References
[1] H. H. Ou, P. J. Yang, L. H. Lin, M. Anpo, X. C. Wang, Carbon Nitride Aerogels for the Photoredox Conversion of Water, Angew. Chem. Int. Ed, 2017, 56, 10905-10910.
[2] J. X. Low, J. G. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Heterojunction Photocatalysts, Adv. Mater. 2017, 29, 1601694.
[3] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, 37-38.
[4] Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li, G. X. Lu, 5.1% quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation, Catal. Commun, 2007, 8, 1267-1273.
[5] X. Yan, Z. L. Jin, Y. P. Zhang, H. Liu, X. L. Ma, Controllable design of double metal oxide (NiCo2O4) modified CdS for efficient photocatalytic hydrogen production, Phys. Chem. Chem. Phys, 2019, 21, 4501-4512.
[6] H. Li, X. Q. Yan, B. Lin, M. Y. Xia, J. J. Wei, B. L. Yang, G. D. Yang, Controllable Spatial Effect Acting on Photo-induced CdS@CoP@SiO Ball-in-Ball Nano-photoreactor for Enhancing Hydrogen Evolution, Nano energy, 2018,47, 481-493.
[7] S. Q. Peng, Y. Yang, J. N. Tan, C. Gan, Y. X. Li. In situ loading of Ni2P on Cd0.5Zn0.5S with red phosphorus for enhanced visible light photocatalytic H2 evolution. Appl. Surf. Sci, 2018, 447, 822-828.
[8] C. Xue, H. Li, H. An, B. L. Yang, J. J. Wei, G. D. Yang, NiSx Quantum Dots Accelerate Electrons Transfer in Cd0.8Zn0.2S Photocatalytic System via rGO Nanosheet “Bridge” towards Superior Visible-Light-Driven Hydrogen Evolution, ACS Catalysis, 2018, 8, 1532-1545.
[9] Q. Z. Wang. J. J. He, Y. B. Shi, S. L. Zhang, T. J. Niu, H. D. She, Y. P. Bi, Z. Q. Lei, Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity, Appl. Catal. B: Environ, 2017, 214, 158-167.
[10] H. Y. Wang, Z. L. Jin, Boosting photocatalytic hydrogen evolution achieved by rationally designed/constructed carbon nitride with ternary cobalt phosphosulphide, J Colloid Interf Sci, 2019, 548, 303-311.
[11] J. W. Fu, Q. L. Xu, J. X. Low, C. J. Jiang, J. G. Yu, Ultrathin 2D/2D WO3/g-C3N4step-scheme H2-production photocatalyst, Appl. Catal. B: Environ, 2019, 243, 556-565.
[13] H. X. Jiang, J. L. Zhou, C. X. Wang, Y. H. Li, Y. F. Chen, M. H. Zhang, Effect of Cosolvent and Temperature on the Structures and Properties of Cu-MOF-74 in Low-temperature NH3-SCR, Ind. Eng. Chem. Res, 2017, 56, 3542-3550.
[14] N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, R. Q. Snurr, Chem. Soc. Rev, 2017, 46, 3357-3385
[15] G. H. Li, H. Yang, F. C. Li, J. Du, W. Shi, P. Cheng, Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal-organic framework, J. Mater. Chem. A, 2016, 4, 9593-9599.
[16] L. T. Yan, P. C. Dai, Y. Wang, X. Gu, L. J. Li, L. Cao, X. B. Zhao, In Situ Synthesis Strategy for Hierarchically Porous Ni2P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution, ACS Appl. Mater. Interfaces 2017, 9, 11642-11650.
[17] X. Liang, B. X. Zheng, L. G. Chen, J. T. Zhang, Z. B. Zhuang, B. H. Chen, MOF-Derived Formation of Ni2P-CoP Bimetallic Phosphides with Strong Interfacial Effect toward Electrocatalytic Water Splitting, ACS Appl. Mater. Interfaces 2017, 9, 23222-23229.
[18] M. Yang, J. Y. Xie, Z. Y. Lin, B. Dong, Y. Chen, X. Ma, M. L. Wen, Y. N. Zhou, L. Wang, Y. M. Chai, N-doped FeP nanorods derived from Fe-MOFs as bifunctional electrocatalysts for overall water splitting, Appl. Surf. Sci, 2019, 17, 145096
[19] Z. Q. Li, L. Y. Zhang, X. L. Ge, C. X. Li, S. H. Dong, C. X. Wang, L. W. Yin, Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries, Nano Energy, 2017, 32, 494-502.
[20] J. L. Duan, Y. L. Zou, Z. Y. Li, B. Long, Preparation of MOF-derived NiCoP nanocages as anodes for lithium ion batteries, Powder Technology, 2019, 354, 834-841.
[21] C. M. Li, Y. H. Du, D. P. Wang, S. M. Yin, W. U. Tu, Z. Chen, M. K. Kraft, G. Chen, R. Xu, Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2evolution, Adv Funct Mater, 2017, 27, 1604328.
[22] L. J. Zhang, Z. L. Jin, Efective Electron-Hole Separation Over Controllable Construction of CdS/Co-Ni-P Core/Shell Nanophotocatalyst for Improved Photocatalytic Hydrogen Evolution Under Visible-Light-Driven, Catal Surv Asia, 2019, 23, 219-230.
[23] Z. L. Jin, Y. K. Zhang, Q. X. Ma, Orthorhombic WP co-catalyst coupled with electron transfer bridge UiO-66 for efficient visible-light-driven H2 evolution, J Colloid Interf Sci, 2019, 556, 689-703.
[24] Y. B. Li, Z. L. Jin, H. Liu, H. Y. Wang, Y. P. Zhang, G. R. Wang, Unique photocatalytic activities of transition metal phosphide for hydrogen evolution, J Colloid Interf Sci, 2019, 541, 287-299.
[25] Z. J. Wang, Z. L. Jin, H. Yang, X. L. Ma, H. Liu, Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production, Mol Catal, 2019, 467, 78-86.
[26] Y. K. Yu, C. W. Chen, C. He, J. F. Miao, J. S. Chen, In situ Growth Synthesis of CuO@Cu-MOFs Core-shell Materials as Novel Low-temperature NH3-SCR Catalysts, ChemCatChem 2019, 11, 979-984.
[27] B. Panella, M. Hirscher, H. Pütter, U. Müller, Hydrogen Adsorption in Metal-Organic Frameworks: Cu-MOFs and Zn-MOFs Compared, Adv. Funct. Mater. 2006, 16, 520-524.
[28] P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma, Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes, Micropor Mesopor Mat, 2009, 117, 406-413.
[29] H. Y. Wang, Z. L. jin, Rational design W-doped Co-ZIF-9 based Co3S4 composite photocatalyst for efficient visible-light-driven photocatalytic H2evolution, Sustain Energ Fuels, 2019, 3, 173-183.
[30] L. J, Zhang, X. Q. Hao, J. K. Li, Y. P. Wang, Z. L. Jin, Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution, Chinese J Catal, 2020, 41, 82-94.
[31] X. X. Ma, Y. Q. Chang, Z. Zhe, J. L. Tang, Forest-like NiCoP@Cu3P Supported on Copper Foam as a bifunctional catalyst for Efficient Water Splitting, J. Mater. Chem. A, 2018, 6, 2100-2106.
[32] Z. Wang, H. T. Du, Z. Liu, H. Wang, Abdullah M. Asirid and Xuping Sun, Interface engineering of CeO2-Cu3P nanoarray for efficient alkaline hydrogen evolution, Nanoscale, 2018,10, 2213-2217.
[33] Y. Shi, D. Y. Niu, Z. M. Wu, Z. Z. Liu, Q. D. Zhao, W. Xiong, X. Y. Li, Synthesis of Ag/Cu3(BTC)2composite catalysts and their catalytic performance for NH3-SCR, China Environmental Sciencece, 2018, 38, 2445-2450.
[34] S. X. Hua, D. Qu, L. An, W. S. Jiang, Y. J. Wen, X. Y. Wang, Z. C. Sun, Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Zscheme charge transfer route, Appl. Catal. B: Environ, 2019, 240, 253-261.
[35] H. T. Du, X. P. Zhang, Q. Q. Tan, R. M. Kong, F. L. Qu, A Cu3P-CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reactions, Chem. Commun , 2017, 53 , 12012-12015.
[36] L. J. Zhang, G. R. Wang, Z. L. Jin, Growth of Zn0.5Cd0.5S/a-Ni(OH)2heterojunction by a facile hydrothermal transformation efficiently boosting photocatalytic hydrogen production, New J. Chem, 2019, 43, 6411-6421.
[37] Q. D. Li, L. Li, P.J. Wu, N. Xu, L. Wang, M. Li, A. Dai, K. Amine, L.Q. Mai, J. Lu, Silica Restricting the Sulfur Volatilization of Nickel Sulfide for High‐Performance Lithium‐Ion Batteries , Adv. Energy Mater. 2019, 1901153.
[38] L. J. Zhang, X. Q. Hao, Y. P. Wang, Z. L. Jin, Q. X. Ma, Construction strategy of Mo-S@Mo-P heterojunction formed with in-situ phosphating Mo-S nanospheres toward efficient photocatalytic hydrogen production, https://doi.org/10.1016/j.cej.2019.123545.
[39] D. D. Liu, Z. L. Jin, Y. P. Bi, Charge transmission channel construction between a MOF and rGO by means of Co-Mo-S modification, Catal Sci Technol, 2017, 7, 4478-4488
[40] L. J. Zhang, X. Q. Hao, Y. B. Li, Z. L. Jin, Performance of WO3/g-C3N4heterojunction composite boosting with NiS for photocatalytic hydrogen evolution, Appl. Surf. Sci, 2020, 499, 143862.
[41] C. J. Huang, C. Chen, M. W. Zhang, L. H. Lin, X. X. Ye, S. Lin, M. K. Antonietti, X. C. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun, 2015, 6, 7698.
[42] K. L. He, J. Xie, M. L. Li, X. Li, In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation, Appl. Surf. Sci, 2018, 430, 208-217.
[43] S. M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M. A. Kakimoto, J. I. Ozaki, S. Miyata, Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction, J. Phys. Chem. C, 2009, 113, 20148-20151.
[44] H. Yang, Z. L. Jin, D. D. Liu, K. Fan, G. R. Wang, Visible light harvesting and spatial charge separation over creative Ni/CdS/Co3O4 photocatalyst, J. Phys. Chem. C, 2018, 122, 10430-10441.
[45] X. Q. Hao, J. Zhou, Z. W. Cui, Y. C. Wang, W. Ying, Z. G. Zou, Zn-vacancy mediated electronhole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production, Appl. Catal. B: Environ, 2018, 229, 41-51.
[46] H. Yang, Z. L. Jin, G. R. Wang, D. D. Liu, K. Fan, Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation, Dalton Trans, 2018,47, 6973-6985.
[47] L. J. Zhang, X. Q. Hao, Q. Y. Jian, Z. L. Jin, Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic hydrogen evolution, J Solid State Chem, 2019, 274, 286-294.
[48] H. Yang, Z. L. Jin, H. Y. Hu, Y. P. Bi, G. X. Lu, Ni-Mo-S nanoparticles modified graphitic C3N4for efficient hydrogen evolution, Appl. Surf. Sci, 2018, 427, 587-597.
[49] L. J. Zhang, Z. L. Jin, Y. P. Zhang, H. Y. Wang, Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production, New J. Chem, 2019, 43, 3609-3618.
[50] G. X. Zhao, G. G. Liu, H. Pang, H. M. Liu, H. B. Zhang, K. Chang, X. U. Meng, X. J. Wang, J. H. Ye, Improved Photocatalytic H2 Evolution over G-Carbon Nitride with Enhanced In-Plane Ordering, Small 2016, 12, 6160-6166.
[51] R. C. Shen, J. Xie, X. Y. Lu, X. B. Chen, X. Li, Bi-functional Cu3P Decorated g-C3N4Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H2 Production, ACS Sustainable Chem. Eng, 2018, 6, 3, 4026-4036.
[52] Y. K. Zhang, Z. L. Jin, Accelerated charge transfer via nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution, Catal. Sci. Technol, 2019, 9, 1944-1960.
[53] F. Guo, W. L. Shi, H. B. Wang, M. M. Han, H. Li, H. Huang, Y. Liu, Z. H. Kang, Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light, Catal. Sci. Technol. 2017, 7, 3325-3331.
[54] Y. Liu, G. R. Wang, Y. B. Li, Z. L. Jin, 2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution, J Colloid Interf Sci, 2019, 554, 113-124.