Potato is among one of the most important food crops, yet maintaining plant productivity in this drought-sensitive crop has become a challenge. Competition for scarce water resources and the continued effects of global warming exacerbate current constraints on crop production. While plants’ response to drought in above-ground tissues has been well documented, the regulatory cascades in developing tubers have been largely unexplored. Using the commercial Canadian cultivar ‘Vigor’, plants were subjected to a drought treatment under high-tunnels causing a 4 ℃ increase in canopy temperature when compared to the well-watered control. Tubers were sampled for RNAseq and metabolite analysis. Approximately 2600 genes and 3898 transcripts were differentially expressed by at least four-fold in drought-stressed potato tubers, with 75 % and 69 % being down-regulated respectively. A further 229 small RNAs were implicated in gene regulation during drought. The comparison of protein homologues between Solanum tuberosum L. and Arabidopsis thaliana L. indicates that downregulated genes are associated with phenylpropanoid, carotenoid and patatin biosynthesis. This suggests that there are nutritive implications to drought stress occurring during the potato tuber bulking phase in sensitive cultivars.