References
Ashworth, A. J., DeBruyn, J. M.,
Allen, F. L., Radosevich, M., & Owens, P. R. (2017). Microbial
community structure is affected by cropping sequences and poultry litter
under long-term no-tillage. Soil Biology & Biochemistry, 114 ,
210-219. doi:10.1016/j.soilbio.2017.07.019
Bai, Z. H., Ma, W. Q., Ma, L.,
Velthof, G. L., Wei, Z. B., Havlik, P., . . . Zhang, F. S. (2018).
China’s livestock transition: driving forces, impacts, and consequences.Science Advances, 4 (7). doi:ARTN eaar853410.1126/sciadv.aar8534
Banerjee, S., Walder, F., Buchi, L.,
Meyer, M., Held, A. Y., Gattinger, A., . . . van der Heijden, M. G. A.
(2019). Agricultural intensification reduces microbial network
complexity and the abundance of keystone taxa in roots. Isme
Journal, 13 (7), 1722-1736. doi: 10.1038/s41396-019-0383-2
Bardgett, R. D., & van der Putten, W.
H. (2014). Belowground biodiversity and ecosystem functioning.Nature, 515 (7528), 505-511. doi:10.1038/nature13855
Caporaso, J. G., Kuczynski, J.,
Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., . . .
Knight, R. (2010). QIIME allows analysis of high-throughput community
sequencing data. Nature Methods, 7 (5), 335-336.doi:
10.1038/nmeth.f.303
Chu, H. Y., Sun, H. B., Tripathi, B.
M., Adams, J. M., Huang, R., Zhang, Y. J., & Shi, Y. (2016). Bacterial
community dissimilarity between the surface and subsurface soils equals
horizontal differences over several kilometers in the western Tibetan
Plateau. Environmental Microbiology, 18 (5), 1523-1533.
doi:10.1111/1462-2920.13236
Edgar, R. C. (2013). UPARSE: highly
accurate OTU sequences from microbial amplicon reads. Nat Methods,
10 (10), 996-998. doi:10.1038/nmeth.2604
Enwall, K., Nyberg, K., Bertilsson,
S., Cederlund, H., Stenstrom, J., & Hallin, S. (2007). Long-term impact
of fertilization on activity and composition of bacterial communities
and metabolic guilds in agricultural soil. Soil Biology &
Biochemistry, 39 (1), 106-115. doi:10.1016/j.soilbio.2006.06.015
Falkowski, P. G., Fenchel, T., &
Delong, E. F. (2008). The microbial engines that drive Earth’s
biogeochemical cycles. Science, 320 (5879), 1034-1039.
doi:10.1126/science.1153213
Fenech, C., Rock, L., Nolan, K.,
Tobin, J., & Morrissey, A. (2012). The potential for a suite of isotope
and chemical markers to differentiate sources of nitrate contamination:
A review. Water Research, 46 (7), 2023-2041.
doi:10.1016/j.watres.2012.01.044
Feng, Y. Z., Chen, R. R., Hu, J. L.,
Zhao, F., Wang, J. H., Chu, H. Y., . . . Lin, X. G. (2015). Bacillus
asahii comes to the fore in organic manure fertilized alkaline soils.Soil Biology & Biochemistry, 81 , 186-194. doi:
10.1016/j.soilbio.2014.11.021
Fernandez-Gomez, B., Richter, M.,
Schuler, M., Pinhassi, J., Acinas, S. G., Gonzalez, J. M., &
Pedros-Alio, C. (2013). Ecology of marine Bacteroidetes: a comparative
genomics approach. Isme Journal, 7 (5), 1026-1037. doi:
10.1038/ismej.2012.169
Gai, X. P., Liu, H. B., Liu, J.,
Zhai, L. M., Wang, H. Y., Yang, B., . . . Lei, Q. L. (2019). Contrasting
impacts of long-term application of manure and crop straw on residual
nitrate-N along the soil profile in the North China Plain. Science
of the Total Environment, 650 , 2251-2259.
doi:10.1016/j.scitotenv.2018.09.275
Guo, Z. C., Zhang, J. B., Fan, J.,
Yang, X. Y., Yi, Y. L., Han, X. R., . . . Peng, X. H. (2019). Does
animal manure application improve soil aggregation? Insights from nine
long-term fertilization experiments. Science of the Total
Environment, 660 , 1029-1037. doi:10.1016/j.scitotenv.2019.01.051
Hartmann, M., Frey, B., Mayer, J.,
Mader, P., & Widmer, F. (2015). Distinct soil microbial diversity under
long-term organic and conventional farming. Isme Journal, 9 (5),
1177-1194. doi: 10.1038/ismej.2014.210
Herrero, M., & Thornton, P. K.
(2013). Livestock and global change: Emerging issues for sustainable
food systems. Proceedings of the National Academy of Sciences of
the United States of America, 110 (52), 20878-20881.
doi:10.1073/pnas.1321844111
Ho, A., Di Lonardo, D. P., &
Bodelier, P. L. E. (2017). Revisiting life strategy concepts in
environmental microbial ecology. Fems Microbiology Ecology,
93 (3). doi:ARTN fix00610.1093/femsec/fix006
Horner-Devine, M. C., & Bohannan, B.
J. M. (2006). Phylogenetic clustering and overdispersion in bacterial
communities. Ecology, 87 (7), S100-S108. doi:
10.1890/0012-9658(2006)87[100:Pcaoib]2.0.Co;2
Jesus, E. D., Marsh, T. L., Tiedje,
J. M., & Moreira, F. M. D. (2009). Changes in land use alter the
structure of bacterial communities in Western Amazon soils (vol 3, pg
1004, 2009). Isme Journal, 3 (10), 1222-1222.
doi:10.1038/ismej.2009.98
Jia, W., Qin, W., Zhang, Q., Wang,
X., Ma, Y., & Chen, Q. (2018). Evaluation of crop residues and manure
production and their geographical distribution in China. Journal
of Cleaner Production, 188 , 954-965. doi:10.1016/j.jclepro.2018.03.300
Jiao, S., Chen, W. M., Wang, J. L.,
Du, N. N., Li, Q. P., & Wei, G. H. (2018). Soil microbiomes with
distinct assemblies through vertical soil profiles drive the cycling of
multiple nutrients in reforested ecosystems. Microbiome, 6 .
doi:ARTN 14610.1186/s40168-018-0526-0
Ju, X. T., Kou, C. L., Christie, P.,
Dou, Z. X., & Zhang, F. S. (2007). Changes in the soil environment from
excessive application of fertilizers and manures to two contrasting
intensive cropping systems on the North China Plain. Environmental
Pollution, 145 (2), 497-506. doi:10.1016/j.envpol.2006.04.017
Kembel, S. W., Cowan, P. D., Helmus,
M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., . . . Webb, C. O.
(2010). Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26 (11), 1463-1464.
doi:10.1093/bioinformatics/btq166
Kennedy, A. C., & Smith, K. L.
(1995). Soil microbial diversity and the sustainability of agricultural
soils. Plant and Soil, 170 (1), 75-86. doi:Doi 10.1007/Bf02183056
Krapac, I. G., Dey, W. S., Roy, W.
R., Smyth, C. A., Storment, E., Sargent, S. L., & Steele, J. D. (2002).
Impacts of swine manure pits on groundwater quality. Environmental
Pollution, 120 (2), 475-492. doi:Pii
S0269-7491(02)00115-X
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009).
Pyrosequencing-based assessment of soil ph as a predictor of soil
bacterial community structure at the continental scale. Applied
and Environmental Microbiology, 75 (15), 5111-5120.
doi:10.1128/Aem.00335-09
Lee, C. K., Barbier, B. A., Bottos,
E. M., McDonald, I. R., & Cary, S. C. (2012). The inter-valley soil
comparative survey: the ecology of Dry Valley edaphic microbial
communities. Isme Journal, 6 (5), 1046-1057.doi:
10.1038/ismej.2011.170
Leip, A., Billen, G., Garnier, J.,
Grizzetti, B., Lassaletta, L., Reis, S., . . . Westhoek, H. (2015).
Impacts of European livestock production: nitrogen, sulphur, phosphorus
and greenhouse gas emissions, land-use, water eutrophication and
biodiversity. Environmental Research Letters, 10 (11). doi:Artn
11500410.1088/1748-9326/10/11/ 115004
Liao, H. K., Zheng, C. L., Li, J., &
Long, J. (2018). Dynamics of soil microbial recovery from cropland to
orchard along a 20-year chronosequence in a degraded karst ecosystem.Science of the Total Environment, 639 , 1051-1059.
doi:10.1016/j.scitotenv.2018.05.246
Lin, Y. X., Ye, G. P., Kuzyakov, Y.,
Liu, D. Y., Fan, J. B., & Ding, W. X. (2019). Long-term manure
application increases soil organic matter and aggregation, and alters
microbial community structure and keystone taxa. Soil Biology &
Biochemistry, 134 , 187-196. doi: 10.1016/j.soilbio.2019.03.030
Liu, T., Wang, F., Michalski, G.,
Xia, X. H., & Liu, S. D. (2013). Using N-15, O-17, and O-18 to
determine nitrate sources in the Yellow River, China.Environmental Science & Technology, 47 (23), 13412-13421.
doi:10.1021/es403357m
Maeda, M., Zhao, B. Z., Ozaki, Y., &
Yoneyama, T. (2003). Nitrate leaching in an Andisol treated with
different types of fertilizers (vol 121, pg 477, 2003).Environmental Pollution, 124 (2), 355-355.
doi:10.1016/S0269-7491(02)00477-3
Mayfield, M. M., & Levine, J. M.
(2010). Opposing effects of competitive exclusion on the phylogenetic
structure of communities. Ecology Letters, 13 (9), 1085-1093.
doi:10.1111/j.1461-0248.2010.01509.x
Meng, Q. X., Yang, W., Men, M. Q.,
Bello, A., Xu, X. H., Xu, B. S., . . . Zhu, H. F. (2019). Microbial
community succession and response to environmental variables during cow
manure and corn straw composting. Frontiers in Microbiology, 10 .
doi:ARTN 52910.3389/fmicb.2019.00529
Nguyen, H. Q., Kanwar, R. S., Hoover,
N. L., Dixon, P., Hobbs, J., Pederson, C., & Soupir, M. L. (2013).
Long-term effects of poultry manure application on nitrate leaching in
tile drain water. Transactions of the Asabe, 56 (1),
91-101.doi:10.13031/2013.42593
Peacock, A. D., Mullen, M. D.,
Ringelberg, D. B., Tyler, D. D., Hedrick, D. B., Gale, P. M., & White,
D. C. (2001). Soil microbial community responses to dairy manure or
ammonium nitrate applications. Soil Biology & Biochemistry,
33 (7-8), 1011-1019. doi: 10.1016/S0038-0717(01)00004-9
Pelletier, N., & Tyedmers, P.
(2010). Forecasting potential global environmental costs of livestock
production 2000-2050. Proceedings of the National Academy of
Sciences of the United States of America, 107 (43), 18371-18374.
doi:10.1073/pnas.1004659107
Pepe-Ranney, C., Campbell, A. N.,
Koechli, C. N., Berthrong, S., & Buckley, D. H. (2016). Unearthing the
ecology of soil microorganisms using a high resolution DNA-sip approach
to explore cellulose and xylose metabolism in soil. Frontiers in
Microbiology, 7 (703). doi:10.3389/fmicb.2016.00703
Powell, J. R., Karunaratne, S.,
Campbell, C. D., Yao, H. Y., Robinson, L., & Singh, B. K. (2015).
Deterministic processes vary during community assembly for ecologically
dissimilar taxa. Nature Communications, 6 . doi:ARTN
844410.1038/ncomms9444
Rebollar, E. A., Bridges, T., Hughey,
M. C., Medina, D., Belden, L. K., & Harris, R. N. (2019). Integrating
the role of antifungal bacteria into skin symbiotic communities of three
Neotropical frog species. Isme Journal, 13 (7), 1763-1775.
10.1038/s41396-019-0388-x
Rodrigues, J. L. M., Pellizari, V.
H., Mueller, R., Baek, K., Jesus, E. D., Paula, F. S., . . . Nusslein,
K. (2013). Conversion of the Amazon rainforest to agriculture results in
biotic homogenization of soil bacterial communities. Proceedings
of the National Academy of Sciences of the United States of America,
110 (3), 988-993. doi:10.1073/pnas.1220608110
Shen, J. P., Zhang, L. M., Guo, J.
F., Ray, J. L., & He, J. Z. (2010). Impact of long-term fertilization
practices on the abundance and composition of soil bacterial communities
in Northeast China. Applied Soil Ecology, 46 (1), 119-124.
doi:10.1016/j.apsoil.2010.06.015
Sigman, D. M., Casciotti, K. L.,
Andreani, M., Barford, C., Galanter, M., & Bohlke, J. K. (2001). A
bacterial method for the nitrogen isotopic analysis of nitrate in
seawater and freshwater. Analytical Chemistry, 73 (17), 4145-4153.
doi:10.1021/ac010088e
Stegen, J. C., Lin, X. J., Konopka,
A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic
assembly processes in subsurface microbial communities. Isme
Journal, 6 (9), 1653-1664. doi:10.1038/ismej.2012.22
Sun, H. Y., Deng, S. P., & Raun, W.
R. (2004). Bacterial community structure and diversity in a century-old
manure-treated agroecosystem. Applied and Environmental
Microbiology, 70 (10), 5868-5874. doi:10.1128/Aem.70.10.5868-5874.2004
Sun, R. B., Zhang, X. X., Guo, X. S.,
Wang, D. Z., & Chu, H. Y. (2015). Bacterial diversity in soils
subjected to long-term chemical fertilization can be more stably
maintained with the addition of livestock manure than wheat straw.Soil Biology & Biochemistry, 88 , 9-18. doi:
10.1016/j.soilbio.2015.05.007
Tajima, K., Aminov, R. I., Nagamine,
T., Ogata, K., Nakamura, M., Matsui, H., & Benno, Y. (1999). Rumen
bacterial diversity as determined by sequence analysis of 16S rDNA
libraries. Fems Microbiology Ecology, 29 (2), 159-169. doi:
10.1111/j.1574-6941.1999.tb00607.x
Thomas, F., Hehemann, J. H.,
Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut
Bacteroidetes: the food connection. Frontiers in Microbiology, 2 .
doi:ARTN 9310.3389/fmicb.2011.00093
Tian, W., Wang, L., Li, Y., Zhuang,
K. M., Li, G., Zhang, J. B., . . . Xi, Y. G. (2015). Responses of
microbial activity, abundance, and community in wheat soil after three
years of heavy fertilization with manure-based compost and inorganic
nitrogen. Agriculture Ecosystems & Environment, 213 , 219-227.
doi: 10.1016/j.agee.2015.08.009
Tripathi, B. M., Kim, M., Kim, Y.,
Byun, E., Yang, J. W., Ahn, J., & Lee, Y. K. (2018). Variations in
bacterial and archaeal communities along depth profiles of Alaskan soil
cores. Scientific Reports, 8 . doi:ARTN
50410.1038/s41598-017-18777-x
Udikovic-Kolic, N., Wichmann, F.,
Broderick, N. A., & Handelsman, J. (2014). Bloom of resident
antibiotic-resistant bacteria in soil following manure fertilization.Proceedings of the National Academy of Sciences of the United
States of America, 111 (42), 15202-15207. doi:10.1073/pnas.1409836111
Wang, S. Q., Zheng, W. B., Currell,
M., Yang, Y. H., Zhao, H., & Lv, M. Y. (2017). Relationship between
land-use and sources and fate of nitrate in groundwater in a typical
recharge area of the North China Plain. Science of the Total
Environment, 609 , 607-620. doi: 10.1016/j.scitotenv.2017.07.176
Webb, C. O., Ackerly, D. D., McPeek,
M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology.Annual Review of Ecology and Systematics, 33 , 475-505.
doi:10.1146/annurev.ecolsys.33.010802.150448
Wolinska, A., Kuzniar, A.,
Zielenkiewicz, U., Izak, D., Szafranek-Nakonieczna, A., Banach, A., &
Blaszczyk, M. (2017). Bacteroidetes as a sensitive biological indicator
of agricultural soil usage revealed by a culture-independent approach.Applied Soil Ecology, 119 , 128-137.
doi:10.1016/j.apsoil.2017.06.009
Xia, L. L., Lam, S. K., Yan, X. Y.,
& Chen, D. L. (2017). How does recycling of livestock manure in
agroecosystems affect crop productivity, reactive nitrogen losses, and
soil carbon balance? Environmental Science & Technology, 51 (13),
7450-7457. doi:10.1021/acs.est.6b06470
Yang, S. M., Malhi, S. S., Song, J.
R., Xiong, Y. C., Yue, W. Y., Lu, L. L., . . . Guo, T. W. (2006). Crop
yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as
affected by 23 annual applications of fertilizer and manure in the
rainfed region of Northwestern China. Nutrient Cycling in
Agroecosystems, 76 (1), 81-94. doi:10.1007/s10705-006-9042-x
Yang, Y. R., Li, X. G., Liu, J. G.,
Zhou, Z. G., Zhang, T. L., & Wang, X. X. (2017). Bacterial diversity as
affected by application of manure in red soils of subtropical China.Biology and Fertility of Soils, 53 (6), 639-649.
doi:10.1007/s00374-017-1209-x
Yu, C. Q., Huang, X., Chen, H.,
Godfray, H. C. J., Wright, J. S., Hall, J. W., . . . Taylor, J. (2019).
Managing nitrogen to restore water quality in China. Nature,
567 (7749), 516-520. doi:10.1038/s41586-019-1001-1
Yu, Y. J., Wu, M., Petropoulos, E.,
Zhang, J. W., Nie, J., Liao, Y. L., . . . Feng, Y. Z. (2019). Responses
of paddy soil bacterial community assembly to different long-term
fertilizations in southeast China. Science of the Total
Environment, 656 , 625-633. doi:10.1016/j.scitotenv.2018.11.359
Zheng, J., Chen, J., Pan, G., Wang,
G., Liu, X., Zhang, X., . . . Zheng, J. (2017). A long-term hybrid
poplar plantation on cropland reduces soil organic carbon mineralization
and shifts microbial community abundance and composition. Applied
Soil Ecology, 111 , 94-104. doi:10.1016/j.apsoil.2016.11.017
Zheng, Y. M., Cao, P., Fu, B. J.,
Hughes, J. M., & He, J. Z. (2013). Ecological drivers of biogeographic
patterns of soil archaeal community. Plos One, 8 (5). doi:ARTN
e6337510.1371/journal.pone.0063375
Zhou, J. Y., Gu, B. J., Schlesinger,
W. H., & Ju, X. T. (2016). Significant accumulation of nitrate in
Chinese semi-humid croplands. Scientific Reports, 6 . doi:ARTN
2508810.1038/srep25088