References

1. Langer-Safer, P. R., Levine, M. & Ward, D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. 79 , 4381–4385 (1982).
2. DeLong, E., Wickham, G. & Pace, N. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science (80-. ). 243 , 1360–1363 (1989).
3. Moter, A. & Göbel, U. B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods41 , 85–112 (2000).
4. Fontenete, S. et al. Towards fluorescence in vivo hybridization (FIVH) detection of H. pylori in gastric mucosa using advanced LNA probes. PLoS One 10 , (2015).
5. Behrens, S., Fuchs, B. M., Mueller, F. & Amann, R. Is the In Situ Accessibility of the 16S rRNA of Escherichia coli for Cy3-Labeled Oligonucleotide Probes Predicted by a Three-Dimensional Structure Model of the 30S Ribosomal Subunit? Appl. Environ. Microbiol.69 , 4935–4941 (2003).
6. Fontenete, S., Guimarães, N., Wengel, J. & Azevedo, N. F. Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models. Crit. Rev. Biotechnol.8551 , 1–12 (2015).
7. Simard, C., Lemieux, R. & Côté, S. Urea substitutes toxic formamide as destabilizing agent in nucleic acid hybridizations with RNA probes.Electrophoresis 22 , 2679–2683 (2001).
8. Yilmaz, L. S. & Noguera, D. R. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization.Appl. Environ. Microbiol. 70 , 7126–39 (2004).
9. Garcia-Ochoa, F., Gomez, E., Santos, V. E. & Merchuk, J. C. Oxygen uptake rate in microbial processes: An overview. Biochemical Engineering Journal vol. 49 289–307 (2010).
10. Clark, D. S.; Blanch, H. W. Biochemical Engineering. (Marcel Dekker, New York., 1997).
11. Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution Imaging of Ribosomes and RNA Polymerase in Live Escherichia coli Cells. Mol. Microbiol. 85 , 21–38 (2012).
12. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems.Engineering Second , 580 (1997).
13. Corriou, J.-P. & Azzaro-Pantel, C. Process Optimization Strategies. in Green Process Engineering 27–48 (CRC Press, 2015). doi:doi:10.1201/b18533-4.
14. Lukacs, G. L. et al. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275 , 1625–1629 (2000).
15. Xu, X.-H. & Yeung, E. S. Direct Measurement of Single-Molecule Diffusion and Photodecomposition in Free Solution. Science (80-. ). 275 , 1106–1109 (1997).
16. Rocha, R., Santos, R. S., Madureira, P., Almeida, C. & Azevedo, N. F. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration. J. Biotechnol.226 , 1–7 (2016).
17. Algotsson, M. et al. Sample preservation method and sample preservation substrate. (2017).
18. Hrabovszky, E. & Petersen, S. L. Increased concentrations of radioisotopically-labeled complementary ribonucleic acid probe, dextran sulfate, and dithiothreitol in the hybridization buffer can improve results of in situ hybridization histochemistry. J. Histochem. Cytochem. 50 , 1389–400 (2002).
19. Wahl, G. M., Stern, M. & Stark, G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. U. S. A. 76 , 3683–3687 (1979).
20. Gameiro, D. et al. Computational resources and strategies to construct single-molecule metabolic models of microbial cells.Brief. Bioinform. bbv096 (2015).
21. Robertson, R. M., Laib, S. & Smith, D. E. Diffusion of isolated DNA molecules: Dependence on length and topology. Proc. Natl. Acad. Sci. 103 , 7310–7314 (2006).
22. Mogensen, J. E. & Otzen, D. E. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol.57 , 326–346 (2005).
23. Santos, R. S., Figueiredo, C., Azevedo, N. F., Braeckmans, K. & De Smedt, S. C. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics.Adv. Drug Deliv. Rev. (2017) doi:https://doi.org/10.1016/j.addr.2017.12.010.
24. Chien, A.-C., Hill, N. S. & Levin, P. A. Cell Size Control in Bacteria. Curr. Biol. 22 , R340–R349 (2012).
25. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol.9 , 112–124 (2008).
26. Silhavy, T., Kahne, D. & Walker, S. The bacterial cell envelope.Cold Spring Harbor perspectives in biology vol. 2 1–16 (2010).
27. Katz, A. et al. Bacteria Size Determination by Elastic Light Scattering. IEEE J. Sel. Top. QUANTUM Electron. 9 , 277–287 (2003).
28. Zhao, L. et al. Intracellular water-specific MR of microbead-adherent cells: The HeLa cell intracellular water exchange lifetime. NMR Biomed. 21 , 159–164 (2008).
29. Grossman, N., Ron, E. A. & Woldringh, C. L. Changes in cell dimensions during amino acid starvation of Escherichia coli. J. Bacteriol. 152 , 35–41 (1982).
30. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. 101 , 4083–4088 (2004).
31. Bayer, M. E. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol. 107 , 268–280 (1991).
32. Graham, L. L., Beveridge, T. J. & Nanninga, N. Periplasmic space and the concept of the periplasm. Trends Biochem. Sci.16 , 328–329 (2017).
33. Beeby, M., Gumbart, J. C., Roux, B. & Jensen, G. J. Architecture and assembly of the Gram-positive cell wall. Mol. Microbiol.88 , 664–672 (2013).
34. Vollmer, W. & Seligman, S. J. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18 , 59–66 (2010).
35. Angelova, M. I. & Tsoneva, I. Interactions of DNA with giant liposomes. Chem. Phys. Lipids 101 , 123–137 (1999).
36. Lambert, P. a. Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J Appl Microbiol 92 , 46S-54S (2002).
37. Seltmann, G. & Holst, O. Periplasmic Space and Rigid Layer BT - The Bacterial Cell Wall. in (eds. Seltmann, G. & Holst, O.) 103–132 (Springer Berlin Heidelberg, 2002). doi:10.1007/978-3-662-04878-8_3.
38. Holst, O., Moran, A. P. & Brennan, P. J. Chapter 1 - Overview of the glycosylated components of the bacterial cell envelope BT - Microbial Glycobiology. in 1–13 (Academic Press, 2010). doi:https://doi.org/10.1016/B978-0-12-374546-0.00001-8.
39. Mullineaux, C. W. & Kirchhoff, H. Using Fluorescence Recovery After Photobleaching to Measure Lipid Diffusion in Membranes BT - Methods in Membrane Lipids. in (ed. Dopico, A. M.) 267–275 (Humana Press, 2007). doi:10.1007/978-1-59745-519-0_18.
40. Bidnenko, E., Mercier, C., Tremblay, J., Tailliez, P. & Kulakauskas, S. Estimation of the state of the bacterial cell wall by fluorescent In situ hybridization. Appl. Environ. Microbiol.64 , 3059–62 (1998).
41. Zimmerman, S. B. & Trach, S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222 , 599–620 (1991).
42. Fulton, A. B. How crowded is the cytoplasm? Cell 30 , 345–347 (1982).
43. Mastro, A. M., Babich, M. A., Taylor, W. D. & Keith, A. D. Diffusion of a small molecule in the cytoplasm of mammalian cells.Proc. Natl. Acad. Sci. 81 , 3414–3418 (1984).
44. Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm.Phys. Rev. Lett. 96 , (2006).
45. Kalwarczyk, T., Tabaka, M. & Holyst, R. Biologistics-Diffusion coefficients for complete proteome of Escherichia coli.Bioinformatics 28 , 2971–2978 (2012).
46. Kalwarczyk, T. et al. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale.Nano Lett. 11 , 2157–2163 (2011).
47. van den Berg, J., Boersma, A. J. & Poolman, B. Microorganisms maintain crowding homeostasis. Nat. Rev. Microbiol. 15 , 309–318 (2017).
48. Kilså Jensen, K., Ørum, H., Nielsen, P. E. & Nordén, B. Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36 , 5072–5077 (1997).
49. Scientific, T. Macromolecular Components of E. coli and HeLa Cells. https://www.thermofisher.com/pt/en/home/references/ambion-tech-support/rna-tools-and-calculators/macromolecular-components-of-e.html.
50. Noller, H. F. RNA structure: reading the ribosome. Science309 , 1508–14 (2005).
51. Schoen, I., Krammer, H. & Braun, D. Hybridization kinetics is different inside cells. Proc. Natl. Acad. Sci. U. S. A.106 , 21649–21654 (2009).
52. Eriksson, M., Nielsen, P. E. & Good, L. Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J. Biol. Chem. 277 , 7144–7147 (2002).
53. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67 , 593–656 (2003).
54. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358 , 727–733 (1992).
55. Cooper, G. M., Hausman, R. E. & Hausman, R. E. The cell: a molecular approach . vol. 10 (ASM press Washington, DC, 2000).
56. Koller, E. et al. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 39 , 4795–4807 (2011).
57. Yilmaz, L. S. & Noguera, D. R. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization.Appl. Environ. Microbiol. 70 , 7126–7139 (2004).
58. Walton, S. P., Stephanopoulos, G. N., Yarmush, M. L. & Roth, C. M. Thermodynamic and Kinetic Characterization of Antisense Oligodeoxynucleotide Binding to a Structured mRNA. Biophys. J.82 , 366–377 (2002).
59. Ridgway, D. et al. Coarse-Grained Molecular Simulation of Diffusion and Reaction Kinetics in a Crowded Virtual Cytoplasm.Biophys. J. 94 , 3748–3759 (2008).
60. De Los Santos, C., Chang, C.-W., Mycek, M.-A. & Cardullo, R. A. FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol. Reprod. Dev.82 , 587–604 (2015).
61. Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W. & Elson, E. L. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science (80-. ). 195 , 307 LP – 309 (1977).
62. Carisey, A., Stroud, M., Tsang, R. & Ballestrem, C. Fluorescence Recovery After Photobleaching BT - Cell Migration: Developmental Methods and Protocols. in (eds. Wells, C. M. & Parsons, M.) 387–402 (Humana Press, 2011). doi:10.1007/978-1-61779-207-6_26.