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Abstract

In this paper, we develop and analyze a mathematical model for spreading malaria, including
treatment with Transmission Blocking Drugs (TBDs). The paper’s main aim is to demonstrate the
impact the chosen model for demographic growth has on the disease’s transmission and the effect of
its treatment with TBDs. We calculate the model’s control reproduction number and equilibria, and
perform a global stability analysis of the disease-free equilibrium point. The mathematical analysis
reveals that, depending on the model’s demography, the model can exhibit forward, backward and
even some unconventional types of bifurcation, where disease elimination can occur for both small and
large values of the reproduction number. We also conduct a numerical analysis to explore the short-
time behavior of the model. A key finding is that for one type of demographic growth, the population
experienced a significantly higher disease burden than the others, and when exposed to high levels of
treatment with TBDs, only this population succeeded in effectively eliminating the disease within a
reasonable timeframe.
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1 Introduction

Malaria is a vector-borne infectious disease caused by infection with single-celled protozoan parasites
of the genus Plasmodium — single-celled organisms that cannot survive outside their host(s). Malaria
pathology is caused by repeated reproduction of the parasites in the human red blood cells. The sporo-
zoites, the transmissible stage of Plasmodium parasite residing within the mosquito mid-gut, are trans-
mitted to humans through bites of infected female Anopheles mosquitoes (vectors) when they feed on
human blood [27, 43]. Anopheles mosquitoes become infected when they feed and ingest human blood
that contains mature gametocytes, the transmissible stage of the Plasmodium parasite within human.

Despite malaria being preventable and treatable, it remains one of the most prevalent and deadliest
human infections in developing countries, especially in Sub-Saharan Africa, where young children and
pregnant women are most affected [33, 40]. According to the WHO malaria report (2020) [41], there
were an estimated 241 million cases of malaria worldwide in 2020, resulting in around 627 thousand
deaths. The WHO African region carries a disproportionately high share of the global malaria burden
with as much as 95% of malaria cases and 96% of malaria deaths, where 80% we are children, recorded
in Africa in 2020, [41].
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Increased investment and research on malaria control interventions have resulted in impressive
reductions in global malaria cases and mortality, see Figure 1. Sub-figure 1(b) shows that the number
of malaria-caused deaths has continued to decrease globally and in Africa for the years 2010 − 2017.
Particularly, it can be estimated from the data that the number of malaria-caused deaths in Africa has
fallen by approximately 27.4% in 2015 compared to 2017. However, in sub-figure 1(a), the number of
malaria cases decreased in the years 2010− 2015, but it started to increase in the years 2015− 2017, even
though the malaria cases in 2010 was still higher than in any year from 2010 to 2017. Specifically, the
number of malaria cases in Africa has fallen approximately by 6.1% in 2015 compared to 2010. However,
there was an approximately 2.4% increase in the number of malaria cases in Africa in 2017 compared to
the year 2015, see Figure 1.
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Figure 1: Visualization of data obtained from the World Health Organization (WHO)-Global Health Observatory
(GHO) [42] for the estimated number of cases and deaths for 2010− 2017. We used Python programming language
to plot these figures using the data obtained from WHO-GHO, [42].

Despite the reduction of the number of disease-caused deaths, malaria remains a major global health
problem, and there is empirical and theoretical evidence that the current suite of interventions alone will
not be sufficient to eliminate it in most endemic areas, particularly in Sub-Saharan Africa, [24]. Novel
intervention strategies need to be considered. Recently, several researchers and scientists have shifted
their research to new in-host transmission-blocking interventions (TBIs) such as transmission-blocking
drugs (TBDs) and vaccines (TBVs), [7, 15]. It is expected that new medicines that block transmission
and target dormant reservoirs of the malaria parasite, such as the hypnozoite of P. vivax, will have an
important role in the eradication of malaria.

As mentioned in [39], TBDs can be drugs targeting the malaria parasite within the human host, the
parasite in the vector, or the vector itself. Such drugs are designed to be administered to humans so
that during the blood meal, the mosquito will take them together with the blood, [44]. Transmission-
blocking properties of common drugs have been known for some time. However, to eradicate malaria,
it was necessary to develop drugs specifically designed to completely block Plasmodium parasites trans-
mission, [3], and there are many promising clinical advances in the development of such novel TBDs,
see [3, 7, 15, 39]. Also the use of TBDs to target the reservoir of malaria infection plays an important role
in reducing or possibly stopping the transmission of malaria between humans and mosquito vectors.

Many epidemiologists and other scientists have invested their efforts in learning malaria’s dynamics
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and controlling its transmission. An impressive variety of biological literature and epidemiological
models exist to study the immuno-pathogenesis and dynamics of malaria transmission. The use of
mathematical models increases the impact of the theory on the practices of disease management and
control, see, e.g., [2, 5, 10, 11, 13, 14, 17, 25, 30, 31, 35, 37, 1, 6, 9, 18, 45].

Moreover, given the pivotal role that demographic factors play in shaping the transmission dynam-
ics and control of infectious diseases, a multitude of mathematical models for infectious diseases have
incorporated various demographic structures, revealing their significant impact on the dynamics and
control of diseases (refer to [19, 20, 26, 21, 36, 12, 28] for further insights). For an extensive and systematic
review of models that incorporate dynamic population structures into infectious disease transmission
models, we refer to the work of [29]. Therefore, the incorporation and thorough examination of various
types of demographic growths within malaria modeling is essential for enhancing the understanding
of disease transmission and the design and implementation of effective control measures using TBDs.

Hence, in this paper, we propose a novel minimalistic mathematical model for malaria with TBDs,
which nevertheless captures the essential aspects of TBDs, and analyze the impact of the chosen demo-
graphic model on the disease’s transmission and its control with the drugs. We provide a mathematical
analysis of the model and present comprehensive numerical simulations to reveal the impact of the
demography on its short- and long-term behavior.

The paper is organized as follows. In section 2, we formulate the model, and in section 3, we present
its mathematical analysis. In particular, in subsection 3.2, we determine the disease-free equilibrium
point and study the dependence of the number of replications on the treatment coverage rate and the ef-
ficacy of TBDs; in subsection 3.4, we carry out a rigorous study of the existence and number of endemic
equilibria for the different types of population growth and the possibilities of occurrence of bifurcations
and in the subsection 3.5, we prove the global asymptotic stability of the disease-free equilibrium. In
section 4, we present numerical results that illustrate the effect of treatment with TBDs and the impact
of population growth in malaria dynamics. The paper ends with conclusions in section 5.

2 The model

We propose a simplified model of malaria transmission using treatment with TBDs, which, neverthe-
less, captures the essential features of the treatment by introducing the protected class. Thus, the human
population is subdivided into four compartments: susceptible (Sh), infectious (Ih), recovered (Rh) and
protected (Ph). On contact with an infectious mosquito, a susceptible human can become infectious at

the rate
aβvh Iv

Nh
. Once infectious, the individual may recover naturally at the rate σ, joining the recov-

ered class, or may recover after treatment with a TBD at the rate ωh, thus becoming protected, that is
noninfective and immune. Recovered individuals may lose their immunity at the rate of γh, and pro-
tected individuals may lose their protection at the rate of ϑh. All individuals may die at the rate dh(Nh),
and infectious individuals can also die of the disease at the rate δh. We consider four demographic
models for the human population

a) Malthusian growth,
bh(Nh) = πhNh, dh(Nh) = µ1h.

b) Simplified logistic, or affine, growth,

bh(Nh) = λh, dh(Nh) = µ1h.
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c) Logistic growth — density dependent birth rate,

bh(Nh) = rNh

(
1 − Nh

K

)
, dh(Nh) = µ1h.

d) Logistic growth — density dependent death rate,

bh(Nh) = πhNh, dh(Nh) = µ1h + µ2hNh.

In the mosquito population, a susceptible mosquito in contact with an infectious individual or a

recovered individual can become infectious at the rate
aβhv(Ih + ξrRh)

Nh
, and all mosquitoes die at the

rate dv(Nv).
Recruitment to humans and mosquitoes occurs only in the susceptible class and is described by the

functions bh(Nh) and bv(Nv), respectively.
The descriptions of the compartments in model (1) with TBDs is given in Table 1.

Variables Description Quasi-dimension
Sh susceptible humans H
Ih infectious humans H
Rh recovered humans H

Ph
protected, i.e., successfully treated
and noninfective humans H

Sv susceptible mosquitoes V
Iv infectious mosquitoes V

Table 1: State variables, their description and corresponding quasi-dimension.

The flow of the model is shown on Fig. 2, while the parameters are described in Table 2.

Sh

Rh

Ih Ph

Sv Iv

bh(Nh) Λh

γ
h

ϑh

cωh

c̄ω
h
+

σ

d(Nh) d(Nh) + δh

d(Nh)

d(Nh)

bv(Nv) Λv

d(Nv) d(Nv)

Figure 2: Flow diagram showing the malaria transmission dynamics between human and mosquito
populations with a transmission-blocking drug treatment, Here c̄ = 1 − c, bh(Nh) and bv(Nv) represent
the net rates of births, whereas dh(Nh) and dv(Nv) represent the net rates of deaths for humans and
vectors, respectively. Description of the parameters of the model is given in Table 2.
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Table 2: Parameters, their description and corresponding quasi-dimension. We use the notations H for
dimension of number humans, V for number of mosquito-vectors.

Parameters Description Quasi-dimension
λh total constant recruitment rate of susceptible humans H × day−1

πh per capita birth rate of humans day−1

πv per capita birth rate of mosquitoes day−1

βvh the probability of transmission from infectious vector (mosquito) to
susceptible humans during bite

dimensionless

βhv the probability of transmission from infectious humans to suscepti-
ble vectors during bite

dimensionless

a the average biting rate of mosquitoes on humans H × (V × day)−1

Λh force of infection from infectious vectors to susceptible humans day−1

Λv force of infection from infectious humans to susceptible vectors day−1

ωh constant rate of treatment of infectious human with TBD day−1

c probability that TBDs confer 100% reduction in transmission dimensionless
γh waning rate of immunity day−1

σ natural recovery rate of infected humans by immune response day−1

ζr reduction of the infectivity of recovered humans to vectors dimensionless
µ1h density-independent death rate of humans day−1

µ1v density-independent death rate of mosquitoes day−1

µ2h additional density-dependent part of the death rate for humans H−1 × day−1

µ2v additional density-dependent part of the death rate for mosquitoes V−1 × day−1

δh disease induced death rate day−1

ϑh rate at which individuals in class Ph lose their protection against in-
fection

day−1

Therefore, we shall study the following non-linear system of ODEs.

S′
h = bh(Nh) + γhRh + ϑhPh −

(
aβvh

Iv
Nh

+ dh(Nh)
)

Sh,

I′h = aβvh
Iv
Nh

Sh − (ωh + σ + dh(Nh) + δh)Ih,

R′
h = ((1 − c)ωh + σ)Ih − (γh + dh(Nh))Rh,

P′
h = cωh Ih − (ϑh + dh(Nh))Ph,

S′
v = bv(Nv)−

(
aβhv

(Ih + ζrRh)

Nh
+ dv(Nv)

)
Sv,

I′v = aβhv
(Ih + ζrRh)

Nh
Sv − dv(Nv)Iv

(1)

with initial conditions {
Sh(0) > 0, Ih(0) ≥ 0, Rh(0) ≥ 0, Ph(0) ≥ 0,
Sv(0) > 0, Iv(0) ≥ 0.

(2)

3 Analysis of the model

In the next subsection, we present various results on the mathematical analysis of the model (1).

3.1 Basic properties of the model

In this subsection, we find the invariant region of the model (1) and, in particular, non-negativity of its
solutions. To simplify the expressions, we let gi(Nh) = ωh + σ + δh + dh(Nh), gr(Nh) = γh + dh(Nh) and
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gp(Nh) = ϑh + dh(Nh), Ah = aβvh, Av = aβhv and fr = (1 − c)ωh + σ.

Proposition 1 The non-negative cone R6
+ is positively invariant for the system (1) with initial conditions (2).

Proof. The system model (1) can be written in a matrix form as

x′ = A(x)x + b(x),

where x = (Sh, Ph,Sv, Ih, Iv, Rh)
T , b(x) = (bh(Nh),bv(Nv),0,0,0,0)T and

A(x) =



− Ah Iv

Nh
− dh(Nh) ϑh 0 γh 0 0

0 −gp(Nh) 0 cωh 0 0

0 0 − Av(Ih + ξrRh)

Nv
− dh(Nv) 0 0 0

0 0 0 −gi(Nh)
AhSh

Nh
0

0 0 0
AvSv

Nh
−dv(Nv)

ξr AvSv

Nh
0 0 0 fr 0 −gr(Nh)


.

The matrix A is Metzler matrix and it is well know that the systems determined by Metzler matrices
preserve invariance of the non-negative cone.

The time derivatives of the total human population Nh(t) and mosquitoes Nv(t) can be obtained by
adding the first fourth and, respectively, the last two, equations, of system (1):

N′
h = bh(Nh)− dh(Nh)Nh − δh Ih,

N′
v = bv(Nv)− dv(Nv)Nv.

(3)

Therefore often we will find it advantageous to work with the following version of (1)

N′
h = bh(Nh)− dh(Nh)Nh − δh Ih,

I′h = aβvh
Iv
Nh

(Nh − Ih − Rh − Ph)− (ωh + σ + dh(Nh) + δh)Ih,

R′
h = ((1 − c)ωh + σ)Ih − (γh + dh(Nh))Rh,

P′
h = cωh Ih − (ϑh + dh(Nh))Ph,

N′
v = bv(Nv)− dv(Nv)Nv,

I′v = aβhv
(Ih + ζrRh)

Nh
(Nv − Iv)− dv(Nv)Iv.

(4)

Proposition 2 Let N0
h and N0

v be the positive constant equilibrium of the system (3) when all the infectious
components are zero. The set Ω = Ωh × Ωv ⊆ R4

+ × R2
+, where

Ωh =
{
(Nh, Ih, Rh, Ph) ∈ R4

+ : 0 < Sh + Ih + Rh + Ph ≤ N0
h
}

,
Ωv =

{
(Sv, Iv) ∈ R2

+ : 0 < Sv + Iv ≤ N0
v
}

.

is positively invariant and attracts all solutions to system (1) emanating from R6∗
+ .
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3.2 Disease free equilibrium and basic reproduction number R0

Under some suitable assumptions on the functions bx and dx, x ∈ {h,v}, one can show that system (4)
has a unique positive disease free equilibrium point given by E0 =

(
N0

h ,0,0,0, N0
v ,0
)
, where

(
N0

h , N0
v
)

is
the positive solution of  bh(N0

h )− dh(N0
h )N0

h = 0

bv(N0
v )− dv(N0

v )N0
v = 0.

(5)

We note that such mathematical assumptions are demographically meaningful and are currently often
used in the literature. They are, however, not satisfied for the simplest case of the Malthusian demog-
raphy, which, therefore, requires a separate analysis, see section 3.3.

By using the next-generation matrix method based on the approach and notations used in [16, 38], we
find that the control reproduction number, Rc, evaluated at E0 is given by

Rc =

√
Ah AvN0

v
(

g0
r + frξr

)
N0

h d0
vg0

i g0
r

=

√
Ah AvN0

v
[
g0

r + ((1 − c)ωh + σ) ξr
]

N0
h d0

vg0
i g0

r
, (6)

where b0
h = bh(N0

h ), d0
h = dh(N0

h ), g0
i = gi(N0

h ), g0
r = gr(N0

h ), g0
p = gp(N0

h ), b0
v = bv(N0

v ) and d0
v = dv(N0

v ).

Remark 3 1. The control reproduction number can be rewritten in the form

R2
c =Rv (Ri +Rr) , (7)

which can be derived as follows. When an infectious mosquito is introduced into a fully susceptible human

population, it will infect humans during its average infectious period,
1
d0

v
, at the rate

Av

N0
h

. The total number

of human infected by this mosquito during its entire infectious period is approximately equal to Rv =
1
d0

v
× Av

N0
h
× S0

h. On the other hand, if an infectious human is introduced into a population of mosquitoes

composed only of susceptible ones, during its average infectious period
1
g0

i
, it will infect mosquitoes at the

rate
Ah

N0
h

. After its infectious period, a fraction
(1 − c)ω + σ

g0
i

will recover, and during its recovered period,

1
g0

r
, it will infect mosquitoes at the rate

Ahζr

N0
h

. So the total number of mosquitoes infected by an infectious

human will be Ri +Rr with

Ri =
1
g0

i
× Ah

N0
h
× S0

v and Rr =
(1 − c)ω + σ

g0
i

× 1
g0

r
× Ahζr

N0
h

× S0
v

and (7) follows upon noticing that at DFE we have S0
h = N0

h and S0
v = N0

v .

2. The description given in the previous point does not depend on the nature of the function bh(Nh), but in
the particular case of Malthusian growth we can’t use this value to determine the local stability of DFE.

3. One can see that Rc is a decreasing function of c, the probability that the TBDs confer 100% reduction in
transmission. So, one needs to increase this parameter to control the evolution of the disease.

4. Rc can be written as R2
c =R2

0 (1 − φ(c)), where R0 =

√
Ah AvN0

v
[
g0

r + (ωh + σ)ξr
]

N0
h g0

vg0
i g0

r
is the basic repro-

duction number, obtained when c = 0 (i.e., with no treatment with TBDs), and φ(c) =
cωhξr

g0
r + (ωh + σ)ξr

represents the TBD-induced reduction in R0.
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3.3 The case of the Malthusian growth of the human population

The case when the first equation in (3) describes the Malthusian growth, that is,

N′
h = πhNh − µ1hNh − δh Ih := rhNh − δh Ih, (8)

though arguably the simplest, does not fit into the general theory and thus requires a special treatment.
In fact, the disease free population does not have an equilibrium if rh = πh − µ1h > 0, it has a continuum
of equilibria (N0

h = N0 for any initial condition N0 of N) if rh = 0 and it decays to zero if rh < 0.
In this subsection, and in all subsequent cases, we assume that the disease free mosquito population

has a single positive globally stable equilibrium.
First we note that if rh < 0, then Nh(t) → 0 as t → ∞, thus from the nonnegativity of solutions,

Ih(t),Sh(t), Rh(t), Ph(t)→ 0 as t → ∞ irrespective of δh. Thus the whole human population is wiped out
and we have globally attractive disease-free (but also human-free) equilibrium (0,0,0,0, N0

v ,0).
Consider now the case rh ≥ 0. Consider the first two equations of (4) N′

h = rhNh − δh Ih,

I′h = aβvh
Iv
Nh

(Nh − Ih − Rh − Ph)− (ωh + σ + µ1h + δh)Ih.
(9)

We can make the following observations.

Lemma 4 The number of infectives Ih, and hence the numbers of recovered Rh and protected Ph, remain bounded
irrespective of rh ≥ 0 and the bound is independent of Nh(0).

Proof. Using the notation introduced at the beginning of Section 3.1, we see that the second equation in
(9) yields

I′h ≤ Ah Iv,max − gi Ih,

where the assumption on the vector’s demography implies that maxt≥0 Iv(t) := Iv,max < ∞. Hence

Ih(t) ≤ e−git Ih(0) +
Ah Iv,max

gi
(1 − e−git) ≤ max

{
Ih(0),

Ah Iv,max

gi

}
. (10)

Further, Iv,max ≤ Nv,max := maxt≥0 Nv(t) and, by the second equation of (3), Nv,max is independent of
Nh(0). Thus

max
t≥0

Ih(t) =: Ih,max

for a constant Ih,max independent of rh and Nh(0) and the statement for Ih is proved.
The statement for Rh and Ph follows directly from (4).

Corollary 5 There is no globally stable equilibrium for (4) if rh > 0.

Proof. Since Ih(t) ≤ Ih,max, t ≥ 0, we have

N′
h = rhNh − δh Ih ≥ rhNh − δh Ih,max

and, as above,

Nh(t) ≥ erhtNh(0) +
δh Ih,max

rh
(1 − erht) = erht

(
Nh(0)−

δh Ih,max

rh

)
+

δh Ih,max

rh
.

Hence, the population will tend to infinity if we take sufficiently large initial population Nh(0).
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Proposition 6 If δh < rh, then Iv(t)→ 0 as t → ∞.

Proof. We have
N′

h ≥ (rh − δh)Nh,

so, denoting η = rh − δh,
Nh ≥ Nh(0)eηt.

Consider the last equation in (4), written as

I′v = Av
(Ih + ζrRh)

Nh
Nv −

(
Av

(Ih + ζrRh)

Nh
+ µv

)
Iv.

Using Lemma 4, non-negativity of solutions and the boundedness of Nv, we have

Iv(t) ≤ e−µvt Iv(0) +
K

µv − η

(
e−ηt − e−µvt)

for some constant K, with an obvious modification if η = µv.

Corollary 7 Under assumptions of Proposition 6, Ih(t)→ 0 as t → ∞.

Proof. As above, we transform the second equation of (9) as follows

I′h ≤ Ah Iv − gi Ih

and obtain

Ih(t) ≤ e−git Ih(0) +
e−git

Ah

∫ t

0
egis Iv(s)ds

and we obtain the thesis either by direct integration or by applying L’Hôspital rule.

Proposition 8 If rh = 0, then Ih(t)→ 0 as t → ∞ and, moreover,

∫ ∞

0
Ih(s)ds ≤ Nh(0)

δh
.

Proof. If we take N = Sh + Ih + Rh + Ph + Sv + Iv as a Lyapunov function for (1), we obtain

N′ = −δh Ih.

Since, by Lemma 4, the trajectories are bounded, LaSalle’s principle shows that all positive trajectories
converge to the largest invariant set contained in {(Sh, Ih, Rh, Ph,Sv, Iv) ∈ R6

+ : Ih = 0} and hence Ih(t)→
0 as t → ∞.

Summarizing, if rh = 0, the disease will be eliminated but we do not have criterion which would
ensure the survival of the whole population, that is, that Nh → N∞ > 0 and t → ∞. On the other hand,
if rh = πh − µ1h > δh, then there is no asymptotically stable equilibrium for the whole system (4) as the
population is growing unboundedly, however, the numbers of infective hosts and vectors (and hence of
recovered and protected humans) tend to zero, and thus we can talk about elimination of the disease.
Finally, if 0 < rh < δh
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3.4 Endemic equilibrium points

The endemic equilibrium point is any point EEP = (S∗
h , I∗h , R∗

h, P∗
h ,S∗

v , I∗v ) solving the system

b∗h + γhR∗
h + ϑhP∗

h −
(

Ah
I∗v
N∗

h
+ d∗h

)
S∗

h = 0,

Ah
I∗v
N∗

h
S∗

h − g∗i I∗h = 0,

fr I∗h − g∗r R∗
h = 0,

cωh I∗h − g∗pP∗
h = 0,

b0
v −

(
Av

(
I∗h + ζrR∗

h
)

N∗
h

+ d0
v

)
S∗

v = 0,

Av

(
I∗h + ζrR∗

h
)

N∗
h

S∗
v − d0

v I∗v = 0.

where b∗h = bh(N∗
h ),d

∗
h = dh(N∗

h ), g∗i = gi(N∗
h ), g∗r = gr(N∗

h ) and g∗p = gp(N∗
h ). We obtain

R∗
h =

fr

g∗r
I∗h , P∗

h =
cωh
g∗p

I∗h , I∗v =
Av

(
1 + ξr fr

g∗r

)
I∗h N0

v

Av

(
1 + ξr fr

g∗r

)
I∗h + d0

vN∗
h

,

where S∗
v = N0

v − I∗v . Using the equation Ah
S∗

h
N∗

h
I∗v − g∗i I∗h = 0 ⇔ Ah(N∗

h − P∗
h − R∗

h − I∗h )I∗v − g∗i I∗h N∗
h = 0,

and after some calculations, we obtain

I∗h =
g∗i d0

vN∗2
h
(
R∗2

c − 1
)

Av

(
1 + ξr fr

g∗r

)(
Ah

(
1 + fr

g∗r
+ cωh

g∗p

)
N0

v + g∗i N∗
h

) (11)

with

R∗
c =

√√√√Ah Av

(
1 + frξr

g∗r

)
N0

v

g∗i d0
vN∗

h
.

We note that when δh = 0, the first equation of (3) becomes
dNh
dt

= bh(Nh) − dh(Nh)Nh. In this case,

we have N∗
h = N0

h . Therefore, b∗h = b0
h,d∗h = d0

h, g∗i = g0
i , g∗r = g0

r and g∗p = g0
p, which implies that R∗2

c =

AhN0
v Av

(
1 + ξr fr

g0
r

)
g0

i d0
vN0

h
=R2

c . Hence, (11) can be written as

I∗h =
g0

i d0
vN02

h
(
R2

c − 1
)

Av

(
1 + ξr fr

g0
r

)(
Ah

(
1 + fr

g0
r
+ cωh

g0
p

)
N0

v + g0
i N∗

h

) .

This leads to the following result:

Proposition 9 If δh = 0, then system (1) exhibits a forward bifurcation; that is, system (1) has:

1. no endemic equilibrium points if R2
c ∈ [0,1],

2. a unique endemic equilibrium point if R2
c ∈ (1,+∞).

Next, we assume that δh > 0 and find N∗
h for two particular cases:
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3.4.1 Case dh (Nh) = µ1h

Using the expression of d∗h, we obtain g∗r = g0
r = γh + µ1h, g∗p = g0

p = ϑh + µ1h and g∗i = g0
i = ωh + σ +

δh + µ1h, which implies that R∗2
c =

AhN0
v Av

(
1 + ξr fr

g0
r

)
g0

i d0
vN∗

h
. Therefore, (11) can be written as

I∗h =
N∗

h
(

AhN0
v ρ − g0

i d0
vN∗

h
)

(θN0
v + g0

i N∗
h )ρ

, (12)

where ρ = Av

(
1 + ξr fr

g0
r

)
and θ = AhN0

v

(
1 + fr

g0
r
+ cωh

g0
p

)
.

Remark 10 If we return to Section 3.3, that is, with bh(Nh) = rhNh, then (12) and the stationary case of (8)
lead to the following equation for a possible stationary population size

rhN∗
h − δh

N∗
h
(

AhρN0
v − g0

i d0
vN∗

h
)

ρ
(
θN0

v + g0
i N∗

h
) = 0, (13)

which, if N∗
h > 0, gives

N∗
h =

ρN0
v (Ahδh − rhθ)

gi(AhG∗
r rh + δhd0

v)
.

We see that N∗
h > 0 provided δh > rh

(
1 + fr

g∗r
+ cωh

g∗p

)
so, in particular, δh must be bigger than rh, which is

consistent with Corollary 6.
Hence, in particular, in the case of a Malthusian population, large disease-induced rates δh > rh can stabilize

a population what would be exponentially growing in the absence of a disease. However, according to Corollary
5, this stabilization will never be global.

3.4.2 Case: bh = λh and dh (Nh) = µ1h

We first note that, in this case, the first equation of system (5) has a unique positive solution N0
h = λh

µ1h
.

Using R2
c =

AhN0
v ρ

N0
h d0

vg0
i

, we can write (12) as

I∗h =

d0
vg0

i N0
h N∗

h

(
R2

c −
N∗

h
N0

h

)
(θ + g0

i N∗
h )ρ

.

Substituting the expression of I∗h into the equation b∗h − d∗h N∗
h − δh I∗h = 0 and using λh = µ1hN0

h , we
obtain

µ1hN0
h − µ1hN∗

h − δh

d0
vg0

i N0
h N∗

h

(
R2

c −
N∗

h
N0

h

)
(θ + g0

i N∗
h )ρ

= 0. (14)

To find the endemic equilibrium points of model system (2) we substitute N0
h

N∗
h
− 1= x∗ into (14) and solve

for x∗ > 0, which is equivalent to finding N∗
h ∈

(
0, N0

h
)

that satisfies (14). In fact, it is easy to see that if

0 < N∗
h < N0

h , then x∗ > 0. Moreover, if x∗ > 0, then N0
h

N∗
h
> 1, which, by N0

h > 0, implies 0 < N∗
h < N0

h .

Replacing N∗
h by

N0
h

x∗ + 1
in equation (18), factorizing and collecting with respect to x∗, we obtain the

following equation
x∗2 + b

(
κ −R2

c

)
x∗ + α

(
1 −R2

c

)
= 0, (15)

11



where 
b = α =

δhg0
i d0

v

µ1hθρ
> 0,

κ =
(θ + N0

h g0
i )µ1hρ

δ,h g0
i d0

v
> 0.

(16)

In this case, we can apply Proposition 1 of [34]. We obtain

Proposition 11 1. If κ ≥ 1, then system (1) exhibits a forward bifurcation; that is, system (1) has:

(a) no endemic equilibrium points if R2
c ∈ [0,1],

(b) a unique endemic equilibrium point if R2
c ∈ (1,+∞).

2. If κ < 1, then 0 < Qc :=
κb − 2 + 2

√
b(1 − κ) + 1

b
< 1 and system (1) exhibits backward bifurcation;

that is, system (1) has:

(a) no endemic equilibrium points if R2
c ∈ [0, Qc),

(b) one endemic equilibrium point if R2
c = Qc,

(c) two endemic equilibrium points if R2
c ∈ (Qc,1),

(d) a unique endemic equilibrium point if R2
c ∈ [1,+∞).

An illustration of the bifurcation results in Proposition 11 is presented in the following figure:

(a) κ ≥ 1 (b) 0 < κ < 1

Figure 3: An illustration of the model’s bifurcation behavior.

3.4.3 Case bh(Nh) = rNh

(
1 − Nh

K

)
and dh (Nh) = µ1h

We first note that, in this case, the solutions of the first equation of system (5), rNh

(
1 − Nh

K

)
− µ1hNh =

0, are 0 and N0
h = (r−µ1h)K

r , which is biologically feasible if r > µ1h. One can show that, under this
condition, and in the absence of the disease, the human population will converge to N0

h . Subsequently,
in this section, we restrict our analysis to the case where r > µ1h. For notational convenience, we set
η = r − µ1h.
In this case, N∗

h satisfies

rN∗
h

(
1 −

N∗
h

K

)
− µ1hN∗

h − δh
N∗

h
(

AhN0
v ρ − g0

i d0
vN∗

h
)

(θ + g0
i N∗

h )ρ
= 0, (17)
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Therefore, N∗
h = 0, or

N∗2
h + q1N∗

h + q0 = 0, (18)

where 
q0 =

K
(
δhN0

h d0
vg0

i R
2
c − ηθρ

)
rρg0

i
=

KδhN0
h d0

v

rρ

(
R2

c −
rθρ

Kδhd0
vg0

i

)
,

q1 =
rθρ − Kg0

i
(
ηρ + δhd0

v
)

rρg0
i

=
θ

g0
i
− Kδhd0

v
rρ

− N0
h .

As in the previous case, we replace N∗
h by

N0
h

x∗ + 1
, this leads to the following equation

Q2x∗2 + Q1x∗ + Q0 = 0, (19)

where Q0 =
rρ

Kδh N0
h d0

v

(
N0

h
(

N0
h + q1

)
+ q0

)
= rρ

Kδh N0
h d0

v

(
θN0

h
g0

i
+ q0

)
, Q1 =

rρ

Kδh N0
h d0

v

(
q1N0

h + 2q0
)

and Q2 =

rρ

KδhN0
h d0

v
q0.

Substituting q0 and q1 in Q0 and Q1, we obtain
Q0 =R2

c − 1
Q1 = 2

(
R2

c − κ1
)

Q2 =R2
c − κ2

where

κ1 =
rρ(θ + g0

i N0
h ) + Kδhd0

vg0
i

2Kδhd0
vg0

i
> 0 and κ2 =

rθρ

Kδhd0
vg0

i
> 0.

Let
∆
(
R2

c

)
= Q2

1 − 4Q0Q2 = 4
(
(κ2 − 2κ1 + 1)R2

c +
(

κ2
1 − κ2

))
.

One can easily show that κ2
1 − κ2 > 0, therefore,

• If κ2 − 2κ1 + 1 > 0, then ∆
(
R2

c
)
> 0 for all Rc.

• If κ2 − 2κ1 + 1 < 0, then ∆
(
R2

c
)
> 0 if and only if R2

c < κ3 := κ2−κ2
1

κ2−2κ1+1 .

Noting that κ1 > κ2 if and only if κ4 :=
Kδhd0

vg0
i + rρg0

i N0
h

rθρ
> 1, we discuss the following two cases.

Case κ4 > 1. In this case, κ1 > κ2, leading to the following result.

Proposition 12 1. If 1 < κ2, then equation (19) has

(a) no positive roots if R2
c < 1,

(b) a unique positive root if 1 <R2
c < κ2,

(c) two positive roots if κ2 <R2
c < κ3,

(d) no positive roots if κ3 <R2
c .

2. If κ2 < 1 < κ1, then equation (19) has

(a) no positive roots if R2
c < κ2,

(b) a unique positive root if κ2 <R2
c < 1,

(c) two positive roots if 1 <R2
c < κ3,

13



(d) no positive roots if κ3 <R2
c .

3. If κ1 < 1, then equation (19) has

(a) no positive roots if R2
c < κ2,

(b) a unique positive root if κ2 <R2
c < 1,

(c) no positive roots if 1 <R2
c .

Proof. We first note that if κ1 > 1 and κ1 > κ2, then 2κ1 − 1 > κ1, which, together with κ2 < κ1, implies

that κ2 < 2κ1 − 1. Therefore ∆
(
R2

c
)
> 0 if and only if R2

c < κ3 := κ2−κ2
1

κ2−2κ1+1 . Furthermore, κ3 − κ1 =

− (κ1−1)(κ1−κ2)
(2κ1−1)−κ2

< 0 and κ3 − κ2 =
(κ1−κ2)

2

(2κ1−1)−κ2
> 0, implying that κ2 < κ3 < κ1.

1. If 1 < κ2, then κ2 − 2κ1 + 1 = κ2 − κ1 − κ1 + 1 < 0 (because κ2 − κ1 < 0 and −κ1 + 1 < 0). This
implies that ∆

(
R2

c
)
> 0 if and only if R2

c < κ3 := κ2−κ2
1

κ2−2κ1+1 . Furthermore, κ3 − κ1 =− (κ1−1)(κ1−κ2)
(2κ1−1)−κ2

<

0 and κ3 − κ2 =
(κ1−κ2)

2

(2κ1−1)−κ2
> 0, implying that κ2 < κ3 < κ1. Thus, we explore the following cases.

(a) If R2
c < 1, then R2

c < κ1 and R2
c < κ2, implying that Q0 > 0, Q1 > 0 and Q2 > 0. In this case

equation (19) does not have a positive root.

(b) If 1 <R2
c < κ2, then Q0 > 0 and Q2 < 0. In this case, equation (19) has a unique positive root.

(c) If κ2 < R2
c < κ3, then ∆ (Rc) > 0 implying that (19) has two real roots x∗± = −Q1±

√
∆

2Q0
, which

are positive because, in this case, Q0 > 0, Q1 < 0 and Q2 > 0.

(d) If κ3 <R2
c , then, (19) has no positive roots. In fact,

i. If κ3 <R2
c < κ1, then ∆ (Rc) < 0 implying that (19) has no real roots.

ii. If κ1 < R2
c , then Q0 > 0, Q1 > 0 and Q2 > 0. In this case equation (19) does not have a

positive root.

2. If κ2 < 1 < κ1, then,

(a) If R2
c < κ2, then Q0 < 0, Q1 < 0 and Q2 < 0. In this case, equation (19) has no positive roots.

(b) If κ2 <R2
c < 1, then Q0 < 0 and Q2 > 0. In this case, equation (19) has a unique positive root.

(c) If 1 < R2
c < κ3, then, just like case 1.c., we have ∆ (Rc) > 0 implying that equation (19) has

two roots, which are positive because Q0 > 0, Q1 < 0 and Q2 > 0.

(d) If κ3 <R2
c , then just like case 1.d., equation (19) has no positive roots. In fact,

i. If κ3 <R2
c < κ1, then ∆ (Rc) < 0 implying that (19) has no real roots.

ii. If κ1 < R2
c , then Q0 > 0, Q1 > 0 and Q2 > 0. In this case equation (19) does not have a

positive root.

3. If κ1 < 1, then

(a) If R2
c < κ2, then Q0 < 0, Q1 < 0 and Q2 < 0. In this case, equation (19) has no positive roots.

(b) If κ2 <R2
c < 1, then Q0 < 0 and Q2 > 0. In this case, equation (19) has a unique positive root.

(c) If 1 <R2
c , then Q0 > 0, Q1 > 0 and Q2 > 0. In this case, equation (19) has no positive roots.

This completes the proof.
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Case κ4 < 1. In this case, κ1 < κ2 leading to the following result.

Proposition 13 1. If 1 < κ1, then equation (19) has

(a) no positive roots if R2
c < 1,

(b) a unique positive root if 1 <R2
c < κ2,

(c) no positive roots if κ2 <R2
c .

2. If κ1 < 1 < κ2, then equation (19) has

(a) no positive roots if R2
c < κ3,

(b) two positive roots if κ3 <R2
c < 1.

(c) a unique positive root if 1 <R2
c < κ2,

(d) no positive roots if κ2 <R2
c .

3. If κ2 < 1, then equation (19) has

(a) no positive roots if R2
c < κ2,

(b) a unique positive roots if κ2 <R2
c < 1,

(c) no positive roots if 1 <R2
c .

Proof.

1. If 1 < κ1, then

(a) If R2
c < 1, then R2

c < κ1 and R2
c < κ2, implying that Q0 < 0, Q1 < 0 and Q2 < 0. In this case

equation (19) does not have a positive root.

(b) If 1 <R2
c < κ2, then R2

c < κ2, implying that Q0 > 0 and Q2 < 0. In this case, equation (19) has
a unique positive root.

(c) If κ2 <R2
c , then Q0 > 0, Q1 > 0 and Q2 > 0. In this case, equation (19) does not have a positive

root.

2. If κ1 < 1 < κ2, then

(a) If R2
c < κ1, then Q0 < 0, Q1 < 0 and Q2 < 0. In this case, equation (19) does not have a positive

root.

(b) If κ1 <R2
c < 1, then Q0 < 0, Q1 > 0 and Q2 < 0. Here, we have (κ2 − (2κ1 − 1)) = (κ2 − κ1) +

(1 − κ1) > 0, implying that ∆ (Rc) > 0 if and only if R2
c > κ3. Moreover, since

κ3 − 1 = − (κ1 − 1)2

(κ2 − (2κ1 − 1))
< 0

κ3 − κ1 =
(κ1 − 1) (κ1 − κ2)

(κ2 − (2κ1 − 1))
> 0

then κ1 < κ3 < 1. Thus

i. If κ1 <R2
c < κ3, then ∆ (Rc) < 0, implying that (19) has no positive roots.

ii. If κ3 < R2
c < 1, then ∆ (Rc) > 0, implying that (19) has two real roots, x∗± = −Q1±

√
∆

2Q0
,

which are positive because Q0Q2 > 0 and −Q1Q2 > 0.

(c) If 1 <R2
c < κ2, then Q0 > 0, Q1 > 0 and Q2 < 0, and equation (19) has a unique positive root.

15



(d) If κ2 <R2
c , then Q0 > 0, Q1 > 0 and Q2 > 0. Here, equation (19) does not have a positive root.

3. If κ2 < 1, then

(a) If R2
c < κ1, then Q0 < 0, Q1 < 0 and Q2 < 0 and equation (19) does not have a positive root.

(b) If κ1 < R2
c < κ2, then Q0 < 0, Q1 > 0 and Q2 < 0. Given that Q0

Q2
> 0 and −Q1

Q2
< 0, then if

equation (19) had two real roots then their product is positive and their sum is negative
implying that they are negative. Therefore, in this case equation (19) does not have any
positive root.

(c) If κ2 <R2
c < 1, then Q0 < 0, Q1 > 0 and Q2 > 0, and equation (19) has a unique positive root.

(d) If 1 <R2
c , then Q0 > 0, Q1 > 0 and Q2 > 0. Here, equation (19) does not have a positive root.

This completes the proof.

Remark 14 The endemic equilibrium points mentioned in this proposition, are given as solutions to

S∗
h =

g∗i N∗
h

Ah I∗v
I∗h ,

R∗
h =

fr

g∗r
I∗h ,

P∗
h =

cωh
g∗p

I∗h ,

I∗v =
Av

(
1 + ξr fr

g∗r

)
I∗h N0

v

Av

(
1 + ξr fr

g∗r

)
I∗h + d0

vN∗
h

,

S∗
v = N0

v − I∗v ,

where N∗
h =

N0
h

x∗ + 1
with I∗h derived from the stationary form of the first equation of (4) as

I∗h =
bh(N∗

h )− dh(N∗
h )N∗

h
δh

=
rN∗

h
(

N0
h − N∗

h
)

δhK
=

rN02
h x∗

δhK (x∗ + 1)2 .

Next, we give an illustration of the bifurcation results in Propositions 12 and 13. For this, we express

I∗h in terms of x∗. Since I∗h =
rN02

h x∗

δhK(x∗+1)2 , we have two positive roots,

I∗h± =
rN02

h
Kδh

(
κ1 −R2

c ±
√

∆
)(

R2
c − 1

)
(

κ1 − 1 ±
√

∆
)2 ,

where
∆ (Rc) = 4

(
(κ2 − 2κ1 + 1)R2

c −
(

κ2 − κ2
1

))
.

We note the following:

• Clearly, when R2
c = 1, we have I∗h± = 0.

• The two real roots I∗h± coincide when ∆ = 0, that is when R2
c = κ3 := κ2−κ2

1
κ2+1−2κ1

.

• When R2
c = κ2, we have

(
κ1 −R2

c ±
√

∆
)
= κ1 − κ2 ± |κ1 − κ2| , implying that one of the two real

roots I∗h± is equal to 0.
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An illustration of the bifurcation results in Proposition 12 is presented in the following figures:

(a) 1 < κ2 < κ1 (b) κ2 < 1 < κ1 (c) κ1 < 1.

Figure 4: An illustration of the model’s bifurcation behavior for κ2 < κ1.

(a) 1 < κ1 < κ2 (b) κ1 < 1 < κ2 (c) κ2 < 1

Figure 5: An illustration of the model’s bifurcation behavior for κ1 < κ2.

Remark 15 1. As announced in the introduction, we easily see the difference in the model’s bifurcation be-
havior when we change the equation describing the population’s demography.

2. We observe from Propositions 12 and 13 and corresponding Figures 4 and 5 that the model does not always
have an endemic equilibrium point even if Rc > 1. This result, not common in SIR models, highlights the
complex and counter intuitive ways in which the interplay of the demography and intervention strategies
can influence the dynamics of diseases, emphasizing the significance of adopting a comprehensive modeling
approach.

We conclude this subsection by deriving the formulae for the endemic equilibrium in the demo-
graphic model d) introduced in Section 2. Due to their complexity, however, we only use them in
numerical simulations.

3.4.4 Case bh(Nh) = πhNh and dh(Nh) = µ1h + µ2hNh

To simplify the expression we set gi1 = ωh + σ + δh + µ1h, gr1 = γh + µ1h, gp1 = ϑh + µ1h and T1 =

1 +
ξr fr

g0
r

. In this case with have

I∗h =

(
R2

c −
(N∗

h µ2h+gi1)N∗
h

N0
h gi0

)
N0

h N∗
h d∗vg0

i

(
frξr

N∗
h µ2h+gr1

+ 1
)

(
Ah AvN∗

v

(
cωh

N∗
h µ2h+gp1

+ fr
N∗

h µ2h+gr1
+ 1
)(

frξr
N∗

h µ2h+gr1
+ 1
)
+
(

N∗
h µ2h + gi1

)
AvN∗

h

(
fr

N∗
h µ2h+gr1

+ 1
))

T1

.

Hence, by replacing Ih by I∗h in the equation bh(Nh)− dh(Nh)Nh − δh Ih = 0, after some algebra we get

N∗
h

(
q5N∗5

h + q4N∗4
h + q3N∗3

h + q2N∗2
h + q1, N∗

h + q0

)
= 0 (20)

where
q5 = µ4

2h
[
d∗vδh + AvT1

(
(πh − µ1h)− fr − gi1 − gp1 − 2gr1

)]
,
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q4 = −µ3
2h AvT1

[
AhN∗

v µ2h + gr1 gi1 + gr1 gp1 + frµ1h + ( fr + gr1)(gi1 + gr1 + gp1 − (πh − µ1h))
]

+µ3
2hδhd∗v(ξr f f gi1 + 2gr1 + gp1),

q3 = −µ2h
[
N0

h d∗vδhg0
i g0

r µ2hR
2
c + Ah AvN∗

v T1µ2h(cωh + fr(1 + ξr) + 2gp1 gr1 − (πh − µ1h))

+AvT1
(
(gi1 gp1 + gi1 gr1 + gr1 gp1)( fr + gr1 − (πh − µ1h)) + gi1 gp1 gr1

−(πh − µ1h)( fr + gr1)(gi1 + gp1 + gr1)
)
− d∗vδh

(
(gi1 + gp1 + gr1)(ξr fr + gr1) + gi1 gp1

)]
,

q2 = −µ2h
[
N0

h d∗vδhµ2hg0
i R

0
c (ξr fr + 2gr1 + gp1 )

+Ah Av N∗
v µ2hT1

(
frgp1 + gr1 (cωh + gp1 ) + (ξr fr + gr1 )(cωh + gp1 + fr + gr1 )

−(πh − µ1h)(cωh + gp1 + fr(ξr + 1) + 2gr1 )
)

+AvT1
(
( fr + gr1 )(gi1 gp1 gr1 − (πh − µ1h)(gr1 gr1 + gp1 gr1 + gi1 gp1 ))− gi1 gp1 gi1 (πh − µ1h)

)
−d∗vδh

(
(ξr fr + gr1 )(gr1 gr1 + gp1 gr1 + gi1 gp1 ) + gp1 g2

r1

)]
,

q1 = −N0
h d∗vδhµ2hg0

i R
2
c
[
gp1 gr1 + (gp1 + gr1)(ξr fr + gr1)

]
+Ah AvN∗

v µ2hT1
[
(ξr fr + gr1)((cωh + fr)(πh − µ1h)− cωhgr1 − gp1( fr + gr1))

+(πh−µ1h)
(
(ξr fr + gr1)gp1 + (gr1 + gr1)( fr + gr1)

)]
+ gi1 gp1 gr1( fr + gr1) [AvT1(πh−µ1h) + d∗vδh] ,

and

q0 = −δhgr1 gp1 g0
i N0

h d∗v(ξr fr + gr1)

[
R2

c −
Ah AvT1N∗

v (πh − µ1h)(cgr1 ωh + gp1( fr + gr1))

δhgr1 gp1 g0
i N0

h d∗v

]
.

3.5 Global asymptomatic stability of disease free equilibrium (DFE)

In this subsection, we investigate the global asymptomatic stability of disease free equilibrium follow-
ing the approach in [23] (see also [4, 22]). We proceed by verifying that system (21) satisfies the condi-
tions of Theorem 4.3 in [23]. For this, as in section 3.1, we write the vector x = (Sh, Ih, Rh, Ph,Sv, Iv)T as
(xs, xd), with xs = (Sh, Ph,Sv)T and xd = (Ih, Rh, Iv)T , which represent the noninfected and the infected
humans and mosquitoes, respectively. With this new notation, model (1) can be written as{

x′s = A1(xs,0)
(
xs − x0

s
)

+ A12(x)xd

x′d = A2(x)xd,
(21)

and we introduce the notation x0
s =

(
N0

h ,0, N0
v
)
.

Remark 16 We note the following.

• For the case bh = λh, bv = λv, dh = µ1h and dv = µ1v, that is, the dynamics of both host and vector popula-
tions are given by the simplified logistic model, the disease free equilibrium is given by

(
N0

h ,0, N0
v ,0,0,0

)
=(

λh
µ1h

,0, λv
µ1v

,0,0,0
)

and

A1(xs,0) =

 −µ1h ϑh 0
0 −(ϑh + µ1h) 0
0 0 −µ1v

 , A12(x) =


0 γh −Ah

Sh
Nh

cωh 0 0

−Av
Sv

Nh
−ζr Av

Sv

Nh
0

 .

• For the case bh(Nh) = πhNh, bv(Nv) = πvNv, dh(Nh) = µ1h + µ2hNh and dv(Nv) = µ1v + µ2vNv, we
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Rh

Ih Iv

Figure 6: Digraph associated to the matrix A2(x)

have the disease free equilibrium given by
(

N0
h ,0, N0

v ,0,0,0
)
=
(

πh−µ1h
µ2h

,0, πh−µ1v
µ1v

,0,0,0
)

and

A1(xs,0) =

 −µ2hNh µ1h + ϑh 0
0 −(ϑh + d(Nh)) 0
0 0 −µ2vNv

 ,

A12(x) =


µ1h µ1h + γh −Ah

Sh
Nh

cωh 0 0

−Av
Sv

Nh
−ζr Av

Sv

Nh
µ1v

 .

• For the case bh(Nh) = rNh

(
1 − Nh

K

)
, bv(Nv) = rvNv

(
1 − Nv

Kv

)
, dh(Nh) = µ1h and dv(Nv) = µ1v, we

have the disease free equilibrium given by
(

N0
h ,0, N0

v ,0,0,0
)
=

(
ηK
r

,0,Kv
rv − µ1v

rv
,0,0,0

)
and

A1(xs,0) =


− r

K
Sh

r
K
(K − 2Sh − Ph) + ϑh 0

0 −(ϑh + µ1h) 0

0 0 − rv

Kv
Sv

 ,

A12(x) =


r
K
(K−2Sh−2Ph−2Rh − Ih)

r
K
(K − 2Sh − 2Ph − 2Rh) + γh −Ah

Sh
Nh

cωh 0 0

−Av
Sv

Nh
−ζr Av

Sv

Nh
− rv

Kv
(Kv−2Sv− Iv)

 .

• In the general case, we have

A2(x) =


−gi(Nh) 0 Ah

Sh
Nh

fr −gr(Nh) 0

Av
Sv

Nh
ξr Av

Sv

Nh
−dv(Nv)

 . (22)

For the purpose of our global stability analysis, we verify below that assumptions H1 to H3 in [23,
Theorem 4.3] are verified. In fact, one can prove that

H1 : System(21) is defined on a positively invariant and absorbing set Ω of the non-negative orthant.
The system is dissipative on Ω.

H2 : The DFE x0 of the sub system x′s = A1(xs,0)(xs − x0
s ) of (21) is globally asymptotically stable on Ω.

H3 : The matrix A2(x) given by (22) is Metzler. The graph on Figure 6, whose nodes represent the
various infected disease states, is strongly connected, which shows that the matrix is irreducible.
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We will show next that assumptions H4 and H5 are satisfied for the cases of bh(Nh) and dh(Nh), dis-
cussed in section 5. For the sake of analysis of the global stability, we further assume that

H̃4 : The equation bh(Nh)− (dh(Nh) + δh)Nh = 0 has a unique solution N#
h in

(
0, N0

h
)
.

This, along with Sh ≤ N0
h and Sv ≤ N0

v , give the the following upper bound matrix

Ā2 =

 −g#
i 0 Ah

fr −g#
r 0

Av
N0

v

N#
h

ξr Av
N0

v

N#
h

−d0
v

 .

So A2(x) ≤ Ā2, and the equality is possible only when x = x0. Thus, under H̃4, assumption H4 of
[23, Theorem 4.3] is satisfied.

We now decompose matrix Ā2 into blocs as

Ā2 =

(
M N
P Q

)

where

M = −g#
i , N =

(
0 Ah

)
, P =

 fr

Av
N0

v
N#

h

 , Q =

 −g#
r 0

ξr Av
N0

v
N#

h
−d0

v

 ,

with g#
i = gi(N#

h ) and g#
r = gr(N#

h ). Because Q is Metzler stable matrix, we obtain that Ā2 is stable if and
only if M − NQ−1M is Metzler stable, that is, M − NQ−1M is negative. Therefore, Ā2 is stable if

Ah AvN0
v
[
g#

r + frξr
]

g#
i g#

r N#
h dv(N0

v )
< 1. (23)

Since R2
c =

Ah AvN0
v
[
gr(N0

h ) + ((1 − c)ωh + σ)ξr
]

N0
h dv(N0

v )gi(N0
h )gr(N0

h )
, Ā2 is stable if and only if

H̃5 : R2
c <R#

c :=

(
g0

r + frξr
)

g#
i g#

r N#
h

(g#
r + frξr) g0

i g0
r N0

h
.

We note that H̃5 ensures that assumption H5 of [23, Theorem 4.3] is satisfied, and that due to H̃4, we
have R#

c < 1.
The above assumptions ensure that all assumptions of [23, Theorem 4.3] are satisfied. Hence, we

have the following result.

Theorem 17 (Global stability of DFE) The DFE of model (1) is globally stable when Rc <R#
c .

We can also note

Corollary 18 If δh = 0, then the coexistence DFE of model (1) is globally stable when Rc < 1.

Proof. If δh = 0, then κ > 1 and R#
c = 1 because N#

h = N0
h , gi(N#

h ) = gi(N0
h ) and gr(N#

h ) = gr(N0
h ).

3.6 Existence of EEPs versus global stability of the DFE

We note that the existence of EEPs is related to the global stability of DFE in the sense that the existence
of an EEP for certain values of model’s parameters precludes global stability of DFE for these parame-
ters. In this section we show that the results obtained above are consistent, that is, the sets of parameters
for which DFE is globally stable and for which there exist EEPs are disjoint.

20



In Theorem 17, we established that DFE is globally stable when Rc < R#
c . However, on Figures 3 –

5, we see that the model admits at least one EEP if Q# <Rc < 1, where

i. Q# = Qc if κ < 1,

ii. Q# = κ3 if κ1 < κ2,

iii. Q# = κ2 if κ2 < κ1.

If the inequality Q# ≤R#
c < 1 were to hold, then considering R2

c within the interval (Q#,R#
c ) would lead

to a contradictory scenario whereby, the model would exhibit both a globally asymptotically disease-
free equilibrium point and, at least, one endemic equilibrium point, which is absurd, as noted in the
preamble to this section.

Hence, we proceed to demonstrate that Q# >R#
c < 1 by analyzing the sign of Q# −R#

c . Our calcula-
tions are confined to case i., that is:

Q# = Qc =
κb − 2 + 2

√
b(1 − κ) + 1

b
,

where

b =
N0

h δhg0
i d0

v

µ1hθρ
, κ =

(
θ + N0

h g0
i
)

µ1hρ

δhg0
i d0

vN0
h

.

We have the following proposition:

Proposition 19 1. If R#
c < 2√

b+1+1
, then R#

c < Qc for all κ ∈ (0,1)

2. If 2√
b+1+1

<R#
c , then κ# :=R#

c − 2
√

1−R#
c

b ∈ (0,1) and we have

(a) Qc >R#
c for all κ ∈

(
κ#,1

)
,

(b) Qc <R#
c for all κ ∈

(
0,κ#) .

Proof. Calculating the derivative of Qc with respect to κ, we obtain ∂Qc
∂κ = b(1−κ)√

b(1−κ)+1
(√

b(1−κ)+1+1
) > 0

for κ ∈ (0,1) . Then the function κ → Qc increases from 2√
b+1+1

< 1 to 1. Hence,

1. if R#
c < 2√

b+1+1
, then R#

c < Qc for all κ ∈ (0,1) ;

2. if 2√
b+1+1

<R#
c , then by letting

x =
√

b(1 − κ) + 1 and B =
√

b (1 −R#
c ),

we obtain κ = 1
b
(
−x2 + b + 1

)
and

Qc −R#
c =

2x − x2 + B2 − 1
b

=
(B − x + 1) (B + x − 1)

B
.

For κ ∈ (0,1) , we have x ∈ (1,1 + b) , implying that B + x − 1 > 0. Hence Qc −R#
c = 0 if and only if

x = B + 1, that is,

κ = κ# =
1
b

(
− (B + 1)2 + b + 1

)
=R#

c − 2

√
1 −R#

c
b

.

We note that since R#
c → R#

c − 2
√

1−R#
c

b is increasing and 2√
b+1+1

< R#
c < 1, indeed κ# ∈ (0,1) . This

leads to the results in 2.(a) and 2.(b).
We can see from this proposition that in cases 1. and 2.(a), we have Qc > R#

c , which implies that
there is no conflict between the global stability of the DFE and the existence of EEPs. We will skip the
calculations in the remaining cases.
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4 Numerical simulations

In this section, we run some numerical simulations to monitor the short and long term impact of the dis-
ease on four populations of equal size but with different demographics, discussed earlier. Additionally,
we investigate how these populations respond to treatment with TBDs. For the sake of our simulations,
we set ωh = ϕωh0, where ϕ represents the treatment’s coverage and ωh0 is the TBD-induced recovery
rate. We use the parameter values listed in Table 3. We opt for two specific values of the transmission
blocking parameter: c = 0 to signify conventional treatments, and c = 1 to emulate TBDs. Moreover, we
select ϕ = 0.3 and 0.9 to indicate treatment coverage at low and high levels, respectively. We note that
the parameter µ1h is selected to yield an average lifespan of 62 years, whereas λh,µ2h and Kh are chosen
to ensure that the populations have size equal to N0

h = 106 at equilibrium.

Table 3: Parameters, baseline values, range and references.

Parameters baseline value or range reference
Humans
µ1h 4.4 × 10−5 Assumed
λh 44.19 Assumed
πh 4.86 × 10−5 Assumed
µ2h 4.42 × 10−12 Assumed
rh 0.001 Assumed
Kh 1.04 × 106 Assumed
βhv 0.24 [11]
a 0.33 [11]
ωh0 3.5 × 10−3 [8, 11]
c (0,1) varied
γh 0.005 [11]
σ 2 × 10−9 Assumed
δh 0.00047 [32]
ζr 0.05 [44]
ϑh 0.001 Assumed
Mosquitoes
πv 0.13 [4]
λv 1 × 104 Assumed
βvh 0.022 [11]
µ1v 0.047 [11]
µ2v 2 × 10−5 [4]

This leads to

i. λh = µ1hN0
h ,

ii. µ2h =
πh − µ1h

N0
h

,

iii. Kh =
rhN0

h
rh − µ1h

.

We utilize dotted lines to illustrate the model’s output in the absence of infection or treatment. The
dashed lines are used to depict the output of the model with infection but without treatment, whereas
the solid lines includes the treatment. Moreover, different demographic models are associated with
colors as follows:

a. blue: bh = λh,dh = µ1h,

b. red: bh = rhNh(1 − Nh/Kh),dh = µ1h,
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c. green: bh = πhNh,dh = µ1h + µ2hNh,

d. black: bh = µ1hNh,dh = µ1h.

4.1 Model without treatment:

The model without treatment is obtained by setting ϕ= 0. In this case, we have R2
c = 5.02,κ = 630325.08,κ1 =

7.32 and κ2 = 10.21.
Given that Rc > 1,

i. Proposition 11 yields that the blue line in Figure 7(b) will tend to a positive value as t tends to ∞,
and

ii. since 1 < κ1 < κ2 and 1 <Rc < κ2, Proposition 13 implies that the red line in Figure 7(b) will tend
to a positive value for large values of t.

Furthermore, on Figure 7(b) we observe a substantial difference in the responses to the disease for
the populations depicted in blue, red, and black. We also, notice that the blue line displays the highest
disease prevalence, followed by the red line, then the black one. The population shown in green exhibits
a response to infection similar to that in black; this is partially attributed to the low value of µ2h.

(a) (b)

Figure 7: Time evolution of the human population for ϕ = c = 0. We note the significant difference in
the reactions to the disease one the populations represented in blue, red and green. The two population
in green and black appear to have similar behaviors.

4.2 Adding Treatment

In this section, we conduct simulations to observe the dynamics of the model under the influence of
treatment. We consider two values of the transmission blocking parameter: c = 0 for conventional
treatments, and c = 1 for TBDs. The simulations are performed for two levels of treatment coverage:
Low, ϕ = 30% and high, ϕ = 90%.

4.2.1 Treatment with conventional drugs, c = 0

Low treatment coverage, ϕ=0.3. In this case, R2
c = 1.68, κ = 350503.86, κ1 = 4.29 and κ2 = 4.12.

Given that Rc > 1, we have the following results.
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i. From Proposition 11, we obtain that the blue line on Figure 8(b) will tend to a positive value as t
tends to ∞. Furthermore, Figure 8(b) illustrates the rapid nature of this convergence, resulting in
the disease practically reaching EEP within a reasonable timeframe.

ii. Because 1< κ2 < κ1 and 1<Rc < κ2 we deduce from Proposition 12 that the red line on Figure 8(b)
will tend to a positive value for large values of t. Furthermore, Figure 8(b) illustrates the rapid
nature of this convergence, leading to the disease practically reaching EEP within a reasonably
short timeframe.

(a) (b)

Figure 8: Time evolution of the human population for c = 0 and ϕ = 0.3. The graphs indicate a significant
difference in the response to treatment.

High treatment coverage, ϕ = 0.9 : In this case, R2
c = 0.73, κ = 275085.36, κ1 = 3.48 and κ2 = 2.42.

Given that Rc < 1, we have the following results.

i. Since κ > 1, then, from Proposition 11, we obtain that the blue line in Figure 9(b) will tend to zero
for large values of t. Furthermore, Figure 9(b) illustrates the rapid nature of this convergence,
resulting in disease elimination within a reasonable time.

ii. Because 1 < κ2 < κ1 and Rc < 1 we deduce from Proposition 12 that the red line in Figure 9(b) will
tend to zero when t is large enough. Furthermore, Figure 9(b) illustrates the slow nature of this
convergence, leading to the disease persistence even after a reasonably long time.
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(a) (b)

Figure 9: Time evolution of the human population for c = 0 and ϕ = 0.9

4.2.2 Treatment with TBDs, c = 1

Low treatment coverage, ϕ = 0.3. In this case, R2
c = 1.66,κ = 470671.58,κ1 = 5.59 and κ2 = 6.75.

Given that Rc > 1, then we have the following results.

i. From Proposition 11, we obtain that the blue line on Figure 10(b) will tend to a positive value as
t tends to ∞. Furthermore, Figure 10(b) illustrates the rapid nature of this convergence, resulting
in the disease reaching EEP within a reasonable time.

ii. Because 1 < κ1 < κ2 and 1 < Rc < κ2 we deduce from Proposition 13 that the red line on Figure
10(b) will tend to a positive value for large values of t. Furthermore, Figure 10(b) illustrates the
rapid nature of this convergence, leading to the disease reaching EEP within a reasonably short
time.

(a) (b)

Figure 10: Time evolution of the human population for c = 1 and ϕ = 0.3
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High treatment coverage, ϕ = 0.9 : In this case, R2
c = 0.71,κ = 425533.00,κ1 = 5.10 and κ2 = 5.78.

Given that Rc < 1, we have the following results.

i. Since κ > 1, then, from Proposition 11, we obtain that the blue line on Figure 11(b) will be close
to zero for large values of t. Furthermore, Figure 11(b) illustrates the rapid nature of this conver-
gence, resulting in disease elimination within a reasonable timeframe.

ii. Because 1 < κ1 < κ2 and Rc < 1, we deduce from Proposition 13 that the red line on Figure 11(b)
will tend to zero when t is large enough. Furthermore, Figure 11(b) illustrates the slow nature of
this convergence, leading to the disease persistence even after a reasonably long time.

(a) (b)

Figure 11: Time evolution of the human population for c = 1 and ϕ = 0.9

Finally, it is worth noting that in each of the Figures 8(b) to 11(b), there is a significant difference be-
tween the responses to the treatment for the populations depicted in blue, red and black. Additionally,
the blue line exhibits the highest level of disease prevalence, followed by the red line, then the black
line. The population shown in green has a response to treatment similar to that in black; this could be
explained by the low value of µ2h.

4.2.3 Positive versus Negative

In the previous section, we observed that, under treatment, the blue line presents the highest disease
prevalence, followed by the red line, and the black and green lines. Given that, prior to treatment, the
disease prevalence was initially higher in the blue than it is for the other lines, it may be relevant to
explore the reduction in the burden of the disease caused by the treatment.
For this purpose, we define and plot the ”reduction” terms

i. the absolute change in Ih(t), defined as

∆Ih(t) := Ih(t) without treatment − Ih(t) with treatment,

and
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ii. the percentage change in Ih(t), given by

Ih(t) without treatment − Ih(t) with treatment
Ih(t) without treatment

.

(a) (b)

Figure 12: Time evolution of the reduction in human infection for c = 0 and ϕ = 0.3.

(a) (b)

Figure 13: Time evolution of the reduction in human infection for c = 0 and ϕ = 0.9

27



(a) (b)

Figure 14: Time evolution of the reduction in human infection for c = 1 and ϕ = 0.3

(a) (b)

Figure 15: Time evolution of the reduction in human infection for c = 1 and ϕ = 0.9

We note the following.

i. On Figures 12 – 15, the left graphs show that, for all values of c and ϕ, ∆Ih(t), represented in
blue, is positive for all t ≥ 0, implying that treatment leads to a decrease in the number of cases
for this population. The large values of ∆Ih(t) compared to those of the other lines indicate that
population represented in blue undergoes the highest reduction in the number of infected cases.
The right graphs indicate that the reduction can exceed 100%. The same goes for the red line on
Figures 13 – 15.

In contrast,

ii. On Figures 12 – 15, the left graphs show that, for all values of c and ϕ, ∆Ih(t), depicted in black
and green, becomes negative for a fixed period of time. This means that, for this population,
treatment leads to a temporary increase in the number of infected cases. The right graphs indicate
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an increase in the number of infections exceeding 100%. This also applies to the red line in Figure
12. This apparent paradox can be explained by the fact that the treatment, while temporarily
reducing the number of infectives, leads in turn to an increase in the number of susceptibles,
which then leads to the increase in the number of infectives.

4.3 Summary

Following a comprehensive mathematical and numerical analysis of the responses of the four popu-
lations to both the disease and treatment with TBDs, it is noteworthy to emphasize the following key
findings.

i. When the four populations are exposed to malaria, the population represented in blue experiences
the highest disease burden. Nonetheless, when treatment with TBDs is used with a high coverage,
this population will be the first to eliminate the disease, demonstrating the highest reduction in
disease prevalence when compared to the other three populations.

ii. It is observed that, through the application of treatment with TBDs, disease elimination becomes
attainable at high coverage levels. Nevertheless, among the four populations, only the one de-
picted by the blue line successfully achieves disease elimination within a reasonable timeframe.

It is worthwhile to point out that the population in blue, whose behavior differs so significantly from the
other three, is described by the simplified logistic, or affine, model. Though very popular in modeling,
it is biologically incorrect as it describes populations in which the total birth rate is independent of the
size of the population. This feature can explain the outlier behavior observed above as even a dramatic
drop in the population size due to the disease does not impact the number of newborn susceptibles,
thanks to whom the population rebounds.

5 Conclusion

In this paper, we developed and analyzed a mathematical model for the spread of malaria disease that
integrates treatment with Transmission Blocking Drugs (TBDs). The foundation of our model lies in its
incorporation of four distinct demographic types, allowing for a more realistic representation of popu-
lation dynamics and shedding light on their potential significance in disease transmission and control
strategies. We calculated the model’s control reproduction number and equilibria and performed a
global stability analysis of the disease-free equilibrium point. Moreover, we delved into the bifurcation
dynamics of the model, unraveling the intricate ways the disease can manifest and spread within dif-
ferent subpopulations. Of paramount importance is our finding that, depending on the population’s
demography, the model can exhibit a forward bifurcation, a backward one, or even some unconven-
tional types of bifurcations in which the disease can be eliminated either for low or high values of the
basic reproduction number (Rc).

This finding challenges commonly accepted beliefs and holds profound implications for disease
control strategies. It highlights the potential for disease elimination even in regions with moderate to
high transmission potential, given the right intervention strategies and deployment of TBDs.

In addition to analytical exploration, we conducted extensive numerical simulations to validate and
expand our findings. Our simulations revealed distinct responses to the disease and TBD treatment
among three of the four demographic populations. Remarkably, the demographic group displaying the
highest increase in disease prevalence also exhibited the most substantial reduction in disease burden
following treatment with TBDs. This counter intuitive observation suggests a complex interplay be-
tween demography, disease transmission dynamics and disease control. Furthermore, our simulations
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unveiled an intriguing phenomenon whereby the demographic group experiencing the lowest disease
burden exhibited a temporary surge in disease prevalence as a direct consequence of TBD intervention.
However, these temporary spikes were ultimately followed by a reduction in disease burden.

The above underscores the intricate and sometimes counter intuitive mechanisms through which
intervention strategies can impact disease dynamics, underscoring the importance of a comprehensive
modeling approach.

In conclusion, our study introduces a comprehensive mathematical model integrating transmission-
blocking drugs into the malaria transmission dynamics framework. Our mathematical analysis and
numerical simulations uncover novel bifurcation scenarios and intricate demographic responses to dis-
ease and intervention strategies. These findings collectively provide a novel understanding of malaria
transmission dynamics and offer valuable insights for designing effective and nuanced disease control
strategies in diverse demographic settings.
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