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Abstract: The HWENO (Hermite weighted essentially non-oscillatory) schemes are high

order, high-resolution methods suitable for conservation law and convection dominated sim-

ulations with possible discontinuous or sharp gradient solutions. In most of the literature,

although there are many other numerical fluxes available, the Lax-Friedrichs numerical flux

is used frequently due to its simplicity. In this paper, we will study an alternative finite

difference HWENO method. The core of this method is that its numerical flux frame-

work breaks the limitations of the traditional mathematical form of numerical flux and is

suitable for many different forms of numerical flux. And we systematically investigate the

performance of the HWENO method and present quantitative comparisons for hyperbolic

conservation laws based on different numerical fluxes. The spatial terms are discretized by

using finite difference HWENO scheme and the time terms are performed by using TVD

Runge-Kutta method. The HWENO method is proposed based on the original WENO

methodology for solving hyperbolic conservation laws. Therefore, the HWENO scheme is

similar to the classic WENO scheme achieved by using numerical flux as a building block,

and their performances are closely related to the properties of the numerical fluxes. Hence,

we study the performance of HWENO method based on different numerical fluxes, including

the first-order monotone fluxes and second-order TVD fluxes, with the objective of obtain-

ing better performance for the conservation laws by choosing suitable numerical fluxes. The

detailed discussion focuses on the one-dimensional system case, including the issues of CPU

cost, accuracy, non-oscillatory property, and resolution of discontinuities where as numerical

tests are also performed for two-dimensional systems.
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1 Introduction

By utilizing a novel form of the numerical fluxes and stencils of the interpolation polyno-

mials, a new Hermite interpolation method is devised, known as HWENO methods, based

on the original WENO [17, 19, 3, 7] scheme. In 2004 [14], Qiu and Shu first developed the

finite volume HWENO scheme which based on the classical WENO philosophy and applied

as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods[14, 15]. In this

work, we would like to explore an alternative flux formulation for constructing numerical

fluxes which originally designed in the paper [18]. In summary, the format of this arti-

cle has the following several benefits. The first advantage is the HWENO scheme inherits

the benefits of the WENO scheme, namely achieving the high-order accuracy in smooth

regions while maintaining stable, non-oscillatory and sharp discontinuity transitions. An ad-

ditional important advantage of the HWENO scheme is its compact performance [12]. The

HWENO schemes can get the same accurate order by using fewer points than the original

WENO schemes. For example, five points are needed in the stencil for a fifth-order WENO

(WENO5) reconstruction, while only three points are needed for a fifth-order HWENO (H-

WENO5) reconstruction. The third advantage is the forms of numerical fluxes we used in

the paper, which were from the Taylor series expansion. This formula of numerical fluxes

breaks the limit of the mathematical form of the numerical flux. We use the point values and

the corresponding derivatives to interpolate the computational cells at the interfaces, while

the traditional practice of reconstructing flux functions can be applied only to smooth flux

splitting to get a high-order accurate scheme. The splitting technology is very demanding

in the mathematical form of numerical flux.

The HWENO method has been developed in recent years as a class of high order method

for solving the conservation laws. It is widely used in many fields, such as nonlinear compu-

tational acoustic, limiters of the DG method [2], etc. In a previous work [10], we developed

a class of HWENO methods which were based on the classic flux-splitting method to con-

struct the HWENO schemes for conservation laws. The goal of this paper is to explore an

alternative formulation for constructing numerical fluxes of HWENO schemes which involves

interpolations of the point values ui rather than on the flux values, while studying the perfor-

mance of different numerical fluxes for the conservation laws, with the objective of obtaining

better performance by choosing suitable numerical fluxes. On the other hand, in [13], Qiu

studied the numerical performance of the RKDG method based on different numerical fluxes
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for the conservation laws. We study the performance of fluxes with the HWENO schemes.

An important component of the HWENO methods for solving the conservation laws

is the numerical flux based on the exact or approximate Riemann solvers. In most of the

WENO/HWENO papers, the Lax-Friedrichs (LF) numerical flux is used due to its simplicity.

However, the numerical viscosity of the LF flux is almost the largest among the monotone

fluxes for scalar problems. It will smooth out some useful information of numerical solutions

as time progresses. There are many other numerical fluxes available in the literature. Hence,

we systematically investigate the performance of the HWENO method based on different

numerical fluxes, including the first-order monotone fluxes (such as the Godunov flux [20],

the Engquist-Osher flux, etc.), second-order TVD fluxes and generalized Riemann solver

[1, 20] based on the HWENO finite difference methods, with the objective of obtaining

better performance by choosing suitable numerical fluxes. In detail, the Godunov flux [5],

the Engquist-Osher (EO) flux [4, 11] for the scalar case and its extension to the system (often

referred to as the Osher-Solomon flux [11]), the HLL flux [6] and its modification of HLL flux

often referred to as the HLLC flux [26] are based on the approximate Riemann solver. These

fluxes are two-point, first-order monotone fluxes. One of the essential two points TVD flux

is the flux limiter centered (FLIC) flux [25] with the following essential two point property:

f̂(ul, u, u, ur) = f(u) for any ul and ur, which combines a low-order monotone flux and a

high-order flux with a flux limiter to guarantee the TVD-property. The other fluxes such

as generalized Riemann solvers [1, 20] can also be used as a numerical flux for HWENO

methods.

The present paper is organized as follows. In section 2, we give the formulations of

the governing equations in the framework of the finite difference HWENO method and the

updating conservative formula for conservation laws. At the same time, we give and describe

the numerical fluxes considered in this paper. The numerical test is performed for the one

dimensional and two-dimensional hyperbolic conservation laws in Section 3, and concluding

remarks are given in Section 4.

2 Construction of the HWENO scheme

In this section, we concentrate on describing the HWENO method for conservation laws

and the numerical fluxes which will be studied with the HWENO finite difference method.

firstly we focus on the HWENO method for the one-dimensional case.

Consider the following scalar non-linear hyperbolic conservation law:

ut + f(u)x = 0 (2.1)

3



where f(u) is a convex smooth function, f
′′ ≥ 0. Take the derivative of the equation (2.1)

with respect to x and denoting ux = v, we obtain the following coupled hyperbolic system

for HWENO method: {
ut + f(u)x = 0, u(x, 0) = u0(x)
vt + g(u, v)x = 0, v(x, 0) = v0(x)

(2.2)

where

g(u, v) = f ′(u)ux = f ′(u)v. (2.3)

By (2.3), it is easy to know that the characteristic velocity ∂g
∂v

of the derivative equation is

f ′(u). Hence, both equations in systems (2.2) share the same characteristic velocity: this the

result is used in what follows to generate a simple approximate Riemann solver discretizing

(2.2).

Set the grid as xi = (i − 1
2
)∆x where ∆x is called a spatial step. Denoting the discrete

cell Ii = [xi− 1
2
, xi+ 1

2
], centered on xi. The uniform cell size will be defined by ∆x = xi+ 1

2
−

xi− 1
2
. Conservation laws (2.2) can be written as the following system of ordinary differential

equations (ODE): 
dui(t)
dt

= − 1
∆x

(f̂i+1/2 − f̂i−1/2)

dvi(t)
dt

= − 1
∆y

(ĝi+1/2 − ĝi−1/2)
(2.4)

where ui(t), vi(t) are the numerical approximation to the nodal value u(xi, t) and v(xi, t) of

the solution to (2.2) in a uniform grid. The numerical fluxes f̂i+ 1
2
and ĝi+ 1

2
are based on exact

or approximate Riemann solvers, which must be satisfied Lipschitz continuous condition of

several neighboring values ui and vi and also consistent with the physical fluxes f(u) and

g(u, v).

specifically, we will use an alternative approach to construct numerical fluxes for high

order conservative finite difference schemes under the flux framework in [18]. The numerical

fluxes f̂i+ 1
2
and ĝi+ 1

2
are designed, so that:{

1
∆x

(f̂i+ 1
2
− f̂i− 1

2
) = f(u)x|x=xi

+O(∆xr)
1
∆x

(ĝi+ 1
2
− ĝi− 1

2
) = g(u, v)x|x=xi

+O(∆xr−1)
(2.5)

then the conservative difference scheme (2.4) will be the r-th order approximation to equation

(2.2), when the solution is smooth. We adopt the high order flux as consisting of the low

order flux plus a correction, given by: f̂i+ 1
2
= f̂L

i+ 1
2

+ f̂H
i+ 1

2

ĝi+ 1
2
= ĝL

i+ 1
2

+ ĝH
i+ 1

2

(2.6)
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where f̂H and ĝH were produced by Taylor expansion [18]:

f̂H
i+ 1

2
= a2∆x2(

∂2f

∂x2
)i+ 1

2
+ a4∆x4(

∂4f

∂x4
)i+ 1

2
+ · · ·+O(∆x2m+1), (2.7)

ĝH
i+ 1

2
= a2∆x2(

∂2g

∂x2
)i+ 1

2
+ a4∆x4(

∂4g

∂x4
)i+ 1

2
+ · · ·+O(∆x2m) (2.8)

and the constants a2, a4, · · · , a2m−2, · · · are existence such that the numerical flux (2.6)

guarantees r = (2m + 1)th order accuracy in (2.5), such as a2 = − 1
24
, a4 = 7

5760
, · · · .

Following, we will mainly discuss the low-resolution terms f̂L and ĝL instead of many kinds

of different numerical flux which will be given in the next section. Namely, numerical flux

f̂L
i+ 1

2

= f̂L(u−
i+ 1

2

, u+
i+ 1

2

) and ĝL
i+ 1

2

= ĝL(u−
i+ 1

2

, u+
i+ 1

2

, v−
i+ 1

2

, v+
i+ 1

2

) can be arbitrary fluxes, u±
i+ 1

2

and v±
i+ 1

2

are approximations to u and v at xi+ 1
2
, respectively. One of the key benefits of

this alternative numerical flux formulation is the low-resolution numerical flux f̂L
i+ 1

2

and ĝL
i+ 1

2

in (2.6) which can be any monotone flux instead of one certain numerical flux, such as LF

numerical flux.

We can rewrite the conservation law (2.1) by a semi-discrete form of (2.4) and adopt the

flux form of (2.6). If u±
i+ 1

2

and v±
i+ 1

2

are the fifth order approximations to u and v at xi+ 1
2
,

respectively, then the formula (2.4) with fluxes (2.7)-(2.8) is the fifth order approximation

to equation (2.2)(r = 2). In the present work, semi-discrete systems (2.4) are becoming

an ODE system, hence the time integration is performed by means of a three-stage TVD

Runge-Kutta scheme [18].

2.1 Description of the low resolution terms: HWENO reconstruc-
tion

In this paper, a major building block of the alternative formulation of the high order

conservative finite difference scheme discussed is the following HWENO interpolation pro-

cedure. Given the nodal values ui = u(xi) and vi = v(xi) of a piecewise smooth function

u(x) and v(x), we would like to find a high-order accurate approximation of u(x) and v(x)

at half points xi+ 1
2
. The numerical flux function in Eq. (2.4) can also be evaluated by the

fifth-order finite difference HWENO scheme. For completeness, the formulations of this H-

WENO scheme is given below. The construction of u±
i+ 1

2

and v±
i+ 1

2

by a fifth-order HWENO

interpolation.

The formulae of the HWENO scheme can be expressed as

u−
i+ 1

2

≈
2∑

r=0

ωru
(r)

i+ 1
2

(2.9)

where u
(r)

i+ 1
2

is obtained by a quadratic polynomial reconstruction of u(xi+ 1
2
) (denoted by

pr(x), pr(xj) = uj, r = 0, 1, 2) on r-th set of candidate stencils Sr. Sr is the small stencil, s0 =
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{xi−1, xi}, s1 = {xi, xi+1}, s2 = {xi−1, xi, xi+1}, which cover all possible stencils including

the grid point that one point upwind to xi+ 1
2
. For r, ωr is the nonlinear weight that satisfies

2∑
r=0

ωr = 1, ωr ≥ 0.

Following the original WENO recipe [8] (HWENO format uses the same nonlinear method),

ωr is given by

ωr =
ω̄r∑k−1
s=0 ω̄r

, r = 0, 1, 2, (2.10)

with

ω̄r =
γr

(ε+ βr)2
,

where γr is a linear weight which guarantees that the overall scheme (2.9) is fifth-order

accurate. And βr is the smoothness indicator, defined by

βr =
2∑

l=1

∫
Ii

∆x2l−1(
∂lpr(x)

∂lx
)2dx. (2.11)

We take ε = 10−6 (a small positive number) to avoid division by zero.

Especially, for the fifth-order scheme, we have

γ0 =
1

16
, γ1 =

9

16
, γ2 =

3

8
.

And u
(r)

i+ 1
2

, βr (r = 0, 1, 2) can be computed by

u
(0)

i+ 1
2

= −5

4
ui−1 +

9

4
ui −

3

4
∆xvi−1, (2.12)

u
(1)

i+ 1
2

=
1

4
ui +

3

4
ui+1 −

1

4
∆xvi+1, (2.13)

u
(2)

i+ 1
2

= −1

8
ui−1 +

3

4
ui +

3

8
ui+1 (2.14)

and

β0 = (−2ui−1 + 2ui −∆xvi−1)
2 +

13

3
(−ui−1 + ui −∆xvi−1)

2, (2.15)

β1 = (−2ui + 2ui+1 −∆xvi+1)
2 +

13

3
(ui − ui+1 +∆xvi+1)

2, (2.16)

β2 =
1

4
(−ui−1 + ui+1)

2 +
13

12
(ui−1 − 2ui + ui+1)

2.

6



The reconstruction procedure of u+
i+ 1

2

is symmetric to the procedure used for u−
i+ 1

2

with

respect to xi+ 1
2
as described above.

For the reconstruction of the derivative values v±i+1/2, a key difference is that the recon-

structed stencils are different. Given the nodal values of ui and vi, we construct Hermite

type cubic reconstruction polynomials pr(x), (r = 0, 1, 2) in the small stencils s0 = {xi−1, xi},
s1 = {xi, xi+1}, s2 = {xi−1, xi, xi+1}, respectively. And we have

γ′
0 =

1

112
, γ′

1 =
15

16
, γ′

2 =
3

56
. (2.17)

For the derivative equation, the smoothness indicator become

βj =
3∑

k=2

∫
Ii

∆x2k−1

(
∂k

∂xk
pj(x)

)2

dx. (2.18)

Note that the summation begins from the second derivative rather than the first, see [14] for

more details. The formulae for vr
i+ 1

2

, βr (r = 0, 1, 2) become

v
(0)

i+ 1
2

=
9

2∆x
(ui−1 − ui) +

7

4
vi−1 +

15

4
vi, (2.19)

v
(1)

i+ 1
2

=
3

2∆x
(−ui + ui+1)−

1

4
vi −

1

4
vi+1, (2.20)

v
(2)

i+ 1
2

=
1

8∆x
(ui−1 − ui + 7ui+1) +

1

4
vi, (2.21)

and

β0 =
13

12
(12(ui−1 − ui) + 6∆x(vi−1 + vi))

2 + (6(ui−1 − ui) + ∆x(2vi−1 + 4vi))
2,

β1 =
13

12
(12(ui − ui+1) + 6∆x(vi + vi+1))

2 + (−6(ui − ui−1)−∆x(4vi + 2vi+1))
2,

β2 =
13

12
(−3ui−1 + 3ui+1 − 6∆xvi)

2 + (ui−1 − 2ui + ui+1)
2..

Again the reconstruction procedure of v+
i+ 1

2

is symmetric to the procedure used for v−
i+ 1

2

with respect to xi+ 1
2
as described above.

We described the reconstruction procedure of fifth order HWENO finite difference scheme

in the above. For system cases, such as the Euler equations of gas dynamics, in order to

avoid oscillation, both the reconstructions of u−
i+1/2 and v−i+1/2 from ui and vi are performed

in the local characteristic directions.

2.2 Construction of the high resolution terms

To get an approximation with fifth order accuracy (r = 5 in (2.5)), we can use the first

two terms given by (2.7)-(2.8). The high-resolution terms of the numerical flux in (2.7)-(2.8)
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have at least ∆x2 in their coefficients, hence they only need lower order approximations and

they are expected to contribute much less to spurious oscillations. Therefore, we approx-

imate these remaining terms by simple central approximation or one-point upwind-biased

approximation with suitable orders of accuracy, without using the more expensive HWENO

procedure.

Discrete f̂H
i+ 1

2

and ĝH
i+ 1

2

. Considering the stability, we split fluxes f and g into two parts

f = f+ + f− and g = g+ + g−, here

f+ =
1

2
(f(u) + αu), f− =

1

2
(f(u)− αu),

g+ =
1

2
(g(u, v) + αv), g− =

1

2
(g(u, v)− αv),

where α = max |f ′(u)|, and we can see that

d

du
f+ ≥ 0,

d

du
f− ≤ 0,

∂

∂v
g+ ≥ 0,

∂

∂v
g− ≤ 0.

Giving the point value f+
i = 1

2
(f(ui) + αui), f−

i = 1
2
(f(ui) − αui), g+i = 1

2
(g(ui, vi) +

αvi), g−i = 1
2
(g(ui, vi)− αvi), let

f̂H
i+ 1

2
= f̂+

i+ 1
2

+ f̂−
i+ 1

2

= (f̂+
1 )i+ 1

2
+ (f̂−

1 )i+ 1
2
+ (f̂+

2 )i+ 1
2
+ (f̂−

2 )i+ 1
2

ĝH
i+ 1

2
= ĝ+

i+ 1
2

+ ĝ−
i+ 1

2

= (ĝ+1 )i+ 1
2
+ (ĝ−1 )i+ 1

2
+ (ĝ+2 )i+ 1

2
+ (ĝ−2 )i+ 1

2

then

a2∆x2(
∂2f

∂x2
)i+ 1

2
≈ a2(f̂

+
1 )i+ 1

2
+ a2(f̂

−
1 )i+ 1

2
, a4∆x4(

∂4f

∂x4
)i+ 1

2
≈ a4(f̂

+
2 )i+ 1

2
+ a4(f̂

−
2 )i+ 1

2

a2∆x2(
∂2g

∂x2
)i+ 1

2
≈ a2(ĝ

+
1 )i+ 1

2
+ a2(ĝ

−
1 )i+ 1

2
, a4∆x4(

∂4g

∂x4
)i+ 1

2
≈ a4(ĝ

+
2 )i+ 1

2
+ a4(ĝ

−
2 )i+ 1

2

where

(f̂−
1 )i+ 1

2
=

5

4
f+
i−1 − f+

i − 1

4
f+
i+1 +

1

2
g+i−1 + g+i+1,

(f̂+
1 )i+ 1

2
=

5

4
f−
i+2 − f−

i+1 −
1

4
f−
i − 1

2
g−i+2 − g−i ,

(f̂−
2 )i+ 1

2
= −12(f+

i−1 − 2f+
i + f+

i+1)− 6(g+i−1 − g+i+1),

(f̂+
2 )i+ 1

2
= −12(f−

i−1 − 2f−
i + f−

i+1)− 6(g−i−1 − g−i+1),

(ĝ−1 )i+ 1
2
=

1

4
(39f+

i−1 − 48f+
i + 9f+

i+1 + 21g+i−1 + 12g+i − 3g+i+1),

(ĝ+1 )i+ 1
2
=

1

4
(−9f−

i−1 + 48f−
i − 39f−

i+1 − 3g−i−1 + 12g−i + 21g−i+1),

(ĝ−2 )i+ 1
2
= 90(f+

i−1 − f+
i+1) + 30(g+i−1 + 4g+i + g+i+1),

(ĝ+2 )i+ 1
2
= 90(f−

i−1 − f−
i+1) + 30(g−i−1 + 4g−i + g−i+1).

Next, we list the numerical fluxes under consideration, and the demonstration of their

performance will be given in the next subsection.
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2.3 Description of fluxes for the low resolution terms

In this paper, we use the formulation (2.6) as the numerical flux for the hyperbolic

law. Although this formulation is more expensive than the standard formulation, it does

have several advantages. One of the most important advantages is that arbitrary monotone

fluxes can be used in this framework, while the traditional practice of reconstructing flux

functions can be applied only to smooth flux splitting. We will list some frequently-used in

the literature numerical flux as follows as the low-resolution term of the present paper.

2.3.1 The Lax-Friedrichs (LF) flux and the local LF (LLF) flux [25, 13, 9]

The LF flux is one of the simplest and most widely used in many literatures. However,

the numerical viscosity is the largest among monotone fluxes which will polish many useful

messages with the time development.

The LF or the LLF flux is defined by:

f̂LF (u−, u+) =
1

2

[(
f(u−) + f(u+)

)
− α

(
u+ − u−)] , (2.22)

ĝLF (u−, u+; v−, v+) =
1

2

[(
g(u−, v−) + g(u+, v+)

)
− α

(
v+ − v−

)]
. (2.23)

where for the LF flux, α is taken as an upper bound over the whole line for |f ′(u)| in the

scalar case, or for the absolute value of eigenvalues of the Jacobian for the system case, and

for the LLF flux α is taken as an upper bound between u− and u+. In the process of solving

with HWENO scheme, the numerical flux of the derivative equation has the same value α

with original equation, because they have the same characteristic velocity.

2.3.2 The Godunov flux [5, 25].

The Godunov flux is based on the exact Riemann solver, which has the smallest numerical

viscosity among all monotone fluxes for the scalar case but could be very costly to evaluate

in the system case, as it often lacks explicit formulas and relies on iterative procedures for

its evaluation. The Godunov flux is defined as

f̂G(u−, u+) = f(u(0)),

where u(0) is the solution of the local Riemann problem at x/t = 0 (the solution of the local

Riemann problem is a function of the single variable x/t only due to self-similarity), i.e. the

exact solution to the conservation law (2.2) with the initial condition:

u(x, 0) =

{
u− for x ≤ 0,
u+ for x > 0.
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For the scalar case, the Godunov flux can be expressed in a closed form as

f̂G(u−, u+) =

{
minu−≤u≤u+f(u) if u− ≤ u+,
maxu+≤u≤u−f(u) if u− > u+.

(2.24)

However, for most nonlinear systems, the Godunov flux cannot be expressed in a closed

form. Its evaluation would in general require an iterative procedure. Therefore, to the

numerical flux ĝi± 1
2
in derivative equation, we use the frozen coefficient method and the

linear hyperbolic systems theory to update the v.

2.3.3 The Engquist-Osher (EO) flux and the Osher-Solomon flux [9, 13].

The Engquist-Osher (EO) flux for the scalar case and its extension to systems (often

referred to as the Osher-Solomon flux ) are smoother than the Godunov flux with an almost

as small numerical viscosity, and have the advantage of explicit formulas for the scalar case

and for some well known physical systems, such as the Euler equations of compressible gas

dynamics. Since the existence of the explicit formulas, the evaluation of the EO flux is less

costly than the Godunov flux.

For the scalar case the EO flux is given by:

f̂EO(u−, u+) =
1

2

(
f(u−) + f(u+)−

∫ u+

u−
|f ′(u)|du

)
, (2.25)

For the one dimensional system case, the explicit formulas for the Osher-Solomon flux for

the Euler equations is given as follows [13] which will not given here.

To the numerical flux ĝi± 1
2
, since the hyperbolic equation and its derivative have the same

characteristic velocity, linear hyperbolic systems theory was used with the frozen coefficient

method.

2.3.4 The Harten-Lax-van Leer (HLL) flux [26, 25].

For the purpose of computing a Godunov flux, Harten, Lax and van Leer [6] presented

a novel approach (HLL flux) for solving the Riemann problem approximately. The central

idea is to assume, for the solution, a wave configuration that consist of two waves separating

three constant states. The HLL flux for the Euler equations (one dimensional case) is defined

by:

f̂HLL(u−, u+) =


f(u−), if 0 ≤ s−,
s+f(u−)−s−f(u+)+s−s+(u+−u−)

s+−s−
, if s− ≤ 0 ≤ s+,

f(u+), if s+ ≤ 0.

(2.26)

ĝHLL(u−, u+; v−, v+) =


g(u−, v−)v−, if 0 ≤ s−,
s+g(u−,v−)v−−s−g(u+,v+)v++s−s+(v+−v−)

s+−s−
, if s− ≤ 0 ≤ s+,

g(u+, v+)v+, if s+ ≤ 0.

(2.27)
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where the lower and upper bounds of the wave speed, s− and s+, must be estimated. We

use the pressure-velocity estimates

s− = v− − c−q−, s∗ = v∗, s+ = v+ + c+q+ (2.28)

where, for K = ±,

qK =

{
1, if p∗ ≤ pK ,
(1 + γ+1

2γ
(p∗/pK − 1))1/2, if p∗ > pK

with

p∗ =
1

2
(p− + p+)− 1

2
(v+ − v−)ρ c, v∗ =

1

2
(v− + v+)− p+ − p−

2ρ c
,

and

ρ =
1

2
(ρ− + ρ+), c =

1

2
(c− + c+).

But this flux has a serious flaw of diffusing contact surfaces. This is mainly because the

HLL scheme is a assumption of a two wave configuration, therefore neglects the contact

discontinuous. So a remedy version to this problem of intermediate waves in the HLL scheme

was given in [26], named HLLC flux.

2.3.5 The HLLC flux-a modification of the HLL flux [23, 25].

The HLLC flux is a modification of the HLL flux, whereby the missing contact and shear

waves are restored. The HLLC flux for the Euler equations is given by:

f̂HLLC(u−, u+) =


f(u−), if 0 ≤ s−,
f(u−) + s−(u∗− − u−), if s− ≤ 0 ≤ s∗,
f(u+) + s+(u∗+ − u+), if s∗ ≤ 0 ≤ s+,
f(u+), if s+ ≤ 0

(2.29)

ĝHLLC(u−, u+; v−, v+) =


g(u−, v−)v−, if 0 ≤ s−,
g(u−, v−)v− + s−(v∗− − v−), if s− ≤ 0 ≤ s∗,
g(u+, v+)v+ + s+(v∗+ − v+), if s∗ ≤ 0 ≤ s+,
g(u+, v+)v+, if s+ ≤ 0

(2.30)

where, for K = ±,

u∗K = ρK
sK − vK

sK − s∗

 1
s∗

EK

ρK
+ (s∗ − vK)[s∗ + pK

ρK(sK−vK)
]

 (2.31)

v∗K = ρx
K sK − vK

sK − s∗

 1
s∗

Ex
K

ρxK + (s∗ − vK)[s∗ + pK

ρxK(sK−vK)
]

 (2.32)

The definitions of s−, s∗ and s+ are given in (2.28).
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2.3.6 The first-order centered (FORCE) flux [24].

This flux is the average of the LF flux and the second order Richtmyer flux, hence its

viscosity is smaller than that of the LF flux. The FORCE flux is defined by:

f̂FORCE(u−, u+) =
1

2

(
f̂LF (u−, u+) + f̂R(u−, u+)

)
, (2.33)

ĝFORCE(u−, u+; v−, v+) =
1

2

(
ĝLF (v−, v+) + ĝR(v−, v+)

)
, (2.34)

where f̂R is the second order Richtmyer flux given by

f̂R(u−, u+) = f(u∗), u∗ =
1

2

(
u− + u+ − ∆t

∆x
(f(u+)− f(u−))

)
, (2.35)

and the ĝR is

ĝR(u−, u+; v−, v+) = g(v∗), v∗ =
1

2

(
v− + v+ − ∆t

∆x
(g(u+, v+)− g(u−, v−))

)
. (2.36)

2.3.7 A flux limiter centered (FLIC) flux [22].

The general flux limiter approach combines a low order monotone flux and a high order

flux. The FLIC flux we use has the FORCE flux as the low order flux and the Richtmyer

flux as the high order flux:

f̂FLIC(u−, u+) = f̂FORCE(u−, u+) + ϕi+1/2[f̂
R(u−, u+)− f̂FORCE(u−, u+)]. (2.37)

where ϕi+1/2 is a flux limiter. There are several possible choices for the flux limiter such

as the superbee, van Leer and the minbee flux limiters. Following [25, 21], for the Euler

equation we use the following procedure: we first define q = E (total energy) and set

r−i+1/2 =
∆qi−1/2

∆qi+1/2

, r+i+1/2 =
∆qi+3/2

∆qi+1/2

where ∆qi−1/2 = qi − qi−1, and qi is the cell average of q on the cell Ii. We then compute a

single flux limiter

ϕi+1/2 = min(ϕ(r−i+1/2), ϕ(r
+
i+1/2))

and apply it to all components of the flux. In this paper we use the minbee limiter:

ϕ(r) =


0, r ≤ 0,
r, 0 ≤ r ≤ 1,
1, r ≥ 1.
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To the equation and its derivative equation, we choose the same value of minbee limiter ϕ(r).

Clearly, if u− = u+ = u, then f̂FLIC(u, u) = f(u). Hence even if the FLIC flux depends on

more than the two points u− and u+ through the limiter ϕi+1/2 and we are abusing notations

when we denote it by f̂FLIC(u−, u+), it is indeed an essentially two point flux as defined

before.

2.3.8 The multi-stage predictor-corrector (MUSTA) flux [24].

The MUSTA flux is a multi-stage predictor-corrector flux. Following [21] we use the

FORCE flux as the predictor flux. The procedure to evaluate a L-stage MUSTA flux can be

described as following: first we set u−
0 = u− and u+

0 = u+ for the initial stage l = 0, then we

perform the following steps:

1. Compute the FORCE flux f̂FORCE
l = f̂FORCE(u−

l , u
+
l ) on the data at the stage l.

2. If the desired number of total stages L has been reached (that is l = L), then the compu-

tation of the MUSTA flux is complete and the final flux is given by f̂MUSTA(u−, u+) =

f̂FORCE
l . Otherwise, continue to compute the values for the next stage using:

u−
l+1 = u−

l − ∆t

∆x
(f̂FORCE

l − f(u−
l )), u+

l+1 = u+
l − ∆t

∆x
(f(u+

l )− f̂FORCE
l )

and proceed back to step (a).

In this paper we use L = 2 as suggested in [21].

Remark 1: For the system cases, we basically use the Roe type characteristic HWENO

scheme in order to achieve better qualities. That is to say, the HWENO reconstruction is

always applied with a local characteristic field decomposition procedure, see e.g. [16] for

details, while the up-wind linear reconstruction is used for the high order derivative terms.

The Roe type HWENO scheme is less dissipative and thus achieves higher resolution than

the HWENO scheme. For the two-dimensional case, the reconstruction to fluxes is based on

a dimension by dimension fashion.

2.4 Extension to multiple dimensions

To present the extension of the alternative flux to multiple dimensions we consider the

two-dimensional case{
ut + f(u)x + g(u)y = 0, (x, y) ∈ R2, t ∈ (0,∞)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,
(2.38)
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where f(u(x, y, t)) and g(u(x, y, t)) are flux in x direction and y direction. Let v = ux,

w = uy, taking the derivative x and y of (2.38) separately, then we obtain:
ut + f(u)x + g(u)y = 0,

vt + h(u, v)x + r(u, v)y = 0,

wt + q(u,w)x + s(u,w)y = 0

(2.39)

where

h(u, v) = f ′(u)v, r(u, v) = g′(u)v, q(u,w) = f ′(u)w, s(u,w) = g′(u)w.

For simplicity, we assume that the mesh is uniform with the cell centers (xi, yj) =

(1
2
(xi+1/2+xi−1/2),

1
2
(yj+1/2−yj−1/2)) and cell size xi+1/2−xi−1/2 = ∆x, yj+1/2−yj−1/2 = ∆y.

We also denote the cells by Iij = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]. We can write (2.39) directly

using a conservation approximation to the spatial derivatives
dui,j(t)

dt
+ 1

∆x
(f̂i+ 1

2
,j − f̂i− 1

2
,j) +

1
∆y

(ĝi,j+ 1
2
− ĝi,j− 1

2
) = 0,

dvi,j(t)

dt
+ 1

∆x
(ĥi+ 1

2
,j − ĥi− 1

2
,j) +

1
∆y

(r̂i,j+ 1
2
− r̂i,j− 1

2
) = 0,

dwi,j(t)

dt
+ 1

∆x
(q̂i+ 1

2
,j − q̂i− 1

2
,j) +

1
∆y

(ŝi,j+ 1
2
− ŝi,j− 1

2
) = 0.

(2.40)

For the two dimensional case, we adopt a dimension-by-dimension method to deal with

f̂i± 1
2
,j, ĝi,j± 1

2
, ĥi± 1

2
,j and ŝi,j± 1

2
, the mixed derivative terms r̂i,j± 1

2
and q̂i,j± 1

2
use the classical

WENO scheme. One of the advantages of the HWENO scheme is the compactness, hence

using the WENO scheme to reconstruction the mixed derivative terms must be confined

by the node numbers of the HWENO scheme which we developed in the above for the

compactness of our schemes. This lead to the order of our schemes lower one order accuracy

than the WENO scheme, becoming fourth order precision.

The reconstruction of fluxes for the mixed derivative terms q̂i,j± 1
2
will be developed by

q̂i+ 1
2
,j =

1

2
(q(u+

i+ 1
2
,j
, w+

i+ 1
2
,j
) + q(u−

i+ 1
2
,j
, w−

i+ 1
2
,j
))− α

2
(w+

i+ 1
2
,j
− w−

i+ 1
2
,j
)

− 1

24
∆x2(

∂2q

∂x2
)i+ 1

2
,j (2.41)

with α = maxu |f ′(u)|. The reconstruction procedure of u±
i+ 1

2

has been given in the second

2.1. We would like to reconstruct w±
i+1/2,j by third-order WENO reconstruction in order

to keep the compactness of the scheme, this leads to the scheme is the fourth order. To

the derivative term ∆x2( ∂
2q

∂x2 )i+ 1
2
,j in (2.41), we use the same method with section 2.2 to

discretize. The difference approximations as follows

∆x2(
∂2q

∂x2
)i+ 1

2
,j ≈ q+i−1,j − 2q+i,j + q+i+1,j + q−i,j − 2q−i+1,j + q−i+2,j
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with

q+ij =
1

2
(q(uij, wij) + αwij), q−ij =

1

2
(q(uij, wij)− αwij),

the α adopt the same value with section 2.2.

3 Numerical results

In the present section, extensive numerical experiments are performed to compare the

performance of the HWENO scheme, such as accuracy, CPU time as well as the resolution of

the different numerical fluxes outlined in the previous section. Comparisons are concentrated

mainly on the one-dimensional cases firstly. Numerical tests are also performed for the two

dimensional systems. In all the numerical examples, we take the CFL number is 0.2 for

one dimensional and two-dimensional cases. In the numerical results figures, the solid line

stands for the reference solution and “�” and “+” represent the numerical solution. In the

time history figure, each symbol “�” and “+” denote the position reconstruction of flux by

HWENO reconstruction.

Firstly we consider the one dimensional Euler equations by the present HWENO scheme.

The PDEs of one dimensional Euler equations in the physical space with the Cartesian

coordinate (x, y) are as follows ρ
ρu
E


t

+

 ρu
ρu2 + p
u(E + p)


x

= 0, (3.42)

where ρ is the density, u is the velocity in an x−direction, E is the total energy, and p is the

pressure, which is related to the total energy by E =
p

γ − 1 + 1
2
ρu2 with γ = 1.4.

Example 3.1. The first test problem is the effective order of accuracy of the scheme

problem. We solve the one-dimensional nonlinear system of Euler equations (3.42). The

initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1, with a 2-

periodic boundary condition. The exact solution is ρ(x, t) = 1+0.2 sin(π(x− t)), v(x, t) = 1,

p(x, t) = 1. We compute the solution up to t = 2. In Table 3.1 we provide a CPU time

comparison for the HWENO schemes with different fluxes. The numerical errors and the

orders of accuracy for the density ρ, and ratios of the numerical errors for comparison with

the RKDG-LF scheme are shown in Table 3.2.

We can see that the HWENO-LF scheme costs the least CPU time among all the numer-

ical fluxes, but at the same, it has the largest numerical errors.

From the CPU time aspect, the HWENO-G and HWENO-EO schemes cost about twice

that of the HWENO-LF scheme, the HWENO-MUSTA schemes cost about 30%-40% more
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Table 3.1: CPU time (in seconds) for the HWENO methods with different fluxes, for the accuracy test
problem. Total CPU time for N = 10, 20, 40, 80, 160 and 320 cells is recorded.

flux time flux time flux time flux time flux time
LF 61.7051 EO 112.9668 HLLC 67.0252 FLIC 67.2668 LLF 61.9344
G 98.6506 HLL 62.9382 FORCE 66.5397 MUSTA 87.8203 – –

than that of the HWENO-LF scheme, the HWENO-FORCE, HWENO-FLIC and HWENO-

HLLC schemes cost about 10% than that of the HWENO-LF scheme, and the HWENO-HLL

and HWENO-LLF schemes cost about the same as that of the HWENO-LF scheme. Of

course, this CPU time comparison depends on our specific implementation of these fluxes

and also on the specific test case (for the Godunov flux which has an iteration procedure

and may converge with a different number of steps for different solutions), but it does give

the correct ball-park of the relative CPU costs of the HWENO method using these different

fluxes.

From the numerical errors aspect, all other schemes for the same meshes are about 40%

and 50% of that by the HWENO-LF scheme, except for the RKDG-FLIC and RKDG-

FORCE schemes, which have errors about 10%-20% of that by the HWENO-LF scheme.

This indicates that we have to be cautious when discussing the accuracy advantage of various

fluxes as this may depend on the order of accuracy of the scheme.

We can also see that all schemes achieve their designed orders of accuracy, as expected.

Example 3.2. The second test case is the Riemann problem proposed by Lax:

(ρ, v, p) =

{
(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0,

In this example, we test the previous numerical example to show the spurious oscillations.

The computational domain is [−5, 5] with 200 cells, and the final time is t = 1.3. In Figs. 3.1,

the computed densities ρ are plotted against the reference solution and against the numerical

solution computed by the HWENO-LF scheme on the same mesh, the zoomed figures in the

region [−1, 4] is shown which contains the contact discontinuity and the shock.

From the results, we can see that the HWENO-G, HWENO-EO, HWENO-HLL, and

HWENO-HLLC schemes are slightly better than that computed by the HWENO-LF scheme,

in terms of the resolution of the discontinuities, and the results computed by all other schemes

are similar to that computed by the HWENO-LF scheme.

In Fig. 3.2, we compare our scheme of this article with the classic HWENO-LF method

[10](fifth order accurate). Both algorithms use the same Lax-Friedrichs numerical flux. Ac-

cording to the results of these comparisons are demonstrated in this example, we can observe

that a similar results is obtained by using our scheme.
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Table 3.2: Euler equation, ρ(x, 0) = 1 + 0.2sin(πx), v(x, 0) = 1, p(x, 0) = 1, using N equally spaced cells
with different fluxes,t = 2, L1 and L∞ errors of density ρ.

N Flux L1 error L1 order error ratio L∞ error L∞ order Error ratio
10 LF 5.42E-03 1.0000 7.82E-03 1.0000

G 2.72E-03 0.5018 3.86E-03 0.4936
EO 2.74E-03 0.5055 3.84E-03 0.4910
HLL 3.06E-03 0.5646 4.25E-03 0.5434
HLLC 2.73E-03 0.5037 3.89E-03 0.4974
FORCE 1.92E-03 0.3542 2.99E-03 0.3824
FLIC 1.81E-03 0.3339 2.70E-03 0.3453
MUSTA 3.38E-03 0.6236 4.42E-03 0.5652

20 LF 2.37E-04 4.52 1.0000 3.71E-04 4.40 1.0000
G 9.98E-05 4.77 0.4211 1.77E-04 4.44 0.4771
EO 1.01E-04 4.76 0.4262 1.78E-04 4.43 0.4798
HLL 1.17E-04 4.71 0.4937 2.11E-04 4.33 0.5687
HLLC 1.00E-04 4.77 0.4219 1.78E-04 4.45 0.4798
FORCE 5.86E-05 5.03 0.2473 1.13E-04 4.73 0.3046
FLIC 3.86E-05 5.55 0.1629 9.56E-05 4.82 0.2577
MUSTA 1.34E-04 4.66 0.5654 2.27E-04 4.28 0.6119

40 LF 7.11E-06 5.06 1.0000 1.31E-05 4.82 1.0000
G 2.95E-06 5.08 0.4149 5.48E-06 5.02 0.4183
EO 2.98E-06 5.08 0.4191 5.52E-06 5.01 0.4214
HLL 3.48E-06 5.07 0.4895 6.87E-06 4.94 0.5244
HLLC 2.95E-06 5.08 0.4149 5.48E-06 5.02 0.4183
FORCE 1.69E-06 5.12 0.2377 3.44E-06 5.03 0.2626
FLIC 6.72E-07 5.84 0.0945 2.57E-06 5.21 0.1962
MUSTA 3.99E-06 5.07 0.5612 7.39E-06 4.94 0.5641

80 LF 2.18E-07 5.03 1.0000 4.09E-07 5.00 1.0000
G 9.08E-08 5.02 0.4165 1.71E-07 5.00 0.4181
EO 9.18E-08 5.02 0.4211 1.73E-07 5.00 0.4230
HLL 1.07E-07 5.02 0.4908 2.18E-07 4.98 0.5330
HLLC 9.08E-08 5.02 0.4165 1.71E-07 5.00 0.4181
FORCE 5.17E-08 5.03 0.2372 9.99E-08 5.11 0.2443
FLIC 1.61E-08 5.38 0.0739 8.40E-08 4.94 0.2054
MUSTA 1.23E-07 5.02 0.5642 2.30E-07 5.00 0.5623

160 LF 6.69E-09 5.02 1.0000 1.22E-08 5.07 1.0000
G 2.80E-09 5.02 0.4185 5.01E-09 5.09 0.4107
EO 2.83E-09 5.02 0.4230 5.06E-09 5.09 0.4148
HLL 3.30E-09 5.02 0.4933 6.47E-09 5.07 0.5303
HLLC 2.80E-09 5.02 0.4185 5.01E-09 5.09 0.4107
FORCE 1.59E-09 5.02 0.2377 2.84E-09 5.14 0.2328
FLIC 4.59E-10 5.13 0.0686 2.65E-09 4.99 0.2172
MUSTA 3.78E-09 5.02 0.5650 6.78E-09 5.09 0.5557

320 LF 2.00E-10 5.06 1.0000 3.42E-10 5.16 1.0000
G 8.41E-11 5.06 0.4205 1.43E-10 5.13 0.4181
EO 8.50E-11 5.06 0.4250 1.44E-10 5.13 0.4211
HLL 9.89E-11 5.06 0.4945 1.82E-10 5.15 0.5322
HLLC 8.41E-11 5.06 0.4205 1.43E-10 5.13 0.4181
FORCE 4.80E-11 5.05 0.2400 8.11E-11 5.13 0.2371
FLIC 1.38E-11 5.06 0.0690 9.17E-11 4.85 0.2681
MUSTA 1.13E-10 5.06 0.5650 1.93E-10 5.14 0.5643
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Figure 3.1: Lax problem. t = 1.3. HWENO with different fluxes, 200 cells. Density.
Solid lines: the exact solution; hollow squares: the results computed by the HWENO-LF
scheme; plus symbols: results computed by the HWENO-G (top left), HWENO-EO (top
right), HWENO-HLL (middle left), HWENO-HLLC (middle right), HWENO-FORCE (bot-
tom left), HWENO-FLIC (bottom middle) and HWENO-MUSTA (bottom right) schemes.
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Figure 3.2: The Euler equations Lax problem. Solid line: exact solution; circle: computed solution of
classical HWENO5 scheme with LF flux, plus: computed solution of present scheme.

Example 3.3. We solve the Euler equations (3.42) with a moving Mach=3 shock interacting

with sine waves in density, i.e. the famous Shu-Osher problem which solution contains

both shocks and complex smooth region structures. This model problem would show the

advantage of different high order schemes in terms of the high resolutions with the initial

condition

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333) if x < −4,
(1 + εsin5x, 0, 1) if x ≥ −4.

Here we take the ε = 0.2. The computed density ρ is plotted at t = 1.8 against the reference

solution, which is a converged solution, computed using a fifth-order WENO scheme [8] by

2000 grid points, and against the solution computed by the HWENO-LF scheme on the

same mesh. The computational domain is [−5, 5] with 300 grids. In Figs. 3.3, ”zoomed-in”

pictures at the region [0.5, 2.5] show the results which contains the complicated wave pattern

in the smooth part of the solution.

Comparing the results from the pictures, we can observe that an improvement of reso-

lution for the complicated wave pattern in this example for all the other schemes over the

HWENO-LF scheme. All the other schemes have similar performance for this example.

Similar to the previous example, we show a comparison of the numerical results by our

scheme and standard HWENO-LF discretization scheme in Fig. 3.4. we can see that the

results by a method with alternative HWENO-LF(our scheme) has better performance and

resolution than the classic HWENO-LF scheme.

Example 3.4. We solve the interaction of blast waves of the Euler equations (3.42) for a
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Figure 3.3: Shu-osher problem. t = 1.3. HWENO with different fluxes, 200 cells. Density.
Solid lines: the exact solution; hollow squares: the results computed by the HWENO-LF
scheme; plus symbols: results computed by the HWENO-G (top left), HWENO-EO (top
right), HWENO-HLL (middle left), HWENO-HLLC (middle right), HWENO-FORCE (bot-
tom left), HWENO-FLIC (bottom middle) and HWENO-MUSTA (bottom right) schemes.
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Figure 3.4: The Euler equations Shu-Osher problem. Solid line: the “exact” reference solution; circle: the
results computed by classical HWENO5 with LF flux, plus: computed solution of present scheme.

Riemann problem in a computational domain [0, 1] and set the initial conditions as:

(ρ, v, p) =

{
(1, 0, 1000) if 0 ≤ x < 0.1,
(1, 0, 0.01) if 0.1 ≤ x < 0.9,
(1, 0, 100) if 0.9 ≤ x.

A reflecting boundary condition is applied to both ends. We plot the computed densities ρ at

t = 0.038 with 400 cells, against the reference resolution computed by a fifth-order WENO

scheme [8] using 2000 grid points, and against the solution computed by the HWENO-LF

scheme on the same mesh. In Figs. 3.5, ”zoomed-in” pictures at the region [0.53, 0.88] show

the results which contain the contact discontinuities and shocks in the solution.

Comparing the results from the pictures, the HWENO-LF scheme has the worst resolution

among all the schemes. The HWENO-God, HWENO-EO, HWENO-HLL, and HWENO-

HLLC have a relatively better resolution than other schemes. Combined with the analysis of

the previous examples, HWENO-God and HWENO-EO schemes need more CPU time and

have the least resolution, hence we consider the HWENO-HLL and HWENO-HLLC have

the better performance in solving the hyperbolic conservation laws based on our schemes.

In Fig. 3.6, we again show the numerical results comparison by our discretization

scheme and the classic HWENO-LF method, we can also see that the results by our alterna-

tive HWENO-LF scheme have better performance and result than the classic HWENO-LF

scheme.

Example 3.5. Double mach reflection problem. In this case, we solve the two dimensional

Euler equations in a computational domain of [0, 4]× [0, 1]. This model problem is originated

from [27]. A reflection wall lies at the bottom of the domain starting from x = 1/6, y = 0,

making a 60o angle with the x-axis. The problem is initialized by a right-going Mach 3
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Figure 3.5: Blast wave problem. t = 1.3. HWENO with different fluxes, 200 cells. Density.
Solid lines: the exact solution; hollow squares: the results computed by the HWENO-LF
scheme; plus symbols: results computed by the HWENO-G (top left), HWENO-EO (top
right), HWENO-HLL (middle left), HWENO-HLLC (middle right), HWENO-FORCE (bot-
tom left), HWENO-FLIC (bottom middle) and HWENO-MUSTA (bottom right) schemes.
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Figure 3.6: The Euler equations Blast-wave problem. Solid line: the “exact” reference solution; circle: the
results computed by classical HWENO5 with LF flux, plus: computed solution of present scheme.

flow. The reflection boundary condition is used at the wall, which for the rest of the bottom

boundary (the part from x = 0 to x = 1/6 ), the exact post-shock condition is imposed.

At the top boundary is the exact motion of the mach 10 shock. The results shown are at

t = 0.2. We present both the pictures of the region [0, 3] × [0, 1] and the blow-up region

around the double mach stems in Figures 3.7. All the figures are showing 30 equally spaced

density contours from 1.5 to 22.7. It seems that all schemes perform similarly well for this

test case.

According to our numerical experimental results for the one dimensional case, we test

only the three relatively better performing schemes, namely the HWENO-LLF, HWENO-

HLL, and HWENO-HLLC schemes. In most of the HWENO literature, the Lax-Friedrichs

numerical flux is used due to its simplicity. The numerical results of the HWENO-LF scheme

also report. It seems that all schemes perform similarly well for this test case.

4 Concluding remarks

In this paper, we study a new form of finite difference HWENOmethod that the numerical

flux framework breaks the limitations of the traditional mathematical form of numerical flux

and is suitable for many different forms of numerical flux on the cartesian coordinate. A vari-

ety of benchmark examples for one and a two-dimensional hyperbolic system of conservation

law are tested. On one hand, extensive numerical results strongly suggest that the present

HWENO schemes maintain the excellent properties of the original WENO schemes such as

non-oscillatory property near discontinuities, and sharp shock transition. Additionally, the

systematically studied and compared a few different fluxes for the HWENO methods make
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us more clearly understand the performance of different fluxes and which flux has better

performance for the HWENO methods than the others. Above all, extensive numerical tests

indicate that HWENO schemes with the LF flux cost the least CPU time among all, and the

numerical errors and resolution of solutions on the discontinuities are also the worst among

all. The HWENO-EO and HWENO-Godunov methods seem to cost significantly more CPU

time than the HWENO-LF methods. Considering all the factors such as the cost of CPU

time, numerical errors and resolution of discontinuities in the solution, the HLL and HLLC

fluxes might be good choices as fluxes for the HWENO method. For these good fluxes for

HWENO schemes, the numerical test performed for two dimensional systems.

In addition, HWENO schemes have a great advantage over the original WENO schemes

in terms of the compactness and the resolutions. Therefore, the HWENO schemes have

potential practical applications and the research about the HWENO finite difference schemes

for convection-diffusion equations constitutes our ongoing work.
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