References
Amanullah, A., Otero, J.M., Mikola, M., Hsu, A., Zhang, J., Aunins, J., Schreyer, H.B., Hope, J.A. & Russo, A.P. (2010). Novel micro‐bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed‐batch CHO cultures.Biotechnology and Bioengineering, 106, 57-67. https://doi.org/10.1002/bit.22664.
Babar, N., Joya, K. S., Tayyab, M. A., Ashiq, M. N., & Sohail, M. (2019). Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage. ACS Omega, 4 (9), 13645–13657. https://doi.org/10.1021/acsomega.9b00807.
Bose, U., Rahman, M., & Alamgir, M. (2011). Arsenic Toxicity and Speciation Analysis in Ground Water Samples: A Review of Some Techniques. International Journal of Chemical Technology, 3 , 14-25. DOI: 10.3923/ijct.2011.14.25. http://dx.doi.org/10.3923/ijct.2011.14.25.
Cervantes, C., Guangyong, J., Ramírez, J.L., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 5 (4):355-67. https://doi.org/10.1111/j.1574-6976.1994.tb00145.x.
Chandrashekar, B.N., Swamy, K., Pandurangachar, M., Sathisha, T., & Sherigara, B. (2011). Electrochemical Investigation of 4-Aminophenol at CTAB Modified Carbon Paste Electrode: A Cyclic Voltammetric. Anal. Bioanal. Electrochem., 3 , 227-232. https://doi.org/10.3390/s140508926.
Chen, K., She, S., Zhang, J., Bayaguud, A., & Wei, Y. (2015). Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters. Sci. Rep., 5, 16316.
Cortés-Salazar, F., Beggah, S., van der Meer, J.R., & Girault, H.H. (2013). Electrochemical As(III) whole-cell based biochip sensor.Biosensors & Bioelectronics, 47 , 237–242. https://doi.org/10.1038/srep16316.
Fu, X.C., Chen, X., Guo, Z., Xie, C.G., Kong, L.T., Liu, J.H., & Huang, X.J. (2011). Stripping voltammetric detection of mercury(II) based on a surface ion imprinting strategy in electropolymerized microporous poly(2-mercaptobenzothiazole) films modified glassy carbon electrode.Anal. Chim. Acta, 685 , 21–28. https://doi.org/10.1016/j.aca.2010.11.020.
Gilchrist, K.H., Giovangrandi, L., Whittington, R.H., & Kovacs, G.T. (2005). Sensitivity of cell-based biosensors to environmental variables.Biosensors & Bioelectronics, 20 , 1397–1406. https://doi.org/10.1016/j.bios.2004.06.007.
Gu, M.B., Mitchell, R.J., & Kim, B.C. (2004). Whole-cell-based biosensors for environmental biomonitoring and application.Advances in Biochemical Engineering/Biotechnology, 87 , 269–305. https://doi.org/10.1007/b13533.
Guerrini, L., Rodriguez-Loureiro, I., Correa-Duarte, M.A., Lee, Y.H., Ling, X.Y., García de Abajo, F.J, & Alvarez-Puebla, R.A. (2014). Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: Identification and quantification of inorganic- and methyl-mercury in water. Nanoscale, 6, 8368–8375. https://doi.org/10.1039/c4nr01464b.
Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. (2017). The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. Sensors, 17, 1623. https://doi.org/10.3390/s17071623.
Hashemi-Moghaddam, H., & Saber-Tehrani, M. (2008). Sensitive mercury speciation by reversed phase column high-performance liquid chromatography with UV-visible detection after solid-phase extraction using 6-mercaptopurine and dithizone. J. AOAC Int., 6,1453–1458. https://doi.org/10.1093/jaoac/91.6.1453.
Kodamatani, H., Kanzaki, R., Tomiyasu, T., Saito, K., & Kono, Y. (2011). Determination of organic and inorganic mercury species as emetine dithiocarbamate complexes by high-performance liquid chromatography with electrogenerated tris(2,20-bipyridine) ruthenium(iii) chemiluminescence detection. Anal. Lett., 44 , 2769–2779. https://doi.org/10.1080/00032719.2011.565442.
Kumar, S., Deep, A., Kim, K., Kailasa, S., & Yoon, H. (2017). Nanomaterial-based electrochemical sensors for arsenic - A review.Biosensors & Bioelectronics, 95 . https://doi.org/10.1016/j.bios.2017.04.013.
Lace, A., Ryan, D., Bowkett, M., & Cleary, J. (2019). Arsenic Monitoring in Water by Colorimetry Using an Optimized Leucomalachite Green Method. Molecules, 24 , 339. https://doi.org/10.3390/molecules24020339.
Li, J., Zheng, B., Zheng, Z., Li, Y., & Wang, J. (2020). Highly sensitive and selective colorimetric and SERS dual-mode detection of arsenic(III) based on glutathione functionalized Gold nanoparticles.Sens. Actuators Reports, 2 ,100013. https://doi.org/10.1016/j.snr.2020.100013.
Majid, E., Hrapovic, S., Liu, Y., Male, K., & Luong, J. (2006). Electrochemical Determination of Arsenite Using a Gold Nanoparticle Modified Glassy Carbon Electrode and Flow Analysis. Analytical chemistry, 78 , 762-9. https://doi.org/10.1021/ac0513562.
Male, K. B., Hrapovic, S., Santini, J. M., & Luong, J. H. T. (2007). Biosensor for Arsenite Using Arsenite Oxidase and Multiwalled Carbon Nanotube Modified Electrodes. Analytical Chemistry, 79  (20), 7831-7837. https://doi.org/10.1021/ac070766i.
Martinez, A. W., Phillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry , 82 , 3–10. https://doi.org/10.1021/ac9013989.
Morita, K., & Kaneko, E. (2006). Spectrophotometric determination of trace arsenic in water samples using a nanoparticle of ethyl violet with a molybdate-iodine tetrachloride complex as a probe for molybdoarsenate,Anal. Sci., 22 , 1085–1089. https://doi.org/10.1021/ac061074h.
Petralia, S., Barbuzzi, T., & Ventimiglia, G. (2012). Polymerase chain reaction efficiency improved by water soluble β-cyclodextrins capped platinum nanoparticles. Materials Science and Engineering: C, 32(4), 848-850. https://doi.org/10.1016/j.msec.2012.01.036.
Petralia, S., & Conoci, S. (2017). PCR technologies for point of care testing: Progress and perspectives, ACS Sensors, 2, 7 876-891. https://doi.org/10.1021/acssensors.7b00299.
Petralia, S., Cosentino, T., Sinatra, F., Favetta, M., Fiorenza, P., Bongiorno, C., Sciuto, E.L., Conoci, S., & Libertino, S. (2017). Silicon Nitride Surfaces as Active Substrate for Electrical DNA Biosensors. Sensors and Actuators B: Chemical, 252,https://doi.org/10.1016/j.snb.2017.06.023.
Petralia, S., Sciuto, E.L., & Conoci, S. (2017). A novel miniaturized biofilter based on silicon micropillars for nucleic acid extraction.Analyst, 142 , 1, 140 -146. https://doi.org/10.1039/C6AN02049F.
Petralia, S., Sciuto, E.L., Di Pietro, M.L., Zimbone, M., Grimaldi, M.G., & Conoci, S. (2017). An innovative chemical strategy for PCR-free genetic detection of pathogens by an integrated electrochemical biosensor. Analyst, 142, 12, 2090-2093. https://doi.org/10.1039/C7AN00202E.
Petralia, S., Sciuto, E.L., Messina, M., Scandurra, A., Mirabella, S., Priolo, F., & Conoci, S. (2018). Miniaturized and Multi-Purpose Electrochemical Sensing Device based on thin Ni Oxides. Sensors and Actuators B: Chemical, 263 , 10-19. https://doi.org/10.1016/j.snb.2018.02.114.
Pujol, L., Evrard, D., Groenen-Serrano, K., Freyssinier, M., Ruffien-Cizsak, A., & Gros, P. (2014). Electrochemical sensors and devices for heavy metals assay in water: The French groups’ contribution. Front. Chem., 2 , 1–24. https://doi.org/10.3389/fchem.2014.00019.
Renedo, O. D., Alonso-Lomillo, M. A., & Martínez, M. J. A. (2007). Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 73, 202–219. https://doi.org/10.1016/j.talanta.2007.03.050.
Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázquez, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. J. Electroanal. Chem., 265, 375-383. https://doi.org/10.1016/j.jelechem.2003.11.005.
Santangelo, M.F., Sanfilippo, D., Fallica, G., Busacca, A. C., Pagano, R., Sciuto, E. L., Lombardo, S., & Libertino, S. (2014). SiPM as novel optical biosensor transduction and applications. Fotonica AEIT Italian Conference on Photonics Technologies , 1-4. https://doi.org/10.1109/Fotonica.2014.6843944.
Sciuto, E.L., Coniglio, M.A., Corso, D., van der Meer, J.R., Acerbi, F., Gola, A. & Libertino, S. (2019). Biosensors in Monitoring Water Quality and Safety: An Example of a Miniaturizable Whole-Cell Based Sensor for Hg2+ Optical Detection in Water. Water, 11 , 1986. https://doi.org/10.3390/w11101986.
Stocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., Malik, K. A., & Van der Meer, J. R. (2003). Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environmental Science and Technology, 37 (20), 4743–4750. https://doi.org/10.1021/es034258b.
Valli, L., Casilli, S., Giotta, L., Pignataro, B., Conoci, S., Borovkov, V.V., Inoue, Y., & Sortino, S. (2006). Ethane-Bridged Zinc Porphyrin Dimers in Langmuir−Shäfer Thin Films:  Structural and Spectroscopic Properties. Journal of Physical Chemistry B, 110, 4691-4698. https://doi.org/10.1021/jp054974v.
Wudarska, E., Chrzescijanska, E., Kusmierek, E., & Rynkowski, J. (2015). Voltammetric study of the behaviour of N-acetyl-p-aminophenol in aqueous solutions at a platinum electrode. C. R. Chim., 18 , 993-1000. https://doi.org/10.1016/j.crci.2015.06.017.
Yang, P.C., Wu, T., & Lin, Y.W. (2018). Label-Free Colorimetric Detection of Mercury (II) Ions Based on Gold Nanocatalysis.Sensors (Basel), 18 , 2807. https://dx.doi.org/10.3390%2Fs18092807.
World Health Organization (2018, February 15). Arsenic . Retrieved from https://www.who.int/news-room/fact-sheets/detail/arsenic.
Agency for Toxic Substances and Disease Registry - ATSDR (2007, August). Toxicological Profile for Arsenic . Retrieved from https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3.
Hong, Y.S., Song, K.H., & Chung, J.Y. (2014). Health effects of chronic arsenic exposure. Journal of preventive medicine and public health, 47 (5), 245–252. https://doi.org/10.3961/jpmph.14.035.
Mandal, B.K., & Suzuki, K.T. (2002). Arsenic round the world: a review.Talanta, 58 , 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0.
Masindi, V., & Muedi, K.L. (2018). Environmental contamination by heavy metals. In: Saleh, Hosam El-Din M, Aglan, Refaat Fekry Eid Sayed (Eds.), Heavy Metals, Intech Open, U.K, 115–133. https://doi.org/10.5772/intechopen.76082.
Ravenscroft, P., Brammer, H., Richards, & Wiley-Blackwell, K. (2009).Arsenic Pollution: A Global Synthesis. RGS-IBG Book Series, 1. https://doi.org/10.1002/9781444308785.
Toor, S., Sharma, P., & Bansod, B. (2015). Electrochemical Detection of Trace Amount of Arsenic (III) at Glassy Carbon Electrode Modified with Au/Fe3O4 Nanocomposites. Aquatic Procedia, 4 , 1107–1113. https://doi.org/10.1016/j.aqpro.2015.02.140.
United States Environmental Protection Agency Office of Water (1999).Analytical Methods Support Document for Arsenic In Drinking Water , vol. 22027. Retrieved from https://www.epa.gov.
Verma, R., & Dwivedi, P. (2013). Heavy metal water pollution-A case study. Recent Res. Sci. Technol., 5 , 98-99. http://dx.doi.org/10.3390/w10111507.
Yogaraja, N., and Tsai, S.S.H. (2015). Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics.Environmental Science: Water Research & Technology, 1 , 426-447. https://doi.org/10.1039/C5EW00099H.
Yu, Y.L., & Wang, J.H. (2013). Recent advances in flow-based sample pretreatment for the determination of metal species by atomic spectrometry. Chinese Science Bulletin, 58 , 1992–2002. https://doi.org/10.1007/s11434-013-5666-9.