References
[1] Battiprolu, P. K., Hojayev, B., Jiang, N., Wang, Z. V., Luo, X., Iglewski, M., Shelton, J. M., Gerard, R. D., Rothermel, B. A., Gillette, T. G., Lavandero, S., and Hill, J. A. (2012) Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice, J Clin Invest 122 , 1109-1118.
[2] Becher, P. M., Jugdutt, B. I., Baugh, J., and Schmack, B. (2016) Experimental Heart Failure Models and Their Pathophysiological Characterization, Biomed Res Int 2016 , 2538263-2538263.
[3] Bertero, E., and Maack, C. (2018) Metabolic remodelling in heart failure, Nat Rev Cardiol 15 , 457-470.
[4] Bilan, D. S., and Belousov, V. V. (2016) HyPer Family Probes: State of the Art, Antioxid Redox Signal 24 , 731-751.
[5] Bogdanova, Y. A., Schultz, C., and Belousov, V. V. (2017) Local Generation and Imaging of Hydrogen Peroxide in Living Cells, Curr Protoc Chem Biol 9 , 117-127.
[6] Braunwald, E. (2013) Heart failure, JACC Heart Fail1 , 1-20.
[7] Brown, D. I., and Griendling, K. K. (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system,Circ Res 116 , 531-549.
[8] Bugger, H., and Abel, E. D. (2009) Rodent models of diabetic cardiomyopathy, Disease Models & Mechanisms 2 , 454-466.
[9] Burgoyne, J. R., Mongue-Din, H., Eaton, P., and Shah, A. M. (2012) Redox signaling in cardiac physiology and pathology, Circ Res 111 , 1091-1106.
[10] Carniel, E., Taylor, M. R., Sinagra, G., Di Lenarda, A., Ku, L., Fain, P. R., Boucek, M. M., Cavanaugh, J., Miocic, S., Slavov, D., Graw, S. L., Feiger, J., Zhu, X. Z., Dao, D., Ferguson, D. A., Bristow, M. R., and Mestroni, L. (2005) Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy, Circulation 112 , 54-59.
[11] D’Aniello, A., D’Onofrio, G., Pischetola, M., D’Aniello, G., Vetere, A., Petrucelli, L., and Fisher, G. H. (1993) Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids,J Biol Chem 268 , 26941-26949.
[12] Finkel, T. (2003) Oxidant signals and oxidative stress,Curr Opin Cell Biol 15 , 247-254.
[13] Finkel, T. (2011) Signal transduction by reactive oxygen species, J Cell Biol 194 , 7-15.
[14] Griendling, K. K., Touyz, R. M., Zweier, J. L., Dikalov, S., Chilian, W., Chen, Y.-R., Harrison, D. G., Bhatnagar, A., and American Heart Association Council on Basic Cardiovascular, S. (2016) Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association, Circulation research 119 , e39-e75.
[15] Houser, S. R., Margulies, K. B., Murphy, A. M., Spinale, F. G., Francis, G. S., Prabhu, S. D., Rockman, H. A., Kass, D. A., Molkentin, J. D., Sussman, M. A., and Koch, W. J. (2012) Animal models of heart failure: a scientific statement from the American Heart Association,Circ Res 111 , 131-150.
[16] Kanaan, G. N., and Harper, M. E. (2017) Cellular redox dysfunction in the development of cardiovascular diseases, Biochim Biophys Acta Gen Subj 1861 , 2822-2829.
[17] Kerkela, R., Ulvila, J., and Magga, J. (2015) Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events, J Am Heart Assoc 4 , e002423.
[18] Matlashov, M. E., Belousov, V. V., and Enikolopov, G. (2014) How much H(2)O(2) is produced by recombinant D-amino acid oxidase in mammalian cells?, Antioxidants & redox signaling 20 , 1039-1044.
[19] McMurray, J. J. (2010) Clinical practice. Systolic heart failure, N Engl J Med 362 , 228-238.
[20] Murphy, M. P., Holmgren, A., Larsson, N. G., Halliwell, B., Chang, C. J., Kalyanaraman, B., Rhee, S. G., Thornalley, P. J., Partridge, L., Gems, D., Nystrom, T., Belousov, V., Schumacker, P. T., and Winterbourn, C. C. (2011) Unraveling the biological roles of reactive oxygen species, Cell Metab 13 , 361-366.
[21] Ogura, S., and Shimosawa, T. (2014) Oxidative stress and organ damages, Curr Hypertens Rep 16 , 452.
[22] Patten, R. D., and Hall-Porter, M. R. (2009) Small animal models of heart failure: development of novel therapies, past and present, Circulation. Heart failure 2 , 138-144.
[23] Pfeffer, J. M., Pfeffer, M. A., and Braunwald, E. (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat, Circulation research 57 , 84-95.
[24] Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., and Braunwald, E. (1979) Myocardial infarct size and ventricular function in rats, Circulation research 44 , 503-512.
[25] Pfeffer, M. A., Pfeffer, J. M., Steinberg, C., and Finn, P. (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril, Circulation72 , 406-412.
[26] Richards, D. A., Aronovitz, M. J., Calamaras, T. D., Tam, K., Martin, G. L., Liu, P., Bowditch, H. K., Zhang, P., Huggins, G. S., and Blanton, R. M. (2019) Distinct Phenotypes Induced by Three Degrees of Transverse Aortic Constriction in Mice, Sci Rep 9 , 5844.
[27] Riehle, C., and Bauersachs, J. (2019) Small animal models of heart failure, Cardiovascular Research 115 , 1838-1849.
[28] Roger, V. L. (2013) Epidemiology of Heart Failure,Circulation Research 113 , 646-659.
[29] Roul, D., and Recchia, F. A. (2015) Metabolic alterations induce oxidative stress in diabetic and failing hearts: different pathways, same outcome, Antioxidants & redox signaling22 , 1502-1514.
[30] Sahoo, S., Aurich, M. K., Jonsson, J. J., and Thiele, I. (2014) Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease, Frontiers in Physiology5 , 91.
[31] Schiattarella, G. G., Altamirano, F., Tong, D., French, K. M., Villalobos, E., Kim, S. Y., Luo, X., Jiang, N., May, H. I., Wang, Z. V., Hill, T. M., Mammen, P. P. A., Huang, J., Lee, D. I., Hahn, V. S., Sharma, K., Kass, D. A., Lavandero, S., Gillette, T. G., and Hill, J. A. (2019) Nitrosative stress drives heart failure with preserved ejection fraction, Nature 568 , 351-356.
[32] Sies, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress,Redox Biol 11 , 613-619.
[33] Sies, H. (2015) Oxidative stress: a concept in redox biology and medicine, Redox biology 4 , 180-183.
[34] Sorrentino, A., Steinhorn, B., Troncone, L., Saravi, S. S. S., Badole, S., Eroglu, E., Kijewski, M. F., Divakaran, S., Di Carli, M., and Michel, T. (2019) Reversal of heart failure in a chemogenetic model of persistent cardiac redox stress, Am J Physiol Heart Circ Physiol 317 , H617-h626.
[35] Steinhorn, B., Sartoretto, J. L., Sorrentino, A., Romero, N., Kalwa, H., Abel, E. D., and Michel, T. (2017) Insulin-dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from NADPH-oxidase isoforms NOX2 and NOX4, Free Radic Biol Med 113 , 16-25.
[36] Steinhorn, B., Sorrentino, A., Badole, S., Bogdanova, Y., Belousov, V., and Michel, T. (2018) Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction, Nat Commun 9 , 4044.
[37] Urban, D. J., and Roth, B. L. (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility, Annu Rev Pharmacol Toxicol 55 , 399-417.
[38] Zhang, Y., Tocchetti, C. G., Krieg, T., and Moens, A. L. (2012) Oxidative and nitrosative stress in the maintenance of myocardial function, Free Radic Biol Med 53 , 1531-1540.
[39] Ziaeian, B., and Fonarow, G. C. (2016) Epidemiology and aetiology of heart failure, Nat Rev Cardiol 13 , 368-378.