References
1. Hohn S, Acevedo-Trejos E, Abrams JF, Fulgencio de Moura J, Spranz R,
Merico A. The long-term legacy of plastic mass production. Sci
Total Environ . 2020;746. doi:10.1016/j.scitotenv.2020.141115
2. Shaw DG, Day RH. Colour- and form-dependent loss of plastic
micro-debris from the North Pacific Ocean. Mar Pollut Bull .
1994;28(1):39-43. doi:10.1016/0025-326X(94)90184-8
3. Mohammadian M, Allen NS, Edge M, Jones K. Environmental Degradation
of Poly (ethylene Terephthalate). Text Res J .
1991;61(11):690-696. doi:10.1177/004051759106101109
4. Day M, Wiles DM. Photochemical degradation of poly(ethylene
terephthalate). II. Effect of wavelength and environment on the
decomposition process. J Appl Polym Sci . 1972;16(1):191-202.
doi:10.1002/app.1972.070160117
5. Sadler JC, Wallace S. Microbial synthesis of vanillin from waste
poly(ethylene terephthalate). Green Chem . 2021;23(13):4665-4672.
doi:10.1039/d1gc00931a
6. Webb HK, Arnott J, Crawford RJ, Ivanova EP. Plastic degradation and
its environmental implications with special reference to poly(ethylene
terephthalate). Polymers (Basel) . 2013;5(1):1-18.
doi:10.3390/polym5010001
7. Müller RJ, Kleeberg I, Deckwer WD. Biodegradation of polyesters
containing aromatic constituents. J Biotechnol . 2001;86(2):87-95.
doi:10.1016/S0168-1656(00)00407-7
8. Kirstein IV, Wichels A, Gullans E, Krohne G, Gerdts G. The
plastisphere – Uncovering tightly attached plastic “specific”
microorganisms. PLoS One . 2019;14(4).
doi:10.1371/journal.pone.0215859
9. Yang Y, Liu W, Zhang Z, Grossart HP, Gadd GM. Microplastics provide
new microbial niches in aquatic environments. Appl Microbiol
Biotechnol . 2020;104(15):6501-6511. doi:10.1007/s00253-020-10704-x
10. Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the
plastisphere. Nat Rev Microbiol . 2020;18(3):139-151.
doi:10.1038/s41579-019-0308-0
11. Danso D, Chow J, Streit WR. Plastics: Environmental and
biotechnological perspectives on microbial degradation. Appl
Environ Microbiol . 2019;85(19):e01095-19. doi:10.1128/AEM.01095-19
12. Zrimec J, Kokina M, Jonasson S, Zorrilla F, Zelezniak A.
Plastic-Degrading Potential across the Global Microbiome Correlates with
Recent Pollution Trends. Kelly L, Newman DK, eds. MBio .
2021;12(5). doi:10.1128/MBIO.02155-21
13. Gambarini V, Pantos O, Kingsbury JM, Weaver L, Handley KM, Lear G.
Phylogenetic Distribution of Plastic-Degrading Microorganisms.mSystems . 2021;6(1). doi:10.1128/MSYSTEMS.01112-20
14. Gan Z, Zhang H. PMBD: a Comprehensive Plastics Microbial
Biodegradation Database. Database (Oxford) . 2019;2019.
doi:10.1093/database/baz119
15. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics .
2006;22:1658-1659. doi:10.1093/bioinformatics/btl158
16. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-Hit: accelerated for clustering
the next-generation sequencing data. Bioinformatics .
2012;28(23):3150-3152. doi:10.1093/bioinformatics/bts565
17. Notredame C, Higgins DG, Heringa J. T-coffee: A novel method for
fast and accurate multiple sequence alignment. J Mol Biol .
2000;302(1):205-217. doi:10.1006/jmbi.2000.4042
18. Agarwala R, Barrett T, Beck J, et al. Database resources of the
National Center for Biotechnology Information. Nucleic Acids Res .
2018;46(D1):D8-D13. doi:10.1093/nar/gkx1095
19. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank.Nucleic Acids Res . 2000;28(1):235-242. doi:10.1093/nar/28.1.235
20. Bauer TL, Buchholz PCF, Pleiss J. The modular structure of
$\upalpha$/$\upbeta$-hydrolases.{FEBS} J . 2019;287(5):1035-1053. doi:10.1111/febs.15071
21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol . 1990;215(3):403-410.
doi:10.1016/S0022-2836(05)80360-2
22. Tange O. GNU parallel: the command-line power tool. ;login
USENIX Mag . 2011;36(1):42-47.
23. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of
high-quality protein multiple sequence alignments using Clustal Omega.Mol Syst Biol . 2011;7(1):539. doi:10.1038/msb.2011.75
24. Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol
Biol . 1970;48(3):443-453.
25. Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology
Open Software Suite. Trends Genet . 2000;16(1):276-277.
doi:10.1016/j.cocis.2008.07.002
26. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software
Environment for integrated models of biomolecular interaction networks.Genome Res . 2003;13(11):2498-2504. doi:10.1101/gr.1239303
27. Hagberg AA, Schult DA, Swart PJ. Exploring network structure,
dynamics, and function using NetworkX. In: Varoquaux G, Vaught T,
Millman J, eds. Proceedings of the 7th Python in Science
Conference . ; 2008:11-15.
28. Alves NM, Mano JF, Balaguer E, Meseguer Dueñas JM, Gómez Ribelles
JL. Glass transition and structural relaxation in semi-crystalline
poly(ethylene terephthalate): A DSC study. Polymer (Guildf) .
2002;43(15):4111-4122. doi:10.1016/S0032-3861(02)00236-7
29. Zhang H, Dierkes R, Pérez-García P, et al. The abundance of mRNA
transcripts of bacteroidetal polyethylene terephthalate (PET) esterase
genes may indicate a role in marine plastic degradation. Published
online August 11, 2021. doi:10.21203/RS.3.RS-567691/V2
30. Kitadokoro K, Thumarat U, Nakamura R, et al. Crystal structure of
cutinase Est119 from Thermobifida alba AHK119 that can degrade modified
polyethylene terephthalate at 1.76 Å resolution. Polym Degrad
Stab . 2012;97(5):771-775. doi:10.1016/j.polymdegradstab.2012.02.003
31. David L, Cheah E, Cygler M, et al. The α/β hydrolase fold.Protein Eng Des Sel . 1992;5(3):197-211.
doi:10.1093/protein/5.3.197
32. Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion
System (T9SS): Highlights and Recent Insights into Its Structure and
Function. Front Cell Infect Microbiol . 2017;7(MAY).
doi:10.3389/fcimb.2017.00215
33. Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. Deciphering
the unique cellulose degradation mechanism of the ruminal bacterium
Fibrobacter succinogenes S85. Sci Rep . 2019;9(1).
doi:10.1038/s41598-019-52675-8
34. Suen G, Weimer PJ, Stevenson DM, et al. The complete genome sequence
of fibrobacter succinogenes s85 reveals a cellulolytic and metabolic
specialist. PLoS One . 2011;6(4). doi:10.1371/journal.pone.0018814
35. Arntzen M, Várnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane
vesicles from Fibrobacter succinogenes S85 contain an array of
carbohydrate-active enzymes with versatile polysaccharide-degrading
capacity. Environ Microbiol . 2017;19(7):2701-2714.
doi:10.1111/1462-2920.13770
36. Brumm P, Mead D, Boyum J, et al. Functional annotation of
Fibrobacter succinogenes S85 carbohydrate active enzymes. Appl
Biochem Biotechnol . 2011;163(5):649-657. doi:10.1007/s12010-010-9070-5
37. Pleiss J, Fischer M, Peiker M, Thiele C, Schmid RD. Lipase
engineering database: Understanding and exploiting
sequence-structure-function relationships. J Mol Catal - B Enzym .
2000;10(5):491-508. doi:10.1016/S1381-1177(00)00092-8
38. Fecker T, Galaz-Davison P, Engelberger F, et al. Active Site
Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis
PETase. Biophys J . 2018;114(6):1302-1312.
doi:10.1016/j.bpj.2018.02.005
39. Joo S, Cho IJ, Seo H, et al. Structural insight into molecular
mechanism of poly(ethylene terephthalate) degradation. Nat
Commun . 2018;9(1). doi:10.1038/s41467-018-02881-1
40. Tournier V, Topham CM, Gilles A, et al. An engineered PET
depolymerase to break down and recycle plastic bottles. Nature .
2020;580(7802):216-219. doi:10.1038/s41586-020-2149-4
41. Magnin A, Pollet E, Phalip V, Avérous L. Evaluation of biological
degradation of polyurethanes. Biotechnol Adv . 2020;39.
doi:10.1016/j.biotechadv.2019.107457
42. Schmidt J, Wei R, Oeser T, et al. Degradation of Polyester
Polyurethane by Bacterial Polyester Hydrolases. Polymers (Basel) .
2017;9(2):65. doi:10.3390/POLYM9020065
43. Phua SK, Castillo E, Anderson JM, Hiltner A. Biodegradation of a
polyurethane in vitro. J Biomed Mater Res . 1987;21(2):231-246.
doi:10.1002/jbm.820210207
44. do Canto VP, Thompson CE, Netz PA. Polyurethanases:
Three-dimensional structures and molecular dynamics simulations of
enzymes that degrade polyurethane. J Mol Graph Model .
2019;89:82-95. doi:10.1016/j.jmgm.2019.03.001
45. do Canto VP, Thompson CE, Netz PA. Computational studies of
polyurethanases from Pseudomonas. J Mol Model . 2021;27(2).
doi:10.1007/s00894-021-04671-x
46. Howard GT, Crother B, Vicknair J. Cloning, nucleotide sequencing and
characterization of a polyurethanase gene (pueB) from Pseudomonas
chlororaphis. Int Biodeterior Biodegrad . 2001;47(3):141-149.
doi:10.1016/S0964-8305(01)00042-7
47. Bumba L, Masin J, Macek P, et al. Calcium-Driven Folding of RTX
Domain β-Rolls Ratchets Translocation of RTX Proteins through Type I
Secretion Ducts. Mol Cell . 2016;62(1):47-62.
doi:10.1016/j.molcel.2016.03.018
48. Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T. Cloning
and sequence analysis of a polyurethane esterase of Comamonas
acidovorans TB-35. J Ferment Bioeng . 1998;86(4):339-345.
doi:10.1016/S0922-338X(99)89001-1
49. Ignat L, Ignat M, Ciobanu C, Doroftei F, Popa VI. Effects of flax
lignin addition on enzymatic oxidation of poly(ethylene adipate)
urethanes. Ind Crops Prod . 2011;34(1):1017-1028.
doi:10.1016/j.indcrop.2011.03.010
50. Danso D, Schmeisser C, Chow J, et al. New insights into the function
and global distribution of polyethylene terephthalate (PET)-degrading
bacteria and enzymes in marine and terrestrial metagenomes. Appl
Environ Microbiol . 2018;84(8). doi:10.1128/AEM.02773-17
51. Salgado CA, Almeida FA de, Barros E, Baracat-Pereira MC, Baglinière
F, Vanetti MCD. Identification and characterization of a polyurethanase
with lipase activity from Serratia liquefaciens isolated from cold raw
cow’s milk. Food Chem . 2021;337.
doi:10.1016/j.foodchem.2020.127954
52. Wei R, Zimmermann W. Microbial enzymes for the recycling of
recalcitrant petroleum-based plastics: how far are we? Microb
Biotechnol . 2017;10(6):1308-1322. doi:10.1111/1751-7915.12710
53. Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades
and assimilates poly(ethylene terephthalate). Science (80- ) .
2016;351(6278):1196-1199. doi:10.1126/science.aad6359
54. Han X, Liu W, Huang JW, et al. Structural insight into catalytic
mechanism of PET hydrolase. Nat Commun . 2017;8(1).
doi:10.1038/s41467-017-02255-z
55. Austin HP, Allen MD, Donohoe BS, et al. Characterization and
engineering of a plastic-degrading aromatic polyesterase. Proc
Natl Acad Sci U S A . 2018;115(19):E4350-E4357.
doi:10.1073/pnas.1718804115
56. Wei R, Song C, Gräsing D, et al. Conformational fitting of a
flexible oligomeric substrate does not explain the enzymatic PET
degradation. Nat Commun 2019 101 . 2019;10(1):1-4.
doi:10.1038/s41467-019-13492-9
57. Son HF, Cho IJ, Joo S, et al. Rational Protein Engineering of
Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET
Degradation. ACS Catal . 2019;9(4):3519-3526.
doi:10.1021/ACSCATAL.9B00568
58. C L, C S, S Z, R W, CC Y. Structural and functional characterization
of polyethylene terephthalate hydrolase from Ideonella sakaiensis.Biochem Biophys Res Commun . 2019;508(1):289-294.
doi:10.1016/J.BBRC.2018.11.148
59. Haernvall K, Zitzenbacher S, Yamamoto M, Schick MB, Ribitsch D,
Guebitz GM. A new arylesterase from Pseudomonas pseudoalcaligenes can
hydrolyze ionic phthalic polyesters. J Biotechnol .
2017;257:70-77. doi:10.1016/j.jbiotec.2017.01.012
60. A B, S T, E K-G, et al. A Novel Polyester Hydrolase From the Marine
Bacterium Pseudomonas aestusnigri - Structural and Functional Insights.Front Microbiol . 2020;11. doi:10.3389/FMICB.2020.00114
61. Ronkvist ÅM, Xie W, Lu W, Gross RA. Cutinase-Catalyzed Hydrolysis of
Poly(ethylene terephthalate). Macromolecules .
2009;42(14):5128-5138. doi:10.1021/MA9005318
62. Sulaiman S, Yamato S, Kanaya E, et al. Isolation of a novel cutinase
homolog with polyethylene terephthalate-degrading activity from
leaf-branch compost by using a metagenomic approach. Appl Environ
Microbiol . 2012;78(5):1556-1562. doi:10.1128/AEM.06725-11
63. S S, DJ Y, E K, Y K, S K. Crystal structure and thermodynamic and
kinetic stability of metagenome-derived LC-cutinase.Biochemistry . 2014;53(11):1858-1869. doi:10.1021/BI401561P
64. Shirke AN, White C, Englaender JA, et al. Stabilizing Leaf and
Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect
on PET Hydrolysis. Biochemistry . 2018;57(7):1190-1200.
doi:10.1021/acs.biochem.7b01189
65. Dresler K, Van Den Heuvel J, Müller RJ, Deckwer WD. Production of a
recombinant polyester-cleaving hydrolase from Thermobifida fusca in
Escherichia coli. Bioprocess Biosyst Eng . 2006;29(3):169-183.
doi:10.1007/s00449-006-0069-9
66. Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D. Enzymatic
Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a
Hydrolase from T. fusca. Macromol Rapid Commun .
2005;26(17):1400-1405. doi:10.1002/MARC.200500410
67. Kleeberg I, Hetz C, Kroppenstedt RM, Müller RJ, Deckwer WD.
Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora
fusca and other thermophilic compost isolates. Appl Environ
Microbiol . 1998;64(5):1731-1735. doi:10.1128/aem.64.5.1731-1735.1998
68. Kleeberg I, Welzel K, VandenHeuvel J, Müller RJ, Deckwer WD.
Characterization of a new extracellular hydrolase from Thermobifida
fusca degrading aliphatic-aromatic copolyesters.Biomacromolecules . 2005;6(1):262-270. doi:10.1021/bm049582t
69. Acero EH, Ribitsch D, Steinkellner G, et al. Enzymatic Surface
Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties
of Cutinases from Thermobifida. Macromolecules .
2011;44(12):4632-4640. doi:10.1021/MA200949P
70. Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. Identification and
characterization of bacterial cutinase. J Biol Chem .
2008;283(38):25854-25862. doi:10.1074/jbc.M800848200
71. Su L, Woodard RW, Chen J, Wu J. Extracellular location of
Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3)
without mediation of a signal peptide. Appl Environ Microbiol .
2013;79(14):4192-4198. doi:10.1128/AEM.00239-13
72. Lykidis A, Mavromatis K, Ivanova N, et al. Genome sequence and
analysis of the soil cellulolytic actinomycete Thermobifida fusca YX.J Bacteriol . 2007;189(6):2477-2486. doi:10.1128/JB.01899-06
73. Furukawa M, Kawakami N, Tomizawa A, Miyamoto K. Efficient
Degradation of Poly(ethylene terephthalate) with Thermobifida fusca
Cutinase Exhibiting Improved Catalytic Activity Generated using
Mutagenesis and Additive-based Approaches. Sci Rep . 2019;9(1).
doi:10.1038/s41598-019-52379-z
74. Roth C, Wei R, Oeser T, et al. Structural and functional studies on
a thermostable polyethylene terephthalate degrading hydrolase from
Thermobifida fusca. Appl Microbiol Biotechnol .
2014;98(18):7815-7823. doi:10.1007/s00253-014-5672-0
75. Wei R, Oeser T, Schmidt J, et al. Engineered bacterial polyester
hydrolases efficiently degrade polyethylene terephthalate due to
relieved product inhibition. Biotechnol Bioeng .
2016;113(8):1658-1665. doi:10.1002/bit.25941
76. Huang YC, Chen GH, Chen YF, Chen WL, Yang CH. Heterologous
expression of thermostable acetylxylan esterase gene from Thermobifida
fusca and its synergistic action with xylanase for the production of
xylooligosaccharides. Biochem Biophys Res Commun .
2010;400(4):718-723. doi:10.1016/j.bbrc.2010.08.136
77. Hegde K, Veeranki VD. Production optimization and characterization
of recombinant cutinases from thermobifida fusca sp. NRRL B-8184.Appl Biochem Biotechnol . 2013;170(3):654-675.
doi:10.1007/s12010-013-0219-x
78. Ribitsch D, Hromic A, Zitzenbacher S, et al. Small cause, large
effect: Structural characterization of cutinases from Thermobifida
cellulosilytica. Biotechnol Bioeng . 2017;114(11):2481-2488.
doi:10.1002/bit.26372
79. Kitadokoro K, Kakara M, Matsui S, et al. Structural insights into
the unique polylactate-degrading mechanism of Thermobifida alba
cutinase. FEBS J . 2019;286(11):2087-2098. doi:10.1111/febs.14781
80. Wei R, Oeser T, Then J, et al. Functional characterization and
structural modeling of synthetic polyester-degrading hydrolases from
Thermomonospora curvata. AMB Express . 2014;4(1):1-10.
doi:10.1186/s13568-014-0044-9
81. Ribitsch D, Acero EH, Greimel K, et al. A New Esterase from
Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET)
and Polylactic Acid (PLA). Polym 2012, Vol 4, Pages 617-629 .
2012;4(1):617-629. doi:10.3390/POLYM4010617
82. Hu X, Thumarat U, Zhang X, Tang M, Kawai F. Diversity of
polyester-degrading bacteria in compost and molecular analysis of a
thermoactive esterase from Thermobifida alba AHK119. Appl
Microbiol Biotechnol . 2010;87(2):771-779. doi:10.1007/s00253-010-2555-x
83. Kawai F, Oda M, Tamashiro T, et al. A novel Ca2+-activated,
thermostabilized polyesterase capable of hydrolyzing polyethylene
terephthalate from Saccharomonospora viridis AHK190. Appl
Microbiol Biotechnol . 2014;98(24):10053-10064.
doi:10.1007/s00253-014-5860-y
84. Oda M, Yamagami Y, Inaba S, et al. Enzymatic hydrolysis of PET:
functional roles of three Ca2+ ions bound to a cutinase-like enzyme,
Cut190*, and its engineering for improved activity. Appl Microbiol
Biotechnol . 2018;102(23):10067-10077. doi:10.1007/s00253-018-9374-x
85. Ribitsch D, Heumann S, Trotscha E, et al. Hydrolysis of
polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus
subtilis. Biotechnol Prog . 2011;27(4):951-960.
doi:10.1002/BTPR.610
86. Carniel A, Valoni É, Nicomedes J, Gomes A da C, Castro AM de. Lipase
from Candida antarctica (CALB) and cutinase from Humicola insolens act
synergistically for PET hydrolysis to terephthalic acid. Process
Biochem . 2017;59:84-90. doi:10.1016/J.PROCBIO.2016.07.023