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Abstract. In this paper, we are defined the nonuniform non-stationary multires-

olution analysis (NUNSMRA) on Sobolev space over local fields (Hs(K)) and with

help of NUNSMRA orthonormal wavelets are constructed.

1. Introduction

The definition of multiresolution analysis on local fields with positive characteristic

is given by Jian, Li and Jin [1] and they have constructed orthonormal wavelets

associated to the multiresolution analysis. Their theory have been extended by Behra

and jahan in [5]. A nonuniform multiresolution analysis and Generalized nonuniform

multiresolution analyses on L2(K) are given by F. A. Shah [2] and Shukla et.al [12, 13,

14]. Recently, Pathak, Singh and Kumar [[6], [7], [8], [9]] considered non-stationary

MRA on Sobolev space over local fields of positive characteristic (Hs(K)) in which one

single scaling function cannot generate orthonormal functions at each level of dilation.

In this paper, we construct Non-stationary MRA on Hs(K) in which translation set

is nonuniform and no longer a group, but is the union of T1 and a translate of T1,
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where T1 = {u(m) : m ∈ N0}(N0 = {0, 1, 2, 3, ...}) is a complete list of (distinct)

coset representation of D in K+. That is, this set is of the form T = {0, r
M
} + T1,

where M ≥ 1 is an integer and r is an odd integer such that g.c.d.(r,M) = 1. We

call this a nonuniform non-stationary MRA on Hs(K). By this generalization, our

main aim is to develop nonuniform non-stationary MRA on Sobolev space and to

construct associated orthonormal wavelets in which scaling functions depend on level

and translation set is nonuniform.

This paper is organised as follows. Section 2, contains notation and definitions of

local fields and Sobolev space over local fields. We define nonuniform non-stationary

multiresolution analysis on Hs(K) and constructed corresponding wavelets in Section

3 and its subsection.

2. Preliminaries

The following list of notation and definitions are given below will be used through-

out the paper.

• Throughout this paper K denotes the local field of positive characteristic.

• dx is the normalized Haar measure for K+.

• |α| is the valuation of α ∈ K and it is non-archimedian norm.

• Let p be a prime element in K.

• For k ∈ Z, Pk = {x ∈ K : |x| ≤ q−k} is a compact subgroup of K+, where

q = pc, p is a prime number and c is a positive integer.

• P0 = D is called ring of integres in K.

• |Pk| = q−k and |D| = 1.

• χ be a fixed character on K+ that is trivial on D but is non trivial on P−1.

For y ∈ K, χy(x) = χ(yx), x ∈ K.

• The “natural”order on the sequence is denoted by {u(k) ∈ K}∞k=0 and is

described as follows.

D/P ∼= GF (q) = τ, q = ps, p is a prime, s ∈ N and Ω : D → τ the canonical
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homomorphism of D on to τ . τ = GF (q) is a vector space over GF (p) ⊂ τ. We

consider a set {1 = ε0, ε1, ..., εs−1} ⊂ D∗ = D\P in such a way that {Ω(εk)}s−1k=0

is a basis of GF (q) over GF (p).

For k, 0 ≤ k < q, k = a0 + a1p + ... + as−1p
s−1, 0 ≤ ai < p, i = 0, 1, ..., s− 1,

we define

u(k) = (a0 + a1ε1 + ...+ as−1εc−1)p
−1 (0 ≤ k < q).

For k = b0 + b1q + ...+ brq
r, 0 ≤ bi < q, k ≥ 0, we set

u(k) = u(b0) + p−1u(b1) + ...+ p−ru(br).

• Note that for k, l ≥ 0, u(k + l) 6= u(k) + u(l). However, it is true that for

all r, l ≥ 0, u(rql) = p−lu(r), and for r, l ≥ 0, 0 ≤ t < ql, u(rql + t) =

u(rql) + u(t) = p−lu(r) + u(t).

• For k ∈ N0, we denote χu(k) by χk.

• S (K) is the space of all finite linear combinations of characteristic function

of balls of K. Also S (K) is dense in Lp(K), 1 ≤ p <∞.

• S ′(K) is the space of distributions.

• f̂(ξ) is the Fourier transform of f ∈ S (K) and is defined by

f̂(ξ) =

∫
K
f(x)χξ(x)dx, ξ ∈ K,

and the inverse transform by

f(x) =

∫
K
f̂(ξ)χx(ξ)dξ, x ∈ K.

• Let s ∈ R, we denote Sobolev space over local fields by Hs(K) is the space of

all functions in S ′(K) such that

γ̂
s
2 (ξ)f̂(ξ) ∈ L2(K), where γ̂s(ξ) = (max(1, |ξ|))s.
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• The inner product in Hs(K) is denoted by

〈f, g〉 = 〈f, g〉Hs(K) =

∫
K
γ̂s(ξ)f̂(ξ)ĝ(ξ)dξ.

• The space S (K) is also dense in Hs(K).

For more details refer to [[1], [4]].

3. Nonuniform Non-stationary Multiresolution Analysis on Hs(K)

Let T1 = {u(m) : m ∈ N0} is a complete list of (distinct) coset representation of D

in K+. Let M ≥ 1 is an integer and r is an odd integer with 1 ≤ r ≤ qM − 1 such

that g.c.d.(r,M) = 1, define

T = {0, r
M
}+ T1.

It is easily verified that T is not a group on K, but is the union of T1 and a translate of

T1. Now, we first establish two important theorems which leads to define nonuniform

non-stationary MRA on Hs(K) as follows.

Theorem 3.1. For s ∈ R, let ϕ(j) in Hs(K), then the distribution {(qM)
j
2ϕ(j)((p−1M)j.−

u(λ)), λ ∈ T} are orthonormal in Hs(K) if and only if∑
l∈N0

γ̂s((p−1M)j(ξ + u(l)))|ϕ̂(j)(ξ + u(l))|2 = 1, (3.1)

and ∑
l∈N0

γ̂s((p−1M)j(ξ + u(l)))|ϕ̂(j)(ξ + u(l))|2χl(
r

M
) = 0 for a.e. ξ ∈ K. (3.2)

Proof. We have

δλ,0 = < (qM)
j
2ϕ(j)((p−1M)j.− λ), (qM)

j
2ϕ(j)((p−1M)j.) >

=

∫
K
γ̂s(ξ)(qM)−

j
2 ϕ̂(j)((p−1M)−jξ)χ̄λ((p

−1M)−jξ)(qM)−
j
2 ϕ̂(j)((p−1M)−jξ)dξ

=

∫
K
γ̂s((p−1M)jξ)|ϕ̂(j)(ξ)|2χ̄λ(ξ)dξ.
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Splitting the integral, we get

δλ,0 =

∫
D

∞∑
l=0

γ̂s((p−1M)j(ξ + u(l)))|ϕ̂(j)(ξ + u(l))|2χ̄λ(ξ + u(l))dξ. (3.3)

On taking λ ∈ N0, we have

〈(qM)
j
2ϕ(j)((p−1M)j.− λ), (qM)

j
2ϕ(j)((p−1M)j.)〉

=

∫
D

∞∑
l=0

γ̂s((p−1M)j(ξ + u(l)))|ϕ̂(j)(ξ + u(l))|2χ̄λ(ξ + u(l))dξ. (3.4)

If λ = r
M

+ u(m),m ∈ N0, then

〈(qM)
j
2ϕ(j)((p−1M)j.− λ), (qM)

j
2ϕ(j)((p−1M)j.)〉

=
∫
D

∑∞
l=0 γ̂

s((p−1M)j(ξ + u(l)))|ϕ̂(j)(ξ + u(l))|2χ̄λ(ξ + u(l))χ̄( r
M
u(l))

×χ̄( r
M
ξ)χ̄( r

M
u(m))dξ. (3.5)

Hence the distribution {(qM)
j
2ϕ(j)((p−1M)j. − u(λ)), λ ∈ T} is orthonormal if and

only if equalities (3.1) and (3.2) hold. �

Theorem 3.2. Suppose ϕ(j), j ∈ Z be functions of Hs(K) such that, for every j, the

distributions

ϕ
(j)
j,λ(.) = (qM)

j
2ϕ(j)((p−1M)j.− λ), λ ∈ T, (3.6)

are orthonormal in Hs(K) and Vj = {ϕj,λ(ξ) : λ ∈ T}. Under the condition,

lim
j→∞
|ϕ̂(j)((p−1M)−jξ)| = γ̂−

s
2 (ξ), (3.7)

∪j∈ZVj = Hs(K) and ∩j∈ZVj = {0}.

Proof. Let η ∈ (∪j∈ZVj)⊥. If πj is the orthogonal projection from Hs(K) onto Vj.

Then,

πjη = 0 for all j ∈ Z. (3.8)
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Let ε > 0 and condition (3.7) holds. Since S (K) is dense in Hs(K), there exists

σ ∈ S (K) such that

||η − σ||Hs(K) < ε. (3.9)

So for all j ∈ Z,

||πjσ||Hs(K) = ||πj(η − σ)||Hs(K) ≤ ||(η − σ)||Hs(K) < ε. (3.10)

Then by definition of πj,

||πjσ||2Hs(K) =
∑
λ∈T

| < σ, ϕ
(j)
j,λ >Hs(K) |2

=
∑
λ∈T1

| < σ, ϕ
(j)
j,λ >Hs(K) |2 +

∑
λ∈ r

M
+T1

| < σ, ϕ
(j)
j,λ >Hs(K) |2. (3.11)

Now,

∑
λ∈T1

| < σ, ϕ
(j)
j,λ >Hs(K) |2

=
∑
λ∈T1

(qM)−j
∫
K
γ̂s(ξ)σ̂(ξ)ϕ̂(j)((p−1M)−jξ)χλ((p

−1M)−jξ)dξ

×
∫
K
γ̂s(ξ)σ̂(ξ)ϕ̂(j)((p−1M)−jξ)χλ((p−1M)−jξ)dξ

=
∑
λ∈T1

(qM)j
∫
K
γ̂s((p−1M)jξ)σ̂((p−1M)jξ)ϕ̂(j)(ξ)χλ(ξ)dξ

×
∫
K
γ̂s((p−1M)jξ)σ̂((p−1M)jξ)ϕ̂(j)(ξ)χλ(ξ)dξ

=
∑
λ∈T1

(qM)j
∫
K
{
∞∑
l=0

∫
D

γ̂s((p−1M)j(ξ + u(l)))σ̂((p−1M)j(ξ + u(l)))ϕ̂(j)((ξ + u(l)))

×χλ(ξ)}dξ × γ̂s((p−1M)jξ)σ̂((p−1M)jξ)ϕ̂(j)(ξ)χλ(ξ)dξ,
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and

∑
λ∈ r

M
+T1

| < h,ϕ
(j)
j,λ >Hs(K) |2

=
∑
λ∈T1

(qM)j
∫
K
{
∞∑
l=0

∫
D

γ̂s((p−1M)j(ξ + u(l)))σ̂((p−1M)j(ξ + u(l)))ϕ̂(j)((ξ + u(l)))

×χ(
r

M
ξ)χ(

r

M
u(l))χλ(ξ)}dξ × γ̂s((p−1M)jξ)σ̂((p−1M)jξ)ϕ̂(j)(ξ)χ(

r

M
ξ)χλ(ξ)dξ

By the convergence theorem of Fourier Series on D, we obtain

||πjσ||2Hs(K) =

∫
K
γ̂s(ξ)σ̂(ξ)ϕ̂(j)((p−1M)−jξ)

×

{
∞∑
l=0

γs(ξ + (p−1M)ju(l))σ̂(ξ + (p−1M)ju(l))ϕ̂(j)((p−1M)−jξ + u(l))

}
dξ

+

∫
K
γ̂s(ξ)σ̂(ξ)ϕ̂(j)((p−1M)−jξ)χ(

r

M
(p−1M)−jξ)

×{
∞∑
l=0

γs(ξ + (p−1M)ju(l))σ̂(ξ + (p−1M)ju(l))ϕ̂(j)((p−1M)−jξ + u(l))

×χ̄(
r

M
(p−1M)−jξ)χ̄(

r

M
u(l))}dξ

≤
∫
K
γ̂2s(ξ)|ϕ̂(j)((p−1M)−jξ)|2|σ̂(ξ)|2dξ

+

∫
K

∞∑
l=1

γ̂s(ξ)γ̂s(ξ + (p−1M)ju(l))σ̂(ξ)

×ϕ̂(j)((p−1M)−jξ)σ̂(ξ + (p−1M)ju(l))ϕ̂(j)((p−1M)−jξ + u(l))dξ

= G1 +G2(say). (3.12)
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Now by using (3.1) and Cauchy-Schwarz’s inequality, we have

|G2| ≤
∫
K
γ̂
s
2 (ξ)|σ̂(ξ)|

∞∑
l=1

γ̂
s
2 (ξ + (p−1M)ju(l))|σ̂(ξ + (p−1M)ju(l))|dξ

≤
∞∑
l=1

||γ̂
s
2 (.)σ̂(.)||L2(K)||γ̂

s
2 (.+ (p−1M)ju(l)σ(.+ (p−1M)ju(l))||L2(K).

Since σ̂ ∈ S (K) there exists l for which σ̂(ξ) 6= 0 for ξ ∈ E−l = {x ∈ K : |x| ≤ (qM)l},

so |ξ| ≤ (qM)l. For j > l and for any l ∈ N, we have

|(p−1M)ju(l)| = (qM)j|u(l)| ≥ (qM)j > (qM)l.

So, we have |ξ| 6= |(p−1M)ju(l)|. Hence

|ξ + (p−1M)ju(l)| = max(|ξ|, |(p−1M)ju(l)|) ≥ (qM)j > (qM)l.

That is, σ̂(ξ + (p−1M)ju(l)) = 0, ∀ j > l. This shows that lim
j→∞
|G2| = 0.

Now, by using (3.10) and (3.12), we have

∫
K
γ̂2s(ξ)|ϕ̂(j)((p−1M)−jξ)|2|σ̂(ξ)|2dξ < ε2 −G2.

By using the condition (3.7) and Dominated convergence theorem, we get

||σ||Hs(K) < ε.

Hence

||η||Hs(K) < 2ε.

Since ε was arbitrary, we get that η = 0 a.e. ξ ∈ K.

Now, we prove the last part of the theorem. Let g ∈ ∩j∈ZVj and we know that S (K)

is dense in Hs(K). So, we have

||g||Hs(K) − ||πjφ||Hs(K) ≤ ||g − πjφ||Hs(K) ≤ ||f − φ||Hs < ε, (3.13)
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where

φ(ξ) = (γ̂−
s
2 (ξ)σ(ξ))∨, and σ(ξ) ∈ S (K).

Using equation (3.12), (3.13) and Cauchy-Schwarz’s inequality, we get

||πjφ||2Hs(K) ≤
∞∑
k=0

(

∫
K
γ̂s(ξ)|σ(ξ)|2|ϕ̂(j)

(
(p−1M)−jξ)|2dξ)

1
2

×(

∫
K
γ̂s(ξ + (p−1M)ju(k))|σ(ξ + (p−1M)ju(k)))|2|ϕ̂(j)

(
(p−1M)−jξ + u(k))|2dξ)

1
2 .

Since σ ∈ S (K), so there exists a characteristic funtion ηi(ξ − ξ0) of the set ξ0 + Ei,

where i is some integers. Now σ can be written as σ(ξ) = (qM)
i
2ηi(ξ − ξ0). If

ξ + (p−1M)ju(k) ∈ ξ0 + Er, then |(p−1M)ju(k)| ≤ (qM)−i, hence |u(k)| ≤ (qM)−i−j.

Then summation index k is bounded by (qM)−i−j. So using this, we get

||πjφ||2Hs(K) ≤ (qM)−i−j(

∫
K
γ̂s(ξ)|σ(ξ)|2|ϕ̂(j)

(
(p−1M)−jξ)|2dξ)

1
2

≤ (qM)−i−j
∫
ξ0+Er

γ̂s(ξ)|ϕ̂(j)
(
(p−1M)−jξ)|2dξ

= (qM)−i
∫
(p−1M)jξ0+E−j+i

γ̂s((p−1M)jξ)|ϕ̂(j)(ξ)|2dξ.

Suppose that ξ0 6= 0. For any ε > 0, choose J < 0 enough small satisfies the

following two inequalities : (qM)J < |ξ0| = (qM)ρ such that J + ρ < 0, and∫
E−J−ρ γ̂

s((p−1M)Jξ)|ϕ̂(J)(ξ)|2dξ < ε.

We have,

(p−1M)jξ0 + E−j+i ⊂ E−J−ρ for all j ≤ J. (3.14)

Since |(p−1M)jξ0| = (qM)j(qM)ρ ≤ (qM)J(qM)ρ and E−j+i ⊂ E−J−ρ.

Hence, ||πjφ||Hs(K) → 0 as j → −∞. Therefore there exists j such that

||πjφ||Hs(K) < ε.
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So,

||g||Hs(K) < 2ε.

Since ε was arbitrary we get g = 0 a.e. Hence, ∩j∈ZVj = {0}. �

3.1. Construction of Wavelets. By theorem 3.1, we have seen that one single scal-

ing function can’t generate orthonormal basis at each level of dilation, that is, scaling

function depends on level which leads to non-stationary MRA. Since translation set is

nonuniform, hence, in this section, with the help of theorem 3.2, we define NUNSMRA

on Sobolev space Hs(K) as follows :

Definition 3.3. A nonuniform non-stationary multiresolution analysis of Hs(K) for

an integer M and an odd integer r with 1 ≤ r ≤ qM − 1 such that g.c.d.(r, M) = 1,

consists of a sequence of closed subspaces {Vj}j∈Z of Hs(K), satisfying

(1) Vj ⊂ Vj+1;

(2) ∪j∈Z Vj = Hs(K);

(3) ∩j∈Z Vj = {0};

(4) there exist a function ϕ(j) ∈ Hs(K) such that {(qM)
j
2ϕ(j)((p−1M)j. − λ)}λ∈T ,

forms an orthonormal basis of Vj. The function ϕ(j) is called the scaling function of

the MRA.

With the help of MRA {Vj}j∈Z, we can define another sequence {Wj}j∈Z of closed

subspaces of Hs(K) by

Vj+1 = Wj ⊕ Vj and Wk ⊥ Wn if k 6= n.

It follows that for j > J ,

Vj = VJ ⊕
j−J−1⊕
l=0

Wj−l,
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where all these subspaces are orthogonal. By virtue of (2) and (3) in the Definition

3.3, this implies

Hs(K) =
⊕
l∈Z

Wl, (3.15)

a decomposition of Hs(K) into mutually orthogonal subspaces.

Let ϕ(j) be a scaling function of the given MRA. Since ϕ(j) ∈ Vj ⊂ Vj+1, and

{ϕ(j+1)
j+1,λ}λ∈T is an orthonormal basis in Vj+1, we have

ϕ(j)(.) =
∑
λ∈T

c
(j)
λ ϕ

(j+1)
j+1,λ(.),

where

c
(j)
λ = < ϕ(j), ϕ

(j+1)
j+1,λ >, with

∑
λ∈T

|c(j)λ |
2 <∞.

Now,

ϕ(j)((p−1M)jx) = (qM)
j+1
2

∑
λ∈T

c
(j)
λ ϕ(j+1)((p−1M)j+1x− λ).

Hence,

ϕ̂(j)(ξ) = (qM)
j−1
2

∑
λ∈T

c
(j)
λ χλ((p

−1M)−1ξ)ϕ̂(j+1)((p−1M)−1ξ)

= m
(j+1)
0 ((p−1M)−1ξ)ϕ̂(j+1)((p−1M)−1ξ), (3.16)

where

m
(j+1)
0 (ξ) = (qM)

j−1
2

∑
λ∈T

c
(j)
λ χλ(ξ) (3.17)

= m
(j+1)
0,1 (ξ) +m

(j+1)
0,2 (ξ)χ̄((

r

M
)ξ). (3.18)

The function m
(j+1)
0,1 and m

(j+1)
0,2 are L2-periodic functions.

The condition Vj ⊂ Vj+1 for every j ∈ Z is equivalent to the existence of L2-periodic

functions m
(j+1)
0,1 and m

(j+1)
0,2 such that the scale relation (3.16) hold.
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Furthermore, if f ∈ Wj, this is equivalent to f ∈ Vj+1 and f ⊥ Vj.Since f ∈ Vj+1, we

have

f(x) =
∑
λ∈T

f
(j)
λ ϕ

(j+1)
j+1,λ(x)

= (qM)
j+1
2

∑
k∈N0

f
(j)
λ ϕ(j+1)((p−1M)j+1x− λ),

where f
(j)
λ =< f, ϕ

(j+1)
j+1,λ >Hs(K).

f̂(ξ) = (qM)−
j+1
2

∑
λ∈T

f
(j)
λ χλ((p

−1M)−j−1ξ)ϕ̂(j+1)((p−1M)−j−1ξ)

= m
(j+1)
f ((p−1M)−j−1ξ)ϕ̂(j+1)((p−1M)−j−1ξ), (3.19)

where

m
(j+1)
f (ξ) = (qM)−

j+1
2

∑
λ∈T

f
(j)
λ χk(ξ) (3.20)

= m
(j+1)
f,1 (ξ) +m

(j+1)
f,2 (ξ)χ̄((

r

M
)ξ). (3.21)

Note that m
(j+1)
f,1 and m

(j+1)
f,2 are L2-periodic functions.

Theorem 3.4. If ϕ(j) are scaling functions of the given MRA {Vj}, then m
(j)
0 (ξ) in

(3.17) satisfies

qM−1∑
t=0

[
|m(j)

0,1((p
−1M)−1ξ + (p−1M)−1u(t))|2 + |m(j)

0,2((p
−1M)−1ξ + (p−1M)−1u(t))|2

]
= 1,

(3.22)

and

qM−1∑
t=0

[
|m(j)

0,1((p
−1M)−1ξ + (p−1M)−1u(t))|2 + |m(j)

0,2((p
−1M)−1ξ + (p−1M)−1u(t))|2

]
×χ̄(

r

M
u(t)) = 0 a.e. ξ ∈ K.

(3.23)
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Proof. Substituting (3.16) into (3.1), we get

∞∑
l=0

γ̂s((p−1M)j(ξ + u(l))|m(j)
0 ((p−1M)−1(ξ + u(l)))|2|ϕ̂(j)((p−1M)−1(ξ + u(l)))|2 = 1.

Splitting the sum, we obtain

1 =

qM−1∑
t=0

∞∑
l=0

[|m(j)
0,1((p

−1M)−1ξ + (p−1M)−1u(t) + u(l)))|2

+|m(j)
0,2((p

−1M)−1ξ + (p−1M)−1u(t) + u(l)))|2]

×γ̂s((p−1M)j+1)(p−1M)−1ξ + (p−1M)−1u(t) + u(l)))

×|ϕ̂(j)((p−1M)−1ξ + (p−1M)−1u(t) + u(l)))|2

=

qM−1∑
t=0

[|m(j)
0,1((p

−1M)−1ξ + (p−1M)−1u(t))|2

+|m(j)
0,2((p

−1M)−1ξ + (p−1M)−1u(t))|2]

×
∞∑
l=0

γ̂s((p−1M)j+1)(p−1M)−1ξ + (p−1M)−1u(t) + u(l)))

×|ϕ̂(j)((p−1M)−1ξ + (p−1M)−1u(t) + u(l)))|2.

Applying (3.1), we obtain (3.22). In the similar manner by substituting (3.16) into

(3.2), we obtain (3.23). �

Theorem 3.5. If f ∈ Wj, then m
(j)
f (ξ) defined in (3.20) satisfies

qM−1∑
t=0

[m
(j+1)
f,1 ((p−1M)−1ξ + pu(t))m

(j+1)
0,1 ((p−1M)−1ξ + pu(t))

+m
(j+1)
f,2 ((p−1M)−1ξ + pu(t))m

(j+1)
0,2 ((p−1M)−1ξ + pu(t))] = 0, (3.24)

and

qM−1∑
t=0

[m
(j+1)
f,1 ((p−1M)−1ξ + pu(t))m

(j+1)
0,1 ((p−1M)−1ξ + pu(t))

+m
(j+1)
f,2 ((p−1M)−1ξ + pu(t))m

(j+1)
0,2 ((p−1M)−1ξ + pu(t))]χ̄(

r

M
u(t)) = 0. (3.25)
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Proof. If f ∈ Wj =⇒ f ⊥ ϕ
(j)
j,λ. Therefore < f, ϕ

(j)
j,λ(ξ) >= 0. So, by using (3.21),

above result is followed. �

Theorem 3.6. There are integral-periodic functions m
(j)
i , where i ∈ L = {1, 2, 3, ..., qM−

1}, j ∈ Z, such that

M (j)(ξ) = [m(j)
s ((p−1M)−1ξ + (p−1M)−1u(t))]qM−1s,t=0 , j ∈ Z, (3.26)

is unitary then there exists an orthonormal wavelet basis {ψ(j)
i,j,λ}j∈Z,λ∈T,i∈L for Hs(K),

where

ψ̂
(j)
i ((p−1M)−jξ) = m

(j+1)
i ((p−1M)−j−1ξ)ϕ̂(j+1)((p−1M)−j−1ξ), j ∈ Z, i ∈ L, (3.27)

with i ∈ L and m
(j)
0 as defined by (3.17).

Proof. It can be easily proved that {(qM)
j
2ψ

(j)
i ((p−1M)j.−λ)}i∈L, λ∈T is an orthonor-

mal basis for Wj. So, {ψ(j)
i,j,λ}j∈Z,λ∈T,i∈L is an orthonormal basis for Hs(K). �
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