References
Aliah Baharom SN, Shibusawa S, Kodaira M, Kanda R. 2015. Multiple-depth mapping of soil properties using a visible and near infrared real-time soil sensor for a paddy field. Engineering in Agriculture, Environment and Food 8 : 13–17. DOI: 10.1016/j.eaef.2015.01.002
Araújo SR, Söderström M, Eriksson J, Isendahl C, Stenborg P, Demattê JM. 2015. Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy. Geoderma 237238 : 308–317. DOI: 10.1016/j.geoderma.2014.09.014
Araújo SR, Wetterlind J, Demattê JAM, Stenberg B. 2014. Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. European Journal of Soil Science65 : 718–729. DOI: 10.1111/ejss.12165
Asija GL, Subbiah B V. 1956. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 25 : 259–260
Askari MS, O’Rourke SM, Holden NM. 2015. Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy.Geoderma 243244 : 80–91. DOI: 10.1016/j.geoderma.2014.12.012
Baumgardner MF, Silva LF, Biehl LL, Stoner ER. 1986. Reflectance Properties of Soils. , 1–44. DOI: 10.1016/S0065-2113(08)60672-0
Bilgili AV, Cullu MA, van Es H, Aydemir A, Aydemir S. 2011. The Use of Hyperspectral Visible and Near Infrared Reflectance Spectroscopy for the Characterization of Salt-Affected Soils in the Harran Plain, Turkey.Arid Land Research and Management 25 : 19–37. DOI: 10.1080/15324982.2010.528153
Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59 : 39–46. DOI: 10.1097/00010694-194501000-00006
Cécillon L, Barthès BG, Gomez C, Ertlen D, Genot V, Hedde M, Stevens A, Brun JJ. 2009. Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science 60 : 770–784. DOI: 10.1111/j.1365-2389.2009.01178.x
Chang C-W, Laird DA, Mausbach MJ, Hurburgh CR. 2001. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal65 : 480. DOI: 10.2136/sssaj2001.652480x
Christy CD. 2008. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture 61 : 10–19. DOI: 10.1016/j.compag.2007.02.010
Cozzolino D, Cynkar WU, Dambergs RG, Shah N, Smith P. 2013. In Situ Measurement of Soil Chemical Composition by Near-Infrared Spectroscopy: A Tool Toward Sustainable Vineyard Management. Communications in Soil Science and Plant Analysis 44 : 1610–1619. DOI: 10.1080/00103624.2013.768263
COZZOLINO D, MORÓN A. 2003. The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics.The Journal of Agricultural Science 140 : 65–71. DOI: 10.1017/S0021859602002836
CSSRI. 2018. Extent and distribution of salt affect soils in India .
Das BS, Sarathjith MC, Santra P, Sahoo RN, Srivastava R, Routray A, Ray SS. 2015. Hyperspectral remote sensing: opportunities, status and challenges for rapid soil assessment in India. Current science860–868
Demattê JAM, Oliveira J de C, Tavares TR, Lopez LR, Terra F da S, Araújo SR, Fongaro CT, Maia SMF, Mello FF de C, Rizzo R, Vicente S, de Melo Bortolleto MA, Cerqueira PHR. 2016. Soil chemical alteration due to slaughterhouse waste application as identified by spectral reflectance in São Paulo State, Brazil: an environmental monitoring useful tool.Environmental Earth Sciences 75 : 1277. DOI: 10.1007/s12665-016-6042-2
Farifteh J, Van der Meer F, Atzberger C, Carranza EJM. 2007. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment 110 : 59–78. DOI: 10.1016/j.rse.2007.02.005
Friedman JH. 1991. Multivariate adaptive regression splines. The annals of statistics 19 : 1–67
Gupta UC. 1967. A simplified method for determining hot-watersoluble boron in podzol soils. Soil Science 103 : 424–428
Håkansson I. 1990. A method for characterizing the state of compactness of the plough layer. Soil and Tillage Research 16 : 105–120. DOI: 10.1016/0167-1987(90)90024-8
Hanway JJ, Heidel H. 1952. Soil analysis method as used in Iowa State College, Soil Testing Laboratory. Iowa Agriculture 54 : 1–31
He Y, Huang M, García A, Hernández A, Song H. 2007. Prediction of soil macronutrients content using near-infrared spectroscopy. Computers and Electronics in Agriculture 58 : 144–153. DOI: 10.1016/j.compag.2007.03.011
Hively WD, McCarty GW, Reeves JB, Lang MW, Oesterling RA, Delwiche SR. 2011. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields. Applied and Environmental Soil Science 2011 : 1–13. DOI: 10.1155/2011/358193
HU X-Y. 2013. Application of Visible/Near-Infrared Spectra in Modeling of Soil Total Phosphorus. Pedosphere 23 : 417–421. DOI: 10.1016/S1002-0160(13)60034-X
Islam K, Singh B, McBratney A. 2003. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research 41 : 1101–1114. DOI: 10.1071/SR02137
Jackson ML. 1973. Soil Chemical Analysis,(2nd Indian Print) Prentice-Hall of India Pvt. Ltd. New Delhi 38–336
Janik LJ, Merry RH, Skjemstad JO. 1998. Can mid infrared diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture 38 : 681. DOI: 10.1071/EA97144
Kodaira M, Shibusawa S. 2013. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping.Geoderma 199 : 64–79. DOI: 10.1016/j.geoderma.2012.09.007
Kuang B, Mouazen AM. 2011. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. European Journal of Soil Science 62 : 629–636. DOI: 10.1111/j.1365-2389.2011.01358.x
Kusumo BH, Hedley CB, Hedley MJ, Hueni A, Tuohy MP, Arnold GC. 2008. The use of diffuse reflectance spectroscopy for in situ carbon and nitrogen analysis of pastoral soils. Soil Research 46 : 623. DOI: 10.1071/SR08118
Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil science society of America journal 42 : 421–428
Mahajan GR, Manjunath BL, Latare AM, D’Souza R, Vishwakarma S, Singh NP. 2016. Microbial and Enzyme Activities and Carbon Stock in Unique Coastal Acid Saline Soils of Goa. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 86 : 961–971. DOI: 10.1007/s40011-015-0552-7
Malmir M, Tahmasbian I, Xu Z, Farrar MB, Bai SH. 2019. Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma340 : 70–80. DOI: 10.1016/j.geoderma.2018.12.049
Martin PD, Malley DF, Manning G, Fuller L. 2002. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Canadian Journal of Soil Science 82 : 413–422. DOI: 10.4141/S01-054
Minasny B, McBratney AB, Tranter G, Murphy BW. 2008. Using soil knowledge for the evaluation of mid-infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties.European Journal of Soil Science 59 : 960–971. DOI: 10.1111/j.1365-2389.2008.01058.x
Moreira CS, Brunet D, Verneyre L, Sá SMO, Galdos M V., Cerri CC, Bernoux M. 2009. Near infrared spectroscopy for soil bulk density assessment.European Journal of Soil Science 60 : 785–791. DOI: 10.1111/j.1365-2389.2009.01170.x
Morellos A, Pantazi X-E, Moshou D, Alexandridis T, Whetton R, Tziotzios G, Wiebensohn J, Bill R, Mouazen AM. 2016. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering152 : 104–116. DOI: 10.1016/j.biosystemseng.2016.04.018
Mouazen AM, Kuang B, De Baerdemaeker J, Ramon H. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma158 : 23–31. DOI: 10.1016/j.geoderma.2010.03.001
Nawar S, Buddenbaum H, Hill J. 2015. Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy: a case study from Egypt. Arabian Journal of Geosciences 8 : 5127–5140. DOI: 10.1007/s12517-014-1580-y
Nawar S, Buddenbaum H, Hill J, Kozak J. 2014. Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sensing 6 : 10813–10834. DOI: 10.3390/rs61110813
Nawar S, Buddenbaum H, Hill J, Kozak J, Mouazen AM. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research 155 : 510–522. DOI: 10.1016/j.still.2015.07.021
Nawar S, Reda M, Farag F, El-Nahry A. 2011. Mapping soil salinity in El-Tina plain in Egypt using geostatistical approach.
R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria
Ramaroson VH, Becquer T, Sá SO, Razafimahatratra H, Delarivière JL, Blavet D, Vendrame PRS, Rabeharisoa L, Rakotondrazafy AFM. 2018. Mineralogical analysis of ferralitic soils in Madagascar using NIR spectroscopy. CATENA 168 : 102–109. DOI: 10.1016/j.catena.2017.07.016
Reeves JB, McCarty GW. 2001. Quantitative Analysis of Agricultural Soils Using near Infrared Reflectance Spectroscopy and a Fibre-Optic Probe.Journal of Near Infrared Spectroscopy 9 : 25–34. DOI: 10.1255/jnirs.291
Reeves JB, McCarty GW, Meisinger JJ. 1999. Near Infrared Reflectance Spectroscopy for the Analysis of Agricultural Soils. Journal of Near Infrared Spectroscopy 7 : 179–193. DOI: 10.1255/jnirs.248
SAEKI K, TANABE K, MATSUMOTO T, UESAKA H, AMANO T, FUNATSU K. 2003. Prediction of Polyethylene Density by Near-Infrared Spectroscopy Combined with Neural Network Analysis. Journal of Computer Chemistry, Japan 2 : 33–40. DOI: 10.2477/jccj.2.33
SAS Institute. 2012. SAS User’s guide. SAS Institute, IC, Cary.
Schirrmann M, Gebbers R, Kramer E. 2013. Performance of Automated Near-Infrared Reflectance Spectrometry for Continuous in Situ Mapping of Soil Fertility at Field Scale. Vadose Zone Journal 12 . DOI: 10.2136/vzj2012.0199
Shepherd KD, Walsh MG. 2002. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Science Society of America Journal 66 : 988. DOI: 10.2136/sssaj2002.0988
Sidike A, Zhao S, Wen Y. 2014. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra.International Journal of Applied Earth Observation and Geoinformation 26 : 156–175. DOI: 10.1016/j.jag.2013.06.002
Siebielec G, McCarty GW, Stuczynski TI, Reeves JB. 2004. Near- and Mid-Infrared Diffuse Reflectance Spectroscopy for Measuring Soil Metal Content. Journal of Environment Quality 33 : 2056. DOI: 10.2134/jeq2004.2056
Singh K. 2016. Microbial and Enzyme Activities of Saline and Sodic Soils. Land Degradation & Development 27 : 706–718. DOI: 10.1002/ldr.2385
Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J. 2010. Visible and Near Infrared Spectroscopy in Soil Science. Advances in Agronomy , 163–215. DOI: 10.1016/S0065-2113(10)07005-7
Sun B, Zhou S, Zhao Q. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 115 : 85–99. DOI: 10.1016/S0016-7061(03)00078-8
Sun W, Zhang X, Zou B, Wu T. 2017. Exploring the Potential of Spectral Classification in Estimation of Soil Contaminant Elements. Remote Sensing 9 : 632. DOI: 10.3390/rs9060632
Suuster E, Ritz C, Roostalu H, Reintam E, Kõlli R, Astover A. 2011. Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma 163 : 74–82. DOI: 10.1016/j.geoderma.2011.04.005
Udelhoven T, Emmerling C, Jarmer T. 2003. No Title. Plant and Soil 251 : 319–329. DOI: 10.1023/A:1023008322682
van Groenigen JW, Mutters CS, Horwath WR, van Kessel C. 2003. NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant and Soil 250 : 155–165. DOI: 10.1023/A:1022893520315
Vasques GM, Grunwald S, Sickman JO. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 146 : 14–25. DOI: 10.1016/j.geoderma.2008.04.007
Vasques GM, Grunwald S, Sickman JO. 2009. Modeling of Soil Organic Carbon Fractions Using Visible–Near-Infrared Spectroscopy. Soil Science Society of America Journal 73 : 176. DOI: 10.2136/sssaj2008.0015
Vendrame PRS, Marchão RL, Brunet D, Becquer T. 2012. The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado Latosols. European Journal of Soil Science 63 : 743–753. DOI: 10.1111/j.1365-2389.2012.01483.x
Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131 : 59–75. DOI: 10.1016/j.geoderma.2005.03.007
Vohland M, Besold J, Hill J, Fründ H-C. 2011. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma166 : 198–205. DOI: 10.1016/j.geoderma.2011.08.001
Volkan Bilgili A, van Es HM, Akbas F, Durak A, Hively WD. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments 74 : 229–238. DOI: 10.1016/j.jaridenv.2009.08.011
Walkley A, Black IA. 1934. AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science 37 : 29–38. DOI: 10.1097/00010694-193401000-00003
Wang J, Ding J, Abulimiti A, Cai L. 2018. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China.PeerJ 6 : e4703. DOI: 10.7717/peerj.4703
Weng Y-L, Gong P, Zhu Z-L. 2010. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data. Pedosphere 20 : 378–388. DOI: 10.1016/S1002-0160(10)60027-6
Weng Y, Gong P, Zhu Z. 2008. Soil salt content estimation in the Yellow River delta with satellite hyperspectral data. Canadian Journal of Remote Sensing 34 : 259–270
Wenjun J, Zhou S, Jingyi H, Shuo L. 2014. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy. PLoS ONE 9 . DOI: 10.1371/journal.pone.0105708
Wijewardane NK, Ge Y, Wills S, Libohova Z. 2018. Predicting Physical and Chemical Properties of US Soils with a Mid-Infrared Reflectance Spectral Library. Soil Science Society of America Journal 82 : 722. DOI: 10.2136/sssaj2017.10.0361
Williams C, Steinbergs A. 1959. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Australian Journal of Agricultural Research 10 : 340. DOI: 10.1071/AR9590340
Williams PC, Norris K. 1997. Near-Infrared Technology in the Agricultural and Food Industries. In: Williams, P.C., Norris K (ed)Near-Infrared Technology: In the Agricultural and Food Industries . Amer Assn of Cereal Chemists, 312
Wu Y, Chen J, Wu X, Tian Q, Ji J, Qin Z. 2005. Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Applied Geochemistry 20 : 1051–1059. DOI: 10.1016/j.apgeochem.2005.01.009
Xu S, Zhao Y, Wang M, Shi X. 2018. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma 310 : 29–43. DOI: 10.1016/j.geoderma.2017.09.013
Yuan B-C, Li Z-Z, Liu H, Gao M, Zhang Y-Y. 2007. Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology 35 : 319–328. DOI: 10.1016/j.apsoil.2006.07.004
Table 1 Descriptive statistics of the properties of the salt affected acid soils