References
Ashworth, A. J., DeBruyn, J. M., Allen, F. L., Radosevich, M., & Owens, P. R. (2017). Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology & Biochemistry, 114 , 210-219. doi:10.1016/j.soilbio.2017.07.019
Bai, Z. H., Ma, W. Q., Ma, L., Velthof, G. L., Wei, Z. B., Havlik, P., . . . Zhang, F. S. (2018). China’s livestock transition: driving forces, impacts, and consequences.Science Advances, 4 (7). doi:ARTN eaar853410.1126/sciadv.aar8534
Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A. Y., Gattinger, A., . . . van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. Isme Journal, 13 (7), 1722-1736. doi: 10.1038/s41396-019-0383-2
Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning.Nature, 515 (7528), 505-511. doi:10.1038/nature13855
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., . . . Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5), 335-336.doi: 10.1038/nmeth.f.303
Chu, H. Y., Sun, H. B., Tripathi, B. M., Adams, J. M., Huang, R., Zhang, Y. J., & Shi, Y. (2016). Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology, 18 (5), 1523-1533. doi:10.1111/1462-2920.13236
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10 (10), 996-998. doi:10.1038/nmeth.2604
Enwall, K., Nyberg, K., Bertilsson, S., Cederlund, H., Stenstrom, J., & Hallin, S. (2007). Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biology & Biochemistry, 39 (1), 106-115. doi:10.1016/j.soilbio.2006.06.015
Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science, 320 (5879), 1034-1039. doi:10.1126/science.1153213
Fenech, C., Rock, L., Nolan, K., Tobin, J., & Morrissey, A. (2012). The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: A review. Water Research, 46 (7), 2023-2041. doi:10.1016/j.watres.2012.01.044
Feng, Y. Z., Chen, R. R., Hu, J. L., Zhao, F., Wang, J. H., Chu, H. Y., . . . Lin, X. G. (2015). Bacillus asahii comes to the fore in organic manure fertilized alkaline soils.Soil Biology & Biochemistry, 81 , 186-194. doi: 10.1016/j.soilbio.2014.11.021
Fernandez-Gomez, B., Richter, M., Schuler, M., Pinhassi, J., Acinas, S. G., Gonzalez, J. M., & Pedros-Alio, C. (2013). Ecology of marine Bacteroidetes: a comparative genomics approach. Isme Journal, 7 (5), 1026-1037. doi: 10.1038/ismej.2012.169
Gai, X. P., Liu, H. B., Liu, J., Zhai, L. M., Wang, H. Y., Yang, B., . . . Lei, Q. L. (2019). Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Science of the Total Environment, 650 , 2251-2259. doi:10.1016/j.scitotenv.2018.09.275
Guo, Z. C., Zhang, J. B., Fan, J., Yang, X. Y., Yi, Y. L., Han, X. R., . . . Peng, X. H. (2019). Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of the Total Environment, 660 , 1029-1037. doi:10.1016/j.scitotenv.2019.01.051
Hartmann, M., Frey, B., Mayer, J., Mader, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. Isme Journal, 9 (5), 1177-1194. doi: 10.1038/ismej.2014.210
Herrero, M., & Thornton, P. K. (2013). Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences of the United States of America, 110 (52), 20878-20881. doi:10.1073/pnas.1321844111
Ho, A., Di Lonardo, D. P., & Bodelier, P. L. E. (2017). Revisiting life strategy concepts in environmental microbial ecology. Fems Microbiology Ecology, 93 (3). doi:ARTN fix00610.1093/femsec/fix006
Horner-Devine, M. C., & Bohannan, B. J. M. (2006). Phylogenetic clustering and overdispersion in bacterial communities. Ecology, 87 (7), S100-S108. doi: 10.1890/0012-9658(2006)87[100:Pcaoib]2.0.Co;2
Jesus, E. D., Marsh, T. L., Tiedje, J. M., & Moreira, F. M. D. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils (vol 3, pg 1004, 2009). Isme Journal, 3 (10), 1222-1222. doi:10.1038/ismej.2009.98
Jia, W., Qin, W., Zhang, Q., Wang, X., Ma, Y., & Chen, Q. (2018). Evaluation of crop residues and manure production and their geographical distribution in China. Journal of Cleaner Production, 188 , 954-965. doi:10.1016/j.jclepro.2018.03.300
Jiao, S., Chen, W. M., Wang, J. L., Du, N. N., Li, Q. P., & Wei, G. H. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6 . doi:ARTN 14610.1186/s40168-018-0526-0
Ju, X. T., Kou, C. L., Christie, P., Dou, Z. X., & Zhang, F. S. (2007). Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution, 145 (2), 497-506. doi:10.1016/j.envpol.2006.04.017
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., . . . Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26 (11), 1463-1464. doi:10.1093/bioinformatics/btq166
Kennedy, A. C., & Smith, K. L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170 (1), 75-86. doi:Doi 10.1007/Bf02183056
Krapac, I. G., Dey, W. S., Roy, W. R., Smyth, C. A., Storment, E., Sargent, S. L., & Steele, J. D. (2002). Impacts of swine manure pits on groundwater quality. Environmental Pollution, 120 (2), 475-492. doi:Pii S0269-7491(02)00115-X
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75 (15), 5111-5120. doi:10.1128/Aem.00335-09
Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R., & Cary, S. C. (2012). The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. Isme Journal, 6 (5), 1046-1057.doi: 10.1038/ismej.2011.170
Leip, A., Billen, G., Garnier, J., Grizzetti, B., Lassaletta, L., Reis, S., . . . Westhoek, H. (2015). Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environmental Research Letters, 10 (11). doi:Artn 11500410.1088/1748-9326/10/11/ 115004
Liao, H. K., Zheng, C. L., Li, J., & Long, J. (2018). Dynamics of soil microbial recovery from cropland to orchard along a 20-year chronosequence in a degraded karst ecosystem.Science of the Total Environment, 639 , 1051-1059. doi:10.1016/j.scitotenv.2018.05.246
Lin, Y. X., Ye, G. P., Kuzyakov, Y., Liu, D. Y., Fan, J. B., & Ding, W. X. (2019). Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology & Biochemistry, 134 , 187-196. doi: 10.1016/j.soilbio.2019.03.030
Liu, T., Wang, F., Michalski, G., Xia, X. H., & Liu, S. D. (2013). Using N-15, O-17, and O-18 to determine nitrate sources in the Yellow River, China.Environmental Science & Technology, 47 (23), 13412-13421. doi:10.1021/es403357m
Maeda, M., Zhao, B. Z., Ozaki, Y., & Yoneyama, T. (2003). Nitrate leaching in an Andisol treated with different types of fertilizers (vol 121, pg 477, 2003).Environmental Pollution, 124 (2), 355-355. doi:10.1016/S0269-7491(02)00477-3
Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13 (9), 1085-1093. doi:10.1111/j.1461-0248.2010.01509.x
Meng, Q. X., Yang, W., Men, M. Q., Bello, A., Xu, X. H., Xu, B. S., . . . Zhu, H. F. (2019). Microbial community succession and response to environmental variables during cow manure and corn straw composting. Frontiers in Microbiology, 10 . doi:ARTN 52910.3389/fmicb.2019.00529
Nguyen, H. Q., Kanwar, R. S., Hoover, N. L., Dixon, P., Hobbs, J., Pederson, C., & Soupir, M. L. (2013). Long-term effects of poultry manure application on nitrate leaching in tile drain water. Transactions of the Asabe, 56 (1), 91-101.doi:10.13031/2013.42593
Peacock, A. D., Mullen, M. D., Ringelberg, D. B., Tyler, D. D., Hedrick, D. B., Gale, P. M., & White, D. C. (2001). Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology & Biochemistry, 33 (7-8), 1011-1019. doi: 10.1016/S0038-0717(01)00004-9
Pelletier, N., & Tyedmers, P. (2010). Forecasting potential global environmental costs of livestock production 2000-2050. Proceedings of the National Academy of Sciences of the United States of America, 107 (43), 18371-18374. doi:10.1073/pnas.1004659107
Pepe-Ranney, C., Campbell, A. N., Koechli, C. N., Berthrong, S., & Buckley, D. H. (2016). Unearthing the ecology of soil microorganisms using a high resolution DNA-sip approach to explore cellulose and xylose metabolism in soil. Frontiers in Microbiology, 7 (703). doi:10.3389/fmicb.2016.00703
Powell, J. R., Karunaratne, S., Campbell, C. D., Yao, H. Y., Robinson, L., & Singh, B. K. (2015). Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6 . doi:ARTN 844410.1038/ncomms9444
Rebollar, E. A., Bridges, T., Hughey, M. C., Medina, D., Belden, L. K., & Harris, R. N. (2019). Integrating the role of antifungal bacteria into skin symbiotic communities of three Neotropical frog species. Isme Journal, 13 (7), 1763-1775. 10.1038/s41396-019-0388-x
Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. D., Paula, F. S., . . . Nusslein, K. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 110 (3), 988-993. doi:10.1073/pnas.1220608110
Shen, J. P., Zhang, L. M., Guo, J. F., Ray, J. L., & He, J. Z. (2010). Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Applied Soil Ecology, 46 (1), 119-124. doi:10.1016/j.apsoil.2010.06.015
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Bohlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73 (17), 4145-4153. doi:10.1021/ac010088e
Stegen, J. C., Lin, X. J., Konopka, A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. Isme Journal, 6 (9), 1653-1664. doi:10.1038/ismej.2012.22
Sun, H. Y., Deng, S. P., & Raun, W. R. (2004). Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Applied and Environmental Microbiology, 70 (10), 5868-5874. doi:10.1128/Aem.70.10.5868-5874.2004
Sun, R. B., Zhang, X. X., Guo, X. S., Wang, D. Z., & Chu, H. Y. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw.Soil Biology & Biochemistry, 88 , 9-18. doi: 10.1016/j.soilbio.2015.05.007
Tajima, K., Aminov, R. I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H., & Benno, Y. (1999). Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. Fems Microbiology Ecology, 29 (2), 159-169. doi: 10.1111/j.1574-6941.1999.tb00607.x
Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut Bacteroidetes: the food connection. Frontiers in Microbiology, 2 . doi:ARTN 9310.3389/fmicb.2011.00093
Tian, W., Wang, L., Li, Y., Zhuang, K. M., Li, G., Zhang, J. B., . . . Xi, Y. G. (2015). Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agriculture Ecosystems & Environment, 213 , 219-227. doi: 10.1016/j.agee.2015.08.009
Tripathi, B. M., Kim, M., Kim, Y., Byun, E., Yang, J. W., Ahn, J., & Lee, Y. K. (2018). Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Scientific Reports, 8 . doi:ARTN 50410.1038/s41598-017-18777-x
Udikovic-Kolic, N., Wichmann, F., Broderick, N. A., & Handelsman, J. (2014). Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization.Proceedings of the National Academy of Sciences of the United States of America, 111 (42), 15202-15207. doi:10.1073/pnas.1409836111
Wang, S. Q., Zheng, W. B., Currell, M., Yang, Y. H., Zhao, H., & Lv, M. Y. (2017). Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain. Science of the Total Environment, 609 , 607-620. doi: 10.1016/j.scitotenv.2017.07.176
Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology.Annual Review of Ecology and Systematics, 33 , 475-505. doi:10.1146/annurev.ecolsys.33.010802.150448
Wolinska, A., Kuzniar, A., Zielenkiewicz, U., Izak, D., Szafranek-Nakonieczna, A., Banach, A., & Blaszczyk, M. (2017). Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach.Applied Soil Ecology, 119 , 128-137. doi:10.1016/j.apsoil.2017.06.009
Xia, L. L., Lam, S. K., Yan, X. Y., & Chen, D. L. (2017). How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environmental Science & Technology, 51 (13), 7450-7457. doi:10.1021/acs.est.6b06470
Yang, S. M., Malhi, S. S., Song, J. R., Xiong, Y. C., Yue, W. Y., Lu, L. L., . . . Guo, T. W. (2006). Crop yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as affected by 23 annual applications of fertilizer and manure in the rainfed region of Northwestern China. Nutrient Cycling in Agroecosystems, 76 (1), 81-94. doi:10.1007/s10705-006-9042-x
Yang, Y. R., Li, X. G., Liu, J. G., Zhou, Z. G., Zhang, T. L., & Wang, X. X. (2017). Bacterial diversity as affected by application of manure in red soils of subtropical China.Biology and Fertility of Soils, 53 (6), 639-649. doi:10.1007/s00374-017-1209-x
Yu, C. Q., Huang, X., Chen, H., Godfray, H. C. J., Wright, J. S., Hall, J. W., . . . Taylor, J. (2019). Managing nitrogen to restore water quality in China. Nature, 567 (7749), 516-520. doi:10.1038/s41586-019-1001-1
Yu, Y. J., Wu, M., Petropoulos, E., Zhang, J. W., Nie, J., Liao, Y. L., . . . Feng, Y. Z. (2019). Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 656 , 625-633. doi:10.1016/j.scitotenv.2018.11.359
Zheng, J., Chen, J., Pan, G., Wang, G., Liu, X., Zhang, X., . . . Zheng, J. (2017). A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Applied Soil Ecology, 111 , 94-104. doi:10.1016/j.apsoil.2016.11.017
Zheng, Y. M., Cao, P., Fu, B. J., Hughes, J. M., & He, J. Z. (2013). Ecological drivers of biogeographic patterns of soil archaeal community. Plos One, 8 (5). doi:ARTN e6337510.1371/journal.pone.0063375
Zhou, J. Y., Gu, B. J., Schlesinger, W. H., & Ju, X. T. (2016). Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 6 . doi:ARTN 2508810.1038/srep25088