Conclusion
In this study, a common putative feature of BLK has been analysed extensively using bioinformatics tools. BLK is majorly chargeable for the formation of B-Lymphocytes. It has been observed that human BLK in its lively shape is an oncogene with the potential aid in terms of growth of lymphoid cells in vitro and promotes tumour boom in vivo, thus BLK can be considered to be a capacity novel therapeutic target for Cutaneous T-cellular lymphoma. The antibody-mediated surface interaction of the B-cell antigen receptor (BCR) leads to phosphorylation of BLK on tyrosine amino acids, shows the enzymatic activity. We have modelled the structure and did the various analysis of BLK structures which will add the knowledge for understanding the BLK’s functionality in our human body and its regular development. This study would not only help pharmacologists to develop new drugs but also to bioinformaticians in developing new inhibitor to regulate its expression. Till date, the crystallised structure of BLK is not available hence our modelled structure followed by structure refinement using MD simulation gives a stable structure that can be used in pharmacology.
Competing interest
The authors declare that there is no conflict of interest in the publication of this manuscript.
References
Akerblad, P., & Sigvardsson, M. (1999). Early B cell factor is an activator of the B lymphoid kinase promoter in early B cell development. J Immunol, 163 (10), 5453-5461.
Bewarder, N., Weinrich, V., Budde, P., Hartmann, D., Flaswinkel, H., Reth, M., & Frey, J. (1996). In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcgammaRII) phosphorylation. Mol Cell Biol, 16 (9), 4735-4743.
Bhattacharya, D., & Cheng, J. (2013). i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PloS one8 (7).
Borowiec, M., Liew, C. W., Thompson, R., Boonyasrisawat, W., Hu, J., Mlynarski, W. M., . . . Doria, A. (2009). Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A, 106 (34), 14460-14465.
Castillejo-López, C., Delgado-Vega, A. M., Wojcik, J., Kozyrev, S. V., Thavathiru, E., Wu, Y.-Y., . . . Fineschi, S. (2012). Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK.Annals of the rheumatic diseases, 71 (1), 136-142.
Clark, M. R., Mandal, M., Ochiai, K., & Singh, H. (2014). Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling.Nature reviews Immunology, 14(2), 69-80.
Craig, M. E., Hattersley, A., & Donaghue, K. C. (2009). Definition, epidemiology and classification of diabetes in children and adolescents. Pediatric diabetes10 , 3-12.
Dai, F. F., Bhattacharjee, A., Liu, Y., Batchuluun, B., Zhang, M., Wang, X. S., … & Wheeler, M. B. (2015). A novel GLP1 receptor interacting protein ATP6ap2 regulates insulin secretion in pancreatic beta cells. Journal of Biological Chemistry290 (41), 25045-25061.
Dymecki, S. M., Niederhuber, J. E., & Desiderio, S. V. (1990). Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science247 (4940), 332-336.
Dymecki, S. M., Zwollo, P., Zeller, K., Kuhajda, F. P., & Desiderio, S. V. (1992). Structure and developmental regulation of the B-lymphoid tyrosine kinase gene blk. Journal of Biological Chemistry267 (7), 4815-4823.
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., … & Sonnhammer, E. L. L. (2019). The Pfam protein families database in 2019. Nucleic acids research47 (D1), D427-D432.
Fishilevich, S., Zimmerman, S., Kohn, A., Iny Stein, T., Olender, T., Kolker, E., . . . Lancet, D. (2016). Genic insights from integrated human proteomics in GeneCards.Database, 2016 .
Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology120 (1), 97-120.
Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. InThe proteomics protocols handbook (pp. 571-607): Springer.
Gupta, R., Jung, E., & Brubak, S. (2004). NetNGlyc: prediction of N-glycosylation sites in human proteins. In: Prep.
Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of chemical information and modeling49 (2), 377-389.
Harley, J. B., Alarcón-Riquelme, M. E., Criswell, L. A., Jacob, C. O., Kimberly, R. P., Moser, K. L., . . . Genetics, I. C. f. S. L. E. (2008). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature genetics, 40 (2), 204.
Holbrook, N. J., Smith, K. A., Fornace, A. J., Comeau, C. M., Wiskocil, R. L., & Crabtree, G. R. (1984). T-cell growth factor: complete nucleotide sequence and organization of the gene in normal and malignant cells. Proceedings of the National Academy of Sciences81 (6), 1634-1638.
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics14 (1), 33-38.
Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all‐atom protein loop prediction. Proteins: Structure, Function, and Bioinformatics55 (2), 351-367.
JADWIN, J. A. (2017). Quantitative Analysis of EGFR Phosphorylation and SH2 Domain Binding in vivo.Doctoral Dissertations , 1437, University of Connecticut Graduate School.
Kaul, T., Eswaran, M., Ahmad, S., Thangaraj, A., Jain, R., Kaul, R., … & Bharti, J. (2019). Probing the effect of a plus 1bp frameshift mutation in protein-DNA interface of domestication gene, NAMB1, in wheat. Journal of Biomolecular Structure and Dynamics , 1-15.
Kurosaki, T. (2002). Regulation of B-cell signal transduction by adaptor proteins. Nature Reviews Immunology2 (5), 354-363.
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic acids research47 (W1), W256-W259.
Liu, H., Zhang, H., Wu, X., Ma, D., Wu, J., Wang, L., . . . Ge, B. (2018). Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature, 563 (7729), 131-136.
Malek, S. N., Dordai, D. I., Reim, J., Dintzis, H., & Desiderio, S. (1998). Malignant transformation of early lymphoid progenitors in mice expressing an activated Blk tyrosine kinase. Proceedings of the National Academy of Sciences, 95 (13), 7351-7356.
Murata, K., Ishii, N., Takano, H., Miura, S., Ndhlovu, L. C., Nose, M., . . . Sugamura, K. (2000). Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. The Journal of experimental medicine, 191 (2), 365-374.
Oda, H., Kumar, S., & Howley, P. M. (1999). Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A, 96 (17), 9557-9562.
Petersen, D. L., Berthelsen, J., Willerslev-Olsen, A., Fredholm, S., Dabelsteen, S., Bonefeld, C. M., . . . Woetmann, A. (2017). A novel BLK-induced tumor model. Tumour Biol, 39 (7), 1010428317714196.
Ramírez-Bello, J., Jiménez-Morales, S., Montufar-Robles, I., Fragoso, J. M., Barbosa-Cobos, R. E., Saavedra, M. A., & Sánchez-Muñoz, F. (2019). BLK and BANK1 polymorphisms and interactions are associated in Mexican patients with systemic lupus erythematosus. Inflammation Research, 68 (8), 705-713.
Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics: TIG16 (6), 276-277.
Rozewicki, J., Li, S., Amada, K. M., Standley, D. M., & Katoh, K. (2019). MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic acids research47 (W1), W5-W10.
Schisler, J. C., Jensen, P. B., Taylor, D. G., Becker, T. C., Knop, F. K., Takekawa, S., … & Newgard, C. B. (2005). The Nkx6. 1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proceedings of the National Academy of Sciences102 (20), 7297-7302.
Schrödinger, L. (2016). Schrödinger Suite. Schrödinger, LLC, New York, NY .
Sharma, R. B., O’Donnell, A. C., Stamateris, R. E., Ha, B., McCloskey, K. M., Reynolds, P. R., … & Alonso, L. C. (2015). Insulin demand regulates β cell number via the unfolded protein response. The Journal of clinical investigation125 (10), 3831-3846.
Shen, Y., Liu, Y., Wang, X. Q., Ke, X., Kang, H. Y., & Hong, S. L. (2017). Association between TNFSF4 and BLK gene polymorphisms and susceptibility to allergic rhinitis.Molecular medicine reports, 16 (3), 3224-3232.
Singh, T., Biswas, D., & Jayaram, B. (2011). AADS-An automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. Journal of chemical information and modeling51 (10), 2515-2527.
Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological reviews66 (1), 334-395.
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., … & Kaplan, S. (2016). The GeneCards suite: from gene data mining to disease genome sequence analyses. Current protocols in bioinformatics54 (1), 1-30.
Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis.Cancer and metastasis reviews, 22 (4), 337-358.
Tretter, T., Ross, A. E., Dordai, D. I., & Desiderio, S. (2003). Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. J Exp Med, 198 (12), 1863-1873.
Wass, M. N., Kelley, L. A., & Sternberg, M. J. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic acids research38 (suppl_2), W469-W473.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., … & Lepore, R. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research46 (W1), W296-W303.