References
1. Harun I, Del Rio-Chanona EA, Wagner JL, Lauersen KJ, Zhang D, Hellgardt K. Photocatalytic Production of Bisabolene from Green Microalgae Mutant: Process Analysis and Kinetic Modeling. Ind Eng Chem Res . 2018;57(31):10336-10344. doi:10.1021/acs.iecr.8b02509
2. Xie Y-P, Ho S-H, Chen C-Y, et al. Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochem Eng J . 2014;86(7):33-40. doi:10.1016/j.bej.2014.02.015
3. Zhang D, Wan M, del Rio-Chanona EA, et al. Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. Algal Res . 2016;13(12):69-78. doi:10.1016/j.algal.2015.11.019
4. Zhang D, Del Rio-Chanona EA, Petsagkourakis P, Wagner J. Hybrid physics‐based and data‐driven modeling for bioprocess online simulation and optimization. Biotechnol Bioeng . 2019;116(11):2919-2930. doi:10.1002/bit.27120
5. Chen LZ, Nguang SK, Chen XD. Modelling and Optimization of Biotechnological Processes . Vol 15. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. doi:10.1007/978-3-540-32493-5
6. Bernard O, Dochain D, Genovesi A, Gouze J-L, Guay M. Bioprocess Control . (Dochain D, ed.). London, UK: ISTE; 2008. doi:10.1002/9780470611128
7. Del Rio-Chanona EA, Ahmed NR, Wagner J, Lu Y, Zhang D, Jing K. Comparison of physics‐based and data‐driven modelling techniques for dynamic optimisation of fed‐batch bioprocesses. Biotechnol Bioeng . 2019;116(11):2971-2982. doi:10.1002/bit.27131
8. Fouchard S, Pruvost J, Degrenne B, Titica M, Legrand J. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification. Biotechnol Bioeng . 2009;102(1):232-277. doi:10.1002/bit.22034
9. del Rio-Chanona EA, Liu J, Wagner JL, et al. Dynamic modeling of green algae cultivation in a photobioreactor for sustainable biodiesel production. Biotechnol Bioeng . 2018;115(2):359-370. doi:10.1002/bit.26483
10. Jing K, Tang Y, Yao C, del Rio-Chanona EA, Ling X, Zhang D. Overproduction of L-tryptophan via simultaneous feed of glucose and anthranilic acid from recombinant Escherichia coli W3110: Kinetic modeling and process scale-up. Biotechnol Bioeng . 2018;115(2):371-381. doi:10.1002/bit.26398
11. do Carmo Nicoletti M, Jain LC, eds. Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control . Vol 218. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. doi:10.1007/978-3-642-01888-6
12. Petsagkourakis P, Sandoval IO, Bradford E, Zhang D, del Rio-Chanona EA. Reinforcement learning for batch bioprocess optimization.Comput Chem Eng . 2020;133:106649. doi:10.1016/j.compchemeng.2019.106649
13. Bradford E, Schweidtmann AM, Zhang D, Jing K, del Rio-Chanona EA. Dynamic modeling and optimization of sustainable algal production with uncertainty using multivariate Gaussian processes. Comput Chem Eng . 2018;118:143-158. doi:10.1016/j.compchemeng.2018.07.015
14. del Rio-Chanona EA, Wagner JL, Ali H, Fiorelli F, Zhang D, Hellgardt K. Deep learning‐based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE J . 2019;65(3):915-923. doi:10.1002/aic.16473
15. Baughman DR, Liu YA. Neural Networks in Bioprocessing and Chemical Engineering . Elsevier; 1995. doi:10.1016/C2009-0-21189-5
16. Oliveira R. Combining first principles modelling and artificial neural networks: a general framework. Comput Chem Eng . 2004;28(5):755-766. doi:10.1016/j.compchemeng.2004.02.014
17. von Stosch M, Oliveira R, Peres J, Feyo de Azevedo S. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Comput Chem Eng . 2014;60:86-101. doi:10.1016/j.compchemeng.2013.08.008
18. Carinhas N, Bernal V, Teixeira AP, Carrondo MJ, Alves PM, Oliveira R. Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Syst Biol . 2011;5(1):34. doi:10.1186/1752-0509-5-34
19. Teixeira A, Cunha AE, Clemente JJ, et al. Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems. J Biotechnol . 2005;118(3):290-303. doi:10.1016/j.jbiotec.2005.04.024
20. Portela RMC, von Stosch M, Oliveira R. Hybrid semiparametric systems for quantitative sequence-activity modeling of synthetic biological parts. Synth Biol . 2018;3(1). doi:10.1093/synbio/ysy010
21. Xie Y, Ho S-H, Chen C-NN, et al. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation.Bioresour Technol . 2013;144:435-444. doi:10.1016/j.biortech.2013.06.064
22. del Rio-Chanona EA, Ahmed N rashid, Zhang D, Lu Y, Jing K. Kinetic modeling and process analysis for Desmodesmus sp. lutein photo-production. AIChE J . 2017;63(7):2546-2554. doi:10.1002/aic.15667
23. Aguirre A-M, Bassi A. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Biotechnol Bioeng . 2013;110(8):2114-2122. doi:10.1002/bit.24871
24. Wang J, Wan W. Optimization of fermentative hydrogen production process by response surface methodology. Int J Hydrogen Energy . 2008;33(23):6976-6984. doi:10.1016/j.ijhydene.2008.08.051
25. Wang Z, Georgakis C. New Dynamic Response Surface Methodology for Modeling Nonlinear Processes over Semi-infinite Time Horizons. Ind Eng Chem Res . 2017;56(38):10770-10782. doi:10.1021/acs.iecr.7b02381
26. Guerra NP. Modeling the batch bacteriocin production system by lactic acid bacteria by using modified three-dimensional Lotka–Volterra equations. Biochem Eng J . 2014;88:115-130. doi:10.1016/j.bej.2014.04.010
27. Adesanya VO, Davey MP, Scott SA, Smith AG. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour Technol . 2014;157:293-304. doi:10.1016/j.biortech.2014.01.032
28. Zhang D, Dechatiwongse P, Del-Rio-Chanona EA, Hellgardt K, Maitland GC, Vassiliadis VS. Analysis of the cyanobacterial hydrogen photoproduction process via model identification and process simulation.Chem Eng Sci . 2015;128:130-146. doi:10.1016/j.ces.2015.01.059
29. del Rio-Chanona EA, Zhang D, Xie Y, Manirafasha E, Jing K. Dynamic Simulation and Optimization for Arthrospira platensis Growth and C-Phycocyanin Production. Ind Eng Chem Res . 2015;54(43):10606-10614. doi:10.1021/acs.iecr.5b03102
30. Yang A. Modeling and Evaluation of CO 2 Supply and Utilization in Algal Ponds. Ind Eng Chem Res . 2011;50(19):11181-11192. doi:10.1021/ie200723w
31. Violet L, Loubière K, Rabion A, et al. Stoichio-kinetic model discrimination and parameter identification in continuous microreactors.Chem Eng Res Des . 2016;114:39-51. doi:10.1016/j.cherd.2016.07.025
32. Del Rio-Chanona EA, Fiorelli F, Zhang D, Ahmed NR, Jing K, Shah N. An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process. Biotechnol Bioeng . 2017;114(11):2518-2527. doi:10.1002/bit.26373
33. Schmidt M, Lipson H. Distilling Free-Form Natural Laws from Experimental Data. Science (80- ) . 2009;324(5923):81-85. doi:10.1126/science.1165893
34. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.Proc Natl Acad Sci . 2016;113(15):3932-3937. doi:10.1073/pnas.1517384113
35. del Rio-Chanona EA, Zhang D, Shah N. Sustainable biopolymer synthesis via superstructure and multiobjective optimization.AIChE J . 2018;64(1):91-103. doi:10.1002/aic.15877
36. Hart WE, Laird C, Watson J-P, Woodruff DL. Pyomo – Optimization Modeling in Python . Vol 67. Boston, MA: Springer US; 2012. doi:10.1007/978-1-4614-3226-5