Li W, Farzan M and Harrison SC (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor.Science 309 : 1864-8 https://www.ncbi.nlm.nih.gov/pubmed/16166518
Li G and De Clercq E (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19 : 149-150 https://www.ncbi.nlm.nih.gov/pubmed/32127666
Li R, Qiao S and Zhang G (2020). Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J Infect80 : 469-496 https://www.ncbi.nlm.nih.gov/pubmed/32092392
Li TC, Chan MC and Lee N (2015). Clinical Implications of Antiviral Resistance in Influenza. Viruses 7 : 4929-44 https://www.ncbi.nlm.nih.gov/pubmed/26389935
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426 : 450-4 https://www.ncbi.nlm.nih.gov/pubmed/14647384
Lin B, Ferguson C, White JT, Wang S, Vessella R et al. (1999). Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59 : 4180-4 https://www.ncbi.nlm.nih.gov/pubmed/10485450
Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T et al. (2005). The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol79 : 15199-208 https://www.ncbi.nlm.nih.gov/pubmed/16306591
Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E et al. (2007). Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys 466 : 8-14 https://www.ncbi.nlm.nih.gov/pubmed/17692280
Lippi G, Lavie CJ and Sanchis-Gomar F (2020). Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dishttps://www.ncbi.nlm.nih.gov/pubmed/32169400
Liu XY, Wei B, Shi HX, Shan YF and Wang C (2010). Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res 20 : 994-1011 https://www.ncbi.nlm.nih.gov/pubmed/20628368
Liu ZS, Cai H, Xue W, Wang M, Xia T et al. (2019). G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol 20 : 18-28 https://www.ncbi.nlm.nih.gov/pubmed/30510222
Lopez LA, Riffle AJ, Pike SL, Gardner D and Hogue BG (2008). Importance of conserved cysteine residues in the coronavirus envelope protein.J Virol 82 : 3000-10 https://www.ncbi.nlm.nih.gov/pubmed/18184703
Lu G, Wang Q and Gao GF (2015). Bat-to-human: spike features determining ’host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond.Trends Microbiol 23 : 468-78 https://www.ncbi.nlm.nih.gov/pubmed/26206723
Lu IL, Mahindroo N, Liang PH, Peng YH, Kuo CJ et al. (2006). Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J Med Chem 49 : 5154-61 https://www.ncbi.nlm.nih.gov/pubmed/16913704
Lu R, Zhao X, Li J, Niu P, Yang B et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet395 : 565-574 https://www.ncbi.nlm.nih.gov/pubmed/32007145
Lu W, Zheng BJ, Xu K, Schwarz W, Du L et al. (2006). Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A103 : 12540-5 https://www.ncbi.nlm.nih.gov/pubmed/16894145
Luan J, Lu Y, Jin X and Zhang L (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys Res Communhttps://www.ncbi.nlm.nih.gov/pubmed/32201080
Lucas JM, True L, Hawley S, Matsumura M, Morrissey C et al.(2008). The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma.J Pathol 215 : 118-25 https://www.ncbi.nlm.nih.gov/pubmed/18338334
Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS et al.(2014). The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 4 : 1310-25 https://www.ncbi.nlm.nih.gov/pubmed/25122198
Lukassen S, Lorenz Chua R, Trefzer T, Kahn NC, Schneider MA et al. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO Jhttps://www.ncbi.nlm.nih.gov/pubmed/32246845
Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD et al.(2018). Targeting the NLRP3 inflammasome in inflammatory diseases.Nat Rev Drug Discov 17 : 588-606 https://www.ncbi.nlm.nih.gov/pubmed/30026524
Masters PS (2006). The molecular biology of coronaviruses. Adv Virus Res 66 : 193-292 https://www.ncbi.nlm.nih.gov/pubmed/16877062
Matsuyama S, Nao N, Shirato K, Kawase M, Saito S et al. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 117 : 7001-7003 https://www.ncbi.nlm.nih.gov/pubmed/32165541
Mazzon M and Mercer J (2014). Lipid interactions during virus entry and infection. Cell Microbiol 16 : 1493-502 https://www.ncbi.nlm.nih.gov/pubmed/25131438
McBride R, van Zyl M and Fielding BC (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses 6 : 2991-3018 https://www.ncbi.nlm.nih.gov/pubmed/25105276
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS et al.(2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395 : 1033-1034 https://www.ncbi.nlm.nih.gov/pubmed/32192578
Mesel-Lemoine M, Millet J, Vidalain PO, Law H, Vabret A et al.(2012). A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J Virol 86 : 7577-87 https://www.ncbi.nlm.nih.gov/pubmed/22553325
Meyer D, Sielaff F, Hammami M, Bottcher-Friebertshauser E, Garten Wet al. (2013). Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem J 452 : 331-43 https://www.ncbi.nlm.nih.gov/pubmed/23527573
Millet JK and Whittaker GR (2015). Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res202 : 120-34 https://www.ncbi.nlm.nih.gov/pubmed/25445340
Minakshi R, Padhan K, Rehman S, Hassan MI and Ahmad F (2014). The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.Virus Res 191 : 180-3 https://www.ncbi.nlm.nih.gov/pubmed/25116391
Minato T, Nirasawa S, Sato T, Yamaguchi T, Hoshizaki M et al.(2020). B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nat Commun 11 : 1058 https://www.ncbi.nlm.nih.gov/pubmed/32103002
Mizzen L, Hilton A, Cheley S and Anderson R (1985). Attenuation of murine coronavirus infection by ammonium chloride. Virology142 : 378-88 https://www.ncbi.nlm.nih.gov/pubmed/2997991
Mores A, Matziari M, Beau F, Cuniasse P, Yiotakis A et al.(2008). Development of potent and selective phosphinic peptide inhibitors of angiotensin-converting enzyme 2. J Med Chem51 : 2216-26 https://www.ncbi.nlm.nih.gov/pubmed/18324760
Muller C, Hardt M, Schwudke D, Neuman BW, Pleschka S et al.(2018). Inhibition of Cytosolic Phospholipase A2α Impairs an Early Step of Coronavirus Replication in Cell Culture.J Virol 92 : https://www.ncbi.nlm.nih.gov/pubmed/29167338
Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL et al. (2015). Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep 10 : 1850-60 https://www.ncbi.nlm.nih.gov/pubmed/25801024
Nakagawa K, Narayanan K, Wada M and Makino S (2018). Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication. J Virol 92 : https://www.ncbi.nlm.nih.gov/pubmed/30068649
Nelson PH, Eugui E, Wang CC and Allison AC (1990). Synthesis and immunosuppressive activity of some side-chain variants of mycophenolic acid. J Med Chem 33 : 833-8 https://www.ncbi.nlm.nih.gov/pubmed/1967654
Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA et al. (2014). Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10 : e1004077 https://www.ncbi.nlm.nih.gov/pubmed/24788150
Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Castano-Rodriguez C et al. (2015). Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485 : 330-9 https://www.ncbi.nlm.nih.gov/pubmed/26331680
Ocaranza MP, Godoy I, Jalil JE, Varas M, Collantes P et al.(2006). Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension 48 : 572-8 https://www.ncbi.nlm.nih.gov/pubmed/16908757
Olds JL and Kabbani N (2020). Is nicotine exposure linked to cardiopulmonary vulnerability to COVID-19 in the general population?FEBS J https://www.ncbi.nlm.nih.gov/pubmed/32189428
Oostra M, de Haan CA and Rottier PJ (2007). The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J Virol 81 : 13876-88 https://www.ncbi.nlm.nih.gov/pubmed/17928347
Oudit GY, Liu GC, Zhong J, Basu R, Chow FL et al. (2010). Human recombinant ACE2 reduces the progression of diabetic nephropathy.Diabetes 59 : 529-38 https://www.ncbi.nlm.nih.gov/pubmed/19934006
Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C and Antonarakis SE (1997). Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44 : 309-20 https://www.ncbi.nlm.nih.gov/pubmed/9325052
Paszti-Gere E, Czimmermann E, Ujhelyi G, Balla P, Maiwald A et al. (2016). In vitro characterization of TMPRSS2 inhibition in IPEC-J2 cells. J Enzyme Inhib Med Chem 31 : 123-129 https://www.ncbi.nlm.nih.gov/pubmed/27277342
Pervushin K, Tan E, Parthasarathy K, Lin X, Jiang FL et al.(2009). Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog 5 : e1000511 https://www.ncbi.nlm.nih.gov/pubmed/19593379
Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M et al.(2005). Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion. Virology 341 : 215-30 https://www.ncbi.nlm.nih.gov/pubmed/16099010
Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M et al.(2007). Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 360 : 264-74 https://www.ncbi.nlm.nih.gov/pubmed/17134730
Pfefferle S, Schopf J, Kogl M, Friedel CC, Muller MA et al.(2011). The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 7 : e1002331 https://www.ncbi.nlm.nih.gov/pubmed/22046132
Philippe L, van den Elzen AMG, Watson MJ and Thoreen CC (2020). Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5’ TOP motifs. Proc Natl Acad Sci U S A 117 : 5319-5328 https://www.ncbi.nlm.nih.gov/pubmed/32094190
Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P et al.(2011). Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem 54 : 635-54 https://www.ncbi.nlm.nih.gov/pubmed/21174434
Pillaiyar T, Meenakshisundaram S and Manickam M (2020). Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today https://www.ncbi.nlm.nih.gov/pubmed/32006468
Pinto LH, Holsinger LJ and Lamb RA (1992). Influenza virus M2 protein has ion channel activity. Cell69 : 517-28 https://www.ncbi.nlm.nih.gov/pubmed/1374685
Putics A, Filipowicz W, Hall J, Gorbalenya AE and Ziebuhr J (2005). ADP-ribose-1”-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol79 : 12721-31 https://www.ncbi.nlm.nih.gov/pubmed/16188975
Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA et al. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495 : 251-4 https://www.ncbi.nlm.nih.gov/pubmed/23486063
Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC et al. (2006). Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A 103 : 5717-22 https://www.ncbi.nlm.nih.gov/pubmed/16581910
Ratia K, Kilianski A, Baez-Santos YM, Baker SC and Mesecar A (2014). Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog10 : e1004113 https://www.ncbi.nlm.nih.gov/pubmed/24854014
Roberts A, Vogel L, Guarner J, Hayes N, Murphy B et al. (2005). Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 79 : 503-11 https://www.ncbi.nlm.nih.gov/pubmed/15596843
Roberts A, Thomas WD, Guarner J, Lamirande EW, Babcock GJ et al.(2006). Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J Infect Dis193 : 685-92 https://www.ncbi.nlm.nih.gov/pubmed/16453264
Ruch TR and Machamer CE (2012). The coronavirus E protein: assembly and beyond. Viruses 4 : 363-82 https://www.ncbi.nlm.nih.gov/pubmed/22590676
Schlee M (2013). Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 218 : 1322-35 https://www.ncbi.nlm.nih.gov/pubmed/23896194
Sevajol M, Subissi L, Decroly E, Canard B and Imbert I (2014). Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 194 : 90-9 https://www.ncbi.nlm.nih.gov/pubmed/25451065
Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R et al. (2003). Triggering the interferon antiviral response through an IKK-related pathway. Science 300 : 1148-51 https://www.ncbi.nlm.nih.gov/pubmed/12702806
Shi J, Wen Z, Zhong G, Yang H, Wang C et al. (2020). Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2. bioRxivhttps://www.biorxiv.org/content/10.1101/2020.03.30.015347v1 https://www.biorxiv.org/content/10.1101/2020.03.30.015347v1
Shi Y, Wang Y, Shao C, Huang J, Gan J et al. (2020). COVID-19 infection: the perspectives on immune responses. Cell Death Differ https://www.ncbi.nlm.nih.gov/pubmed/32205856
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL et al.(2005). Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A102 : 11876-81 https://www.ncbi.nlm.nih.gov/pubmed/16081529
Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schafer A et al.(2013). Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol 87 : 3885-902 https://www.ncbi.nlm.nih.gov/pubmed/23365422
Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML et al.(2019). Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 33 : 8865-8877 https://www.ncbi.nlm.nih.gov/pubmed/31034780
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J et al.(2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331 : 991-1004 https://www.ncbi.nlm.nih.gov/pubmed/12927536
Song Z, Xu Y, Bao L, Zhang L, Yu P et al. (2019). From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses11 : https://www.ncbi.nlm.nih.gov/pubmed/30646565
Srinivasan S, Cui H, Gao Z, Liu M, Lu S et al. (2020). Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses 12 : https://www.ncbi.nlm.nih.gov/pubmed/32218151
Sriramula S, Pedersen KB, Xia H and Lazartigues E (2017). Determining the Enzymatic Activity of Angiotensin-Converting Enzyme 2 (ACE2) in Brain Tissue and Cerebrospinal Fluid Using a Quenched Fluorescent Substrate. Methods Mol Biol 1527 : 117-126 https://www.ncbi.nlm.nih.gov/pubmed/28116711
Surya W, Li Y, Verdia-Baguena C, Aguilella VM and Torres J (2015). MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res 201 : 61-6 https://www.ncbi.nlm.nih.gov/pubmed/25733052
Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK et al.(2005). DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 280 : 31141-8 https://www.ncbi.nlm.nih.gov/pubmed/16000296
Tanabe LM and List K (2017). The role of type II transmembrane serine protease-mediated signaling in cancer. FEBS J 284 : 1421-1436 https://www.ncbi.nlm.nih.gov/pubmed/27870503
Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H et al. (2014). TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol88 : 4744-51 https://www.ncbi.nlm.nih.gov/pubmed/24522916
Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B et al. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression.J Gen Virol 84 : 2305-2315 https://www.ncbi.nlm.nih.gov/pubmed/12917450
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G et al. (2000). A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275 : 33238-43 https://www.ncbi.nlm.nih.gov/pubmed/10924499
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R et al.(2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310 : 644-8 https://www.ncbi.nlm.nih.gov/pubmed/16254181
Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX et al.(2007). Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci 16 : 2065-71 https://www.ncbi.nlm.nih.gov/pubmed/17766393
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P et al.(2015). Proteomics. Tissue-based map of the human proteome.Science 347 : 1260419 https://www.ncbi.nlm.nih.gov/pubmed/25613900
Vanle B, Olcott W, Jimenez J, Bashmi L, Danovitch I et al.(2018). NMDA antagonists for treating the non-motor symptoms in Parkinson’s disease. Transl Psychiatry 8 : 117 https://www.ncbi.nlm.nih.gov/pubmed/29907742
Vardavas CI and Nikitara K (2020). COVID-19 and smoking: A systematic review of the evidence. Tob Induc Dis 18 : 20 https://www.ncbi.nlm.nih.gov/pubmed/32206052
Vickers C, Hales P, Kaushik V, Dick L, Gavin J et al. (2002). Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277 : 14838-43 https://www.ncbi.nlm.nih.gov/pubmed/11815627
Viruses CSGotICoTo (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5 : 536-544 https://www.ncbi.nlm.nih.gov/pubmed/32123347
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT et al.(2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell https://www.ncbi.nlm.nih.gov/pubmed/32155444
Wang C, Takeuchi K, Pinto LH and Lamb RA (1993). Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block.J Virol 67 : 5585-94 https://www.ncbi.nlm.nih.gov/pubmed/7688826
Wang C, Chen T, Zhang J, Yang M, Li N et al. (2009). The E3 ubiquitin ligase Nrdp1 ’preferentially’ promotes TLR-mediated production of type I interferon. Nat Immunol 10 : 744-52 https://www.ncbi.nlm.nih.gov/pubmed/19483718
Wilson L, McKinlay C, Gage P and Ewart G (2004). SARS coronavirus E protein forms cation-selective ion channels. Virology330 : 322-31 https://www.ncbi.nlm.nih.gov/pubmed/15527857
Wilson S, Greer B, Hooper J, Zijlstra A, Walker B et al. (2005). The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388 : 967-72 https://www.ncbi.nlm.nih.gov/pubmed/15537383
Wiser C, Kim B and Ascano M (2019). G3BP1 enhances cytoplasmic DNA pattern recognition. Nat Immunol 20 : 5-7 https://www.ncbi.nlm.nih.gov/pubmed/30538338
Wittine K, Stipkovic Babic M, Makuc D, Plavec J, Kraljevic Pavelic Set al. (2012). Novel 1,2,4-triazole and imidazole derivatives of L-ascorbic and imino-ascorbic acid: synthesis, anti-HCV and antitumor activity evaluations. Bioorg Med Chem 20 : 3675-85 https://www.ncbi.nlm.nih.gov/pubmed/22555152
Wong LY, Lui PY and Jin DY (2016). A molecular arms race between host innate antiviral response and emerging human coronaviruses. Virol Sin 31 : 12-23 https://www.ncbi.nlm.nih.gov/pubmed/26786772
World Health Organization (2020). WHO Technical Guidance. Journalhttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL et al.(2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367 : 1260-1263 https://www.ncbi.nlm.nih.gov/pubmed/32075877
Xia S, Liu M, Wang C, Xu W, Lan Q et al. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res30 : 343-355 https://www.ncbi.nlm.nih.gov/pubmed/32231345
Xiao F and Burns KD (2017). Measurement of Angiotensin Converting Enzyme 2 Activity in Biological Fluid (ACE2). Methods Mol Biol1527 : 101-115 https://www.ncbi.nlm.nih.gov/pubmed/28116710
Xu J, Sriramula S, Xia H, Moreno-Walton L, Culicchia F et al.(2017). Clinical Relevance and Role of Neuronal AT1 Receptors in ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension. Circ Res 121 : 43-55 https://www.ncbi.nlm.nih.gov/pubmed/28512108
Xu Z, Shi L, Wang Y, Zhang J, Huang L et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8 : 420-422 https://www.ncbi.nlm.nih.gov/pubmed/32085846
Yager EJ and Konan KV (2019). Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses 11 : https://www.ncbi.nlm.nih.gov/pubmed/31581580
Yan R, Zhang Y, Li Y, Xia L, Guo Y et al. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.Science 367 : 1444-1448 https://www.ncbi.nlm.nih.gov/pubmed/32132184
Yang P, Kuc RE, Brame AL, Dyson A, Singer M et al. (2017). [Pyr1]Apelin-131-12 Is a Biologically Active ACE2 Metabolite of the Endogenous Cardiovascular Peptide [Pyr1]Apelin-13. Front Neurosci11 : 92 https://www.ncbi.nlm.nih.gov/pubmed/28293165
Yang S, Chen SJ, Hsu MF, Wu JD, Tseng CT et al. (2006). Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.J Med Chem 49 : 4971-80 https://www.ncbi.nlm.nih.gov/pubmed/16884309
Yang W, Ru Y, Ren J, Bai J, Wei J et al. (2019). G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell Death Dis 10 : 946 https://www.ncbi.nlm.nih.gov/pubmed/31827077
Yang X, Chen X, Bian G, Tu J, Xing Y et al. (2014). Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease.J Gen Virol 95 : 614-626 https://www.ncbi.nlm.nih.gov/pubmed/24362959
Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH et al. (1992). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357 : 420-2 https://www.ncbi.nlm.nih.gov/pubmed/1350662
Yeo C, Kaushal S and Yeo D (2020). Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 5 : 335-337 https://www.ncbi.nlm.nih.gov/pubmed/32087098
Zhang L, Lin D, Kusov Y, Nian Y, Ma Q et al. (2020). α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. J Med Chem https://www.ncbi.nlm.nih.gov/pubmed/32045235
Zhang R, Wang K, Lv W, Yu W, Xie S et al. (2014). The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. Biochim Biophys Acta 1838 : 1088-95 https://www.ncbi.nlm.nih.gov/pubmed/23906728
Zhao H, Zhu C, Qin C, Tao T, Li J et al. (2013). Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP. Biochem Biophys Res Commun 432 : 320-5 https://www.ncbi.nlm.nih.gov/pubmed/23399562
Zhao J, Yang Y, Huang H, Li D, Gu D et al. (2020). Relationship between the ABO Blood Group and the COVID-19 Susceptibility.medRxivhttps://www.medrxiv.org/content/10.1101/2020.03.11.20031096v2
Zhao Q, Li S, Xue F, Zou Y, Chen C et al. (2008). Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.J Virol 82 : 8647-55 https://www.ncbi.nlm.nih.gov/pubmed/18562531
Zhong J, Basu R, Guo D, Chow FL, Byrns S et al. (2010). Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation122 : 717-28, 18 p following 728 https://www.ncbi.nlm.nih.gov/pubmed/20679547
Zhou P, Fan H, Lan T, Yang XL, Shi WF et al. (2018). Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556 : 255-258 https://www.ncbi.nlm.nih.gov/pubmed/29618817
Zhou Z, Sun Y, Yan X, Tang X, Li Q et al. (2020). Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-beta production via blocking IPS-1 and RIG-I. Virus Res 278 : 197843 https://www.ncbi.nlm.nih.gov/pubmed/31884203
Zhu N, Zhang D, Wang W, Li X, Yang B et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382 : 727-733 https://www.ncbi.nlm.nih.gov/pubmed/31978945
Ziebuhr J, Schelle B, Karl N, Minskaia E, Bayer S et al. (2007). Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication. J Virol 81 : 3922-32 https://www.ncbi.nlm.nih.gov/pubmed/17251282
Zisman LS, Keller RS, Weaver B, Lin Q, Speth R et al. (2003). Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2. Circulation 108 : 1707-12 https://www.ncbi.nlm.nih.gov/pubmed/14504186
Zumla A, Chan JF, Azhar EI, Hui DS and Yuen KY (2016). Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov15 : 327-47 https://www.ncbi.nlm.nih.gov/pubmed/26868298