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Abstract  

Nonlinear Schrödinger equations play essential roles in different physics and 

engineering fields. In this paper, a hyper-block finite-difference self-consistent method 

(HFDSCF) is employed to solve this stationary nonlinear eigenvalue equation and 

demonstrated its accuracy. By comparing the results with the Sinc self-consistent (SSCF) 

method and exact available results, we show that the HFDSCF method gives quantum 

states with high accuracy and can even solve the strongly nonlinear Schrodinger 

equations. Then, by applying our method to Hofstadter butterfly problem, we describe the 

breeding, metamorphosis and killing of these butterflies by using nonlinear interactions 

as well as two constant length multi-well and sinusoidal potentials.  
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1. Introduction 

Hofstadter butterfly was first reported by Douglas Hofstadter in 1976 [1]. The 

Hofstadter butterfly can be obtained as the fractal energy spectrum if we solve the 

Schrodinger equation for an electron under a uniform magnetic field in a two dimensional 

quantum system [2]. The self-similarity takes place with the frustrated competition 

between the lattice constant and the magnetic length scale. In order to experimentally 
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realize the Hofstadter butterflies, many attempts have been done. The first investigation 

of the Hofstadter spectrum in semiconductor superlattice was reported by Schlosser et al. 

[3].  Then it realized in graphene moiré superlattices [4], and one-dimensional optical 

superlattices [5-6]. Hofstadter butterfly also realized in ultracold atoms [7-8], Grapheme 

[9], and superconducting qubits [10]. Effects of interactions on the Hofstadter butterfly 

have also been discussed previously [11-12]. 

The numerical solution of nonlinear Schrödinger equations usually needs 

complicated numerical programming [13]. In recent research by Tsoy et al [14], it is 

explicitly specified that "direct numerical solution of such a problem is a difficult task". 

Some of the existing methods to solve this problem are: transfer matrix [15], time-

splitting schema [16], inverse scattering approach [17], compact finite difference method 

[18], neural network [19] and relaxation procedure [20], etc.  

Among different numerical approach to study the physical differential equations, 

the finite difference methods have been among the most appealing ones. These methods 

have been applied to Schrodinger equations from long time ago [21-27]. However, the 

nonlinear Schrodinger equation appears by adding a nonlinear term to the Schrodinger 

equation. This nonlinear term can have different interesting sources due to the many-

body interactions or the coupling with the environment.  For instance the nonlinearity can 

be seen in the system including of electron-electron interactions [28], electron-phonon 

interactions or polaronic problems [29], spin domains of spinor Bose-Einstein 

condensates in an optical lattice [30], nonlinear theory of elementary particles [31], 

plasma physics [32], biomolecular dynamics [33], solitons properties [34], nonlinear 

excitations in magnets [35], nonlinear crystals [36], etc. 

In the current study, we present a direct, simple and efficient hyper-block finite 

difference self-consistent method to solve the nonlinear Schrödinger equation which has 

two important characteristics: A) in addition to the ground state eigenvalue, it can 

evaluate the excited states in a more accurate manner than the conventional finite 

difference self-consistent methods can do. B) It can provide us the correct energy 

spectrum of a more strongly nonlinear systems than that of the finite difference self-

consistent methods can do.   

 

2. Formalism 

We start with the following nonlinear Schrodinger equation [37-38], 
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Where  and m are the Planck constant and effective mass of electron in each mono-

layer, respectively. The parameter Q  is a nonlinear parameter which in a semiconducting 

system it can determine the strength of the electron-electron interaction. The potential 

function can also be defined as, 

1( ) 2 Cos (2 x+ )V x                                                                           (2-1) 
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               (2-2) 

3( ) A Sin ( x)V x                                                                                   (3-1) 

Where NOW is the number of wells, Vconf is a piecewise potential function, 2L in the 

system length. 'i' shows the i'th well or barrier in the system. The parameter  is the 

phase. 'A' and   are also two parameters that we try to find this effects on the Hofstadter 

Butterflies. Here, we use the potential 1( )V x to plot the Hofstadter Butterflies and by 

adding the 2( )V x  or 2( )V x  (separately) we try to handle it. 

In the procedure of plotting the Hofstadter Butterflies, we choose a rational 

 /p q  with p and q coprime. Therefore, Equation (1) is periodic under x  x + 

q. Now, the wave-functions are Bloch functions (    i k

k

x

ke xx u  ), where produce q 

bands in the k-space. For a specified  /p q , q bands can exist in the butterfly 

spectrum. In order to solve the equation (1), we have used a finite difference method. 

However, since there is a nonlinear term in this equation, we uses a self-consistent 

iteration to find its energy eigenvalues and eigenfunctions.  

 

3. Hyper-block finite difference self-consistent method 

We solve the equation (1) by means of a finite difference self-consistent method 

(FDSCF). For this purpose, first we assume  
22 m x     and discretize the x-

domain with step size x . Therefore, equation (1) can be written as, 

 
2

1 12i i i i i i i iV G E             ,                            (3) 

This equation is a tri-diagonal nonlinear matrix eigenvalue problem. The diagonal 

Hamiltonian matrix elements are 
2

i iV G     and the off-diagonal Hamiltonian 
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matrix elements are 2 . We show the jth eigen-value and jth eigen-function at kth 

iteration with 
 ,j k

E and 
 ,j k

 , respectively. In a nutshell, equation (2) could be written 

as, 

 
2

( , ) ( , ) ( , ) ( , ) ( , 1) ( , ) ( , )

1 12j k j k j k j k j k j k j k

i i i i i i i iV G E       

       ,                            (4) 

We can use a self-consistent iteration scheme to solve this nonlinear equation whose 

steps are presented in the following: 

1- Set G= 0 and solve equation (3) and ontain 
 0,0

E and 
 0,0

 . 

2- Put 
 0,0

  in equation (3) as a coefficient of G and solved this equation again. 

3- Repeate the above steps to achieve the desired accuracy in energy eigen-values 

and eigen-functions. Moreover, wrote the convergence criterion 

as
   , , 1j k j k

E E 


  , where   was the desired accuracy. In this study, we set 

0.0001  . 

Here, just a state contributes in the SCF procedure (i.e. the ground state). This SCF 

method gave us the ground state with maximum accuracy and the excited sates had 

ascending errors with respect to the excited state index. Now, we present a novel hyper-

block approach to remove this deficiency. For this purpose, we use the following 

approach. At first, by assuming N number of discretization points we rewrite the equation 

(3) as, 

 
2

( , ) ( , 1) ( , ) ( , )

0 1 1 1

j k j k j k j k

N N N N N
N N
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

              
,                            (5) 

By assuming M participating states in the SCF procedure, we can build the 

following    NM NM  hyper-block, 
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Again, we use the above-mentioned iteration schema and convergence criterion 

   , , 1j k j k
E E 


  , where   was the desired accuracy. However, this method produces 

some fake eigenstates that can simply be identified. If we use the M number of states 

participating in the SCF procedure, each eigenstate will has (M-1) fake eigenstates that 

place exactly after the corresponding true eigenstate and can easily be removed. Another 

numerical concern can be the size of the hyper-block which grows rapidly by increasing 

the number of states participate in the SCF procedure. Fortunately, since the Hamiltonian 

matrix H0 is a tridiagonal which is very sparse, therefore the resulting hyper-block matrix 

is also a sparse tri-diagonal matrix which its diagonalization is very simpler than 

diagonalization of dense matrices.   

In the tables (1) and (2), we have presented four smallest energy levels of a one 

dimensional Schrodinger equation with G=1 and G=5, respectively. There, we have 

compared the results obtained by HFDSCF, FDSCF, SSCF and exact results of the Ref. 

[39]. As these tables show, our new algorithm HFDSCF has maximum accuracy among 

the implemented methods.   

Table 1: Four smallest energy levels of a one dimensional Schrodinger equation with G=1 obtained by 

HFDSCF and FDSCF approaches and compared with SSCF and exact results of the Ref. [39]. In the 

parenthesis, we have given the number of nodes (in the SCF) and discretization points (in the HFDSCF and 

FDSCF) methods. 

Energy levels SSCF (61) Ref.[39] FDSCF(3000) HFDSCF (3000) 

E0 0.462733782 0.462579418 0.461433722 0.461433722 

E1 4.445020299 4.179929550 4.437927578 4.177151742 

E2 10.60881429 10.35117007 10.59235808 10.33829948 

E3 19.24464308 18.98801387 19.21509222 18.96298325 

Also, table (2) shows that our new method HFDSCF has very higher accuracy than other 

studied methods when the Schrodinger equation is more nonlinear. This fact is more 

visible when we compare these methods at higher excited states of the table (2). 

 

Table 2: Four smallest energy levels of a one dimensional Schrodinger equation with G=5 obtained by 

HFDSCF and FDSCF approaches and compared with SSCF and exact results of the Ref. [39]. In the 

parenthesis, we have given the number of nodes (in the SSCF) and discretization points (in the HFDSCF 

and FDSCF) methods. 

Energy levels SSCF (61) Ref. [39] FDSCF(3000) HFDSCF(3000) 

E0 -3.399698328 -3.400181294 -3.399742399 -3.399742399 
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E1 2.799662851 1.049048570 2.794608728 1.1423848234 

E2 8.756412749 7.297398975 8.741640092 7.3236563228 

E3 17.32571098 15.95895638 17.29740312 15.955561130 

 

3. Results and Discussions 

In the previous section, we have solved the nonlinear Schrödinger equation (1) by 

using the described hyper-block finite-difference self-consistent method and compared 

the results with the conventional finite difference self-consistent method, Sink method 

and exact results. Thus, we have verified the accuracy of our method.  

In the present section, we have applied the HFDSCF to the equation (4) and studied the 

Hofstadter butterflies. In the figure (1), we have depicted the Hofstadter butterfly for a 

linear system with G=0. This figure can help us to compare the effect of different 

parameters on it. In this figure, we observe a butterfly that has two major minigaps in 

each wing as well as few minor minigaps. Here, each Bloch band divides into q bands. 

The gaps between these bands lead to a butterfly-like pattern and therefore known as 

Hofstadter butterfly. 

 

Figure 1: Variation of the energy eigenvalues of the equation (4) as a function of the parameter α. 

Here, a linear system with G=0 is assumed. 

In the figure (2), we have presented the variation of the energy eigenvalues of the 

equation (4) as a function of the parameter α for two nonlinear systems with nonlinearity 

strengths G=1 and G=5. The assumed integer numbers p and q, the number of 

participating states in the SCF procedure M and nonlinearity parameter G are specified 

on the corresponding panel. Comparing the panel (A) of the figure (2) with the figure (1) 
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reveals that by adding a small nonlinearity to the system of the figure (1), few allowed 

states in the energy gaps of the figure (1) is produced. However, by increasing the 

nonlinearity strength to 5 (see panel B of figure 2), the number of these allowed state 

increases their position extend to central parts of the energy gaps. In the interacting 

systems, the interaction itself can introduce a new length scale in the problem which can 

affect the Hofstadter butterfly topology.  

 

Figure 2: Variation of the energy eigenvalues of the equation (4) as a function of the parameter α. The 

assumed p, q, M and G are specified on the corresponding panel. 

This fact shows that the nonlinearity can play an essential role in the energy band 

structures and subsequently on the physical properties of the assumed system. Panels (C) 
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and (D) are the same as the panels (A) and (B), respectively. However, in these new 

panels we have assumed larger values for the parameters p and q and more clearly show 

the new allowed stated in the gap regions. Also, panels (E) and (F) are the same as the 

panels (C) and (D), respectively. However, in these new panels we have sown the effect 

of the number of participating states in the SCF procedure, i.e. M, on the Hofstadter 

butterfly. As these panels show, using 'one' state in the procedure of the SCF does not 

lead to correct energy eigenvalues and therefore the Hofstadter butterfly does not 

correctly produce (see table 2). This is because the allowed states in the gap regions does 

not appear in the panels (E) and (F).  

In the figure (3), we have shown the effect of the number of wells NOW (in Eq. 2-2) on 

the variation of the energy eigenvalues of the equation (4) as a function of the parameter 

α. Here, we assumed p=157, q=163, M=1 and G=0. The number of wells NOW is 

specified on the corresponding panel. To plot this figure, we have used the potential 

1 2( ) ( )V x V x  in the Schrodinger equation (4). As these panels show, we can tune the 

number of gaps, their widths, and their positions by changing the number of wells NOW.  
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Figure 3: Variation of the energy eigenvalues of the equation (4) as a function of the parameter α. We 

assumed p=157, q=163, M=1 and G=0. The number of wells NOW in Eq. 2-2 is specified on the 

corresponding panel. 

Therefore, of the increasing the NOW leads to evolution Hofstadter butterflies to new 

shapes of them. The behavior of the Hofstadter butterflies can be described by merging 

and splitting of the energy bands which are among the signatures of the change in the 

symmetry properties of the assumed system. 

Now, we study the effect of the potential depth Vconf in the equation (2-2) on the variation 

of the energy eigenvalues of the equation (4) as a function of the parameter α. The results 

have been shown in figure (4). Here, we have assumed p=157, q=163, M=1, and G=0. 

The corresponding Vconf in Eq. 2-2 is specified on the corresponding panel. As these 

panels show, by increasing the parameter Vconf, two distinct Hofstadter butterflies appear 

(i.e. breeding). Another fact is that in all of the studied panels the symmetry of the 

butterflies with respect to axes α=0.5 and E=0 is still preserved.  

 

Figure 4: Variation of the energy eigenvalues of the equation (4) as a function of the parameter α. We 

assumed p=157, q=163, M=1 and G=0. The number of wells NOW in Eq. 2-2 is specified on the 

corresponding panel. 
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At this point, we use the potential 1 3( ) ( )V x V x  in the Schrodinger equation (4) to 

explore the effect of sinusoidal external potential on the Hofstadter butterflies. As these 

panels show, by increasing the coefficient 'A' in the equation 2-3, the number of gaps 

decreases and consequently the butterfly will be killed. However, this additional potential 

cannot break the symmetries of the Hofstadter butterfly. Also, if we decrease the 

parameter 'A', the metamorphosis of the Hofstadter butterfly from a Gaussian gap to a 

perfect butterfly is visible.  

 

Figure 5: Variation of the energy eigenvalues of the equation (4) as a function of the parameter α. We 

assumed p=157, q=163, M=1 and G=0. The coefficient 'A' in Eq. 2-3 is specified on the corresponding 

panel. 

Finally, in figure (6) we have plotted the variation of the energy eigenvalues of the 

equation (4) as a function of the parameter α. Again, we assumed p=157, q=163, M=1 

and G=0. The argument 'ω' in Eq. 2-3 is specified on the corresponding panel. As these 

panels show, the effect of this parameter on the Energy spectrum evolution (i.e. 

Hofstadter butterfly) is very complicated. The major energy gaps of the butterfly 

disappears by changing the argument 'ω'. Thus, by using the argument 'ω', we can kill the 
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Hofstadter butterfly or change its shape and its number of wings. However, the 

symmetries of the Hofstadter butterfly do not break by changing the arguments 'ω'. The 

evolution of the Hofstadter butterfly occurs by using the closing procedure which is 

achieved by infinitely many closures and re-openings of the new gaps. 

 

Figure 6: Variation of the energy eigenvalues of the equation (4) as a function of the parameter α. We 

assumed p=157, q=163, M=1 and G=0. The parameter 'ω' in Eq. 2-3 is specified on the corresponding 

panel.  

 

Conclusion 

In the current study, we used a hyper-block finite-difference self-consistent 

approach to solving a nonlinear Schrödinger equation. We showed that the hyper-block 

finite-difference self-consistent method was convergent, accurate, simple and efficient to 

obtain the energy spectrum of the nonlinear Schrodinger equations. Our new approach 

gave us the ground and excited states with good accuracies. It also could provide us the 

energy spectrum of strongly nonlinear Schrodinger equations. By using our new method 

in the Hofstadter butterfly problem, we showed that the nonlinearity can produce some 

new allowed state which their position can extend to central parts of the energy gaps. The 
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number of gaps and their positions could be tuned by adjusting the number of wells 

NOW. By using an additional sinusoidal potential we described the breeding, 

metamorphosis and killing of the Hofstadter butterflies.  
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